Name: () Class: Sec 4 SG 1 / 2

Queenstown Secondary School

Preliminary Examination 2024 Secondary Four Express Chemistry 6092/01

28 August 2024 Time: 1145 – 1245h Wednesday Duration: 1 hour

Setter:

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

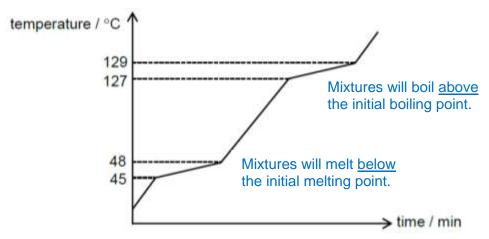
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 21.

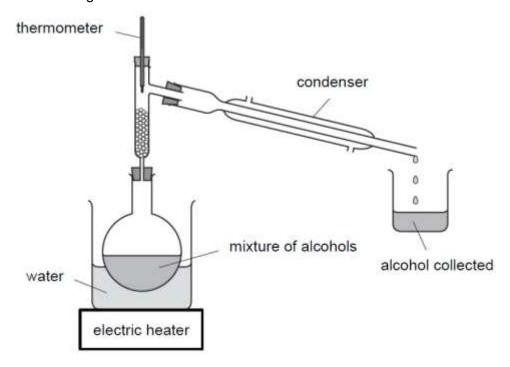
The use of an approved scientific calculator is expected, where appropriate.


1 The reaction of manganate(VII) ions with ethanedioate ions in acid solution may be represented by the following equation.

$$2 \frac{MnO_4}{l} (aq) + 16 \frac{H^+}{l} (aq) + 5C_2O_4^{2-} (aq) \rightarrow 2 \frac{Mn^{2+}}{l} (aq) + 8H_2O(l) + 10CO_2(g)$$

A student is exploring various ways to measure the rate of the reaction by measuring changes in different variables of the reaction.

Which of the following methods of monitoring the rate of reaction are suitable?


- 1 volume of gas produced ✓
- 2 pH of the reaction mixture ✓
- 3 mass of the reaction mixture ✓
- 4 amount of precipitate obtained *
- 5 intensity of the purple colour of the reaction mixture ✓
- **A** 1, 2 and 3
- **B** 1, 3 and 4
- C 1, 2, 3 and 5
- **D** 2, 3, 4 and 5
- **2** The heating curve of an impure sample of substance X is shown below.

What are the melting point and boiling point of pure substance X?

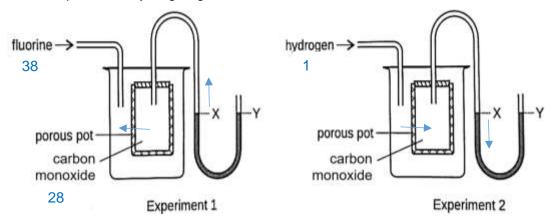
	melting point / °C boiling point / °	
	[above] [below]	
Α	45	129
В	47	128
С	<u>48</u>	<u>127</u>
D	49	130

3 A student carried out an experiment using the set-up shown below to separate a mixture containing four alcohols.

The table gives the boiling points of the four alcohols used.

alcohol	butanol	ethanol	pentanol	propanol
boiling point / °C	117	79	138	97

Despite repeated attempts, the student only managed to obtain two alcohols from the mixture.


Which alcohols did he fail to obtain?

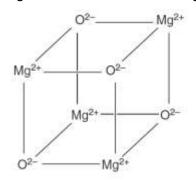
A butanol and ethanol

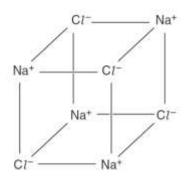
- **C** ethanol and propanol
- B <u>butanol and pentanol</u>
- **D** pentanol and propanol

4 Two experimental set-ups used to demonstrate the diffusion of gases are shown in the diagrams below. In each porous pot is carbon monoxide.

In the first experiment, the gas introduced into the beaker is fluorine gas, while in the second experiment, hydrogen gas was introduced.

What changes, if any, to the water levels X and Y would you expect to see in both experiments?

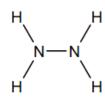

	experiment 1 experiment 2	
Α	Y is higher than X X is higher than Y	
В	X is higher than Y	Y is higher than X
С	X and Y remain the same Y is higher than X	
D	X and Y remain the same	X and Y remain the same


5 An ion, X², has a mass number of m and it contains n electrons.

What does the nucleus of an atom of X contain?

	number of protons	number of neutrons	
Α	n – 2	m – n	
В	<u>n – 2</u>	<u>m – n + 2</u>	
С	n + 2	m – n + 2	
D	n + 2	m – n – 2	

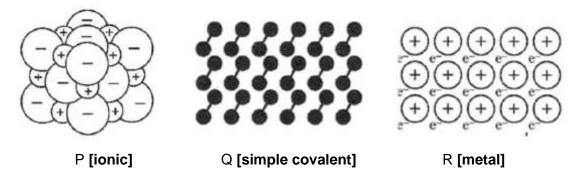
6 Part of the giant lattice structure of magnesium oxide and sodium chloride is shown.



The structure repeats to make a giant lattice.

In the giant lattice, how many negative ions directly surround each positive ion?

- **A** 3
- **B** 4
- **C** 5
- D 6


7 The diagram shows the structural formula of the covalent molecule hydrazine, N₂H₄.

Which row is correct?

	total number of electrons	total number of electrons	
	involved in bonding	not involved in bonding	
	[5 pairs = 10 e ⁻]	[4 from each N atom]	
Α	5	4	
В	5	8	
С	10	4	
D	<u>10</u>	<u>8</u>	

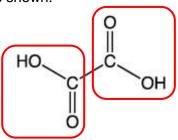
8 The structures of three substances P, Q and R are shown below.

Which statements are correct?

- 1 P and R can conduct electricity in the molten state. ✓
- 2 Q is an element while P and R are compounds. * [R is an element.]
- 3 P has a giant structure while Q has a simple structure. ✓
- **A** 1 and 2
- B <u>1 and 3</u>
- **C** 2 and 3
- **D** 1, 2 and 3
- 9 The information below shows the percentage of carbon in two samples of steel, Q and R. Q consists of 60% carbon [harder] while R consists of 20% carbon [softer].

Which statement is correct about the two samples of steel?

- **A** Q has higher strength and less brittle than R.
- $\boldsymbol{B} \quad R$ has higher strength and more brittle than Q.
- $\boldsymbol{C}\quad Q$ has lower strength and more brittle than R.
- D R has lower strength and less brittle than Q.
- **10** Upon strong heating, a metal nitrate compound undergoes decomposition according to the following equation:


$$2XNO_{3}\left(s\right) \rightarrow2X\left(s\right) +2NO_{2}\left(g\right) +O_{2}\left(g\right)$$

Complete decomposition of 3.40 g of the nitrate gives 240 cm³ of oxygen [0.01 mol], measured at room temperature and pressure. [$M_r = 3.40 \text{ g} \div 0.02 \text{ mol} = 170$]

What is the relative atomic mass of X? $[A_r = 170 - 14 - 3(16) = 108]$

- **A** 85
- **B** 108
- **C** 133
- **D** 170

11 The structure of oxalic acid is shown.

A 25.0 cm³ solution of oxalic acid reacts completely with 15.0 cm³ of 2.50 mol/dm³ aqueous sodium hydroxide [0.0375 mol].

What is the concentration of the oxalic acid? [conc. = 0.01875 mol ÷ 0.025 dm³]

- **A** <u>0.750 mol/dm³</u> **B** 2.08 mol/dm³
- **C** 1.50 mol/dm³
- **D** 4.17 mol/dm³

12 Aspirin, $C_9H_8O_4$, is made from salicylic acid, $C_7H_6O_3$ according to the equation:

$$C_7H_6O_3 + C_4H_6O_3 \rightarrow C_9H_8O_4 + CH_3COOH$$

Assuming a 70% yield, what is the mass of salicylic acid required to make an aspirin tablet of 325 mg? [100% = 464.29 mg; mass of $C_7H_6O_3$ = 464.29/180 x 138 = 355 g] $[M_r: C_7H_6O_3, 138; C_9H_8O_4, 180]$

- **A** 174 mg
- **B** 249 mg
- C 356 mg
- **D** 424 mg

13 50.0 cm³ of hydrochloric acid has a pH of 1.0.

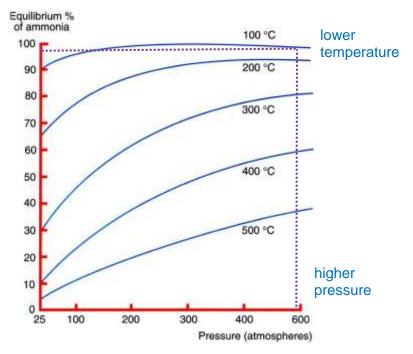
This acid requires 25.0 cm³ of aqueous sodium hydroxide to be neutralised.

A second 50.0 cm³ solution contains the weak acid, ethanoic acid.

The hydrochloric acid and ethanoic acid have the same concentration.

How will the pH of ethanoic acid and the volume of NaOH needed for neutralisation differ, if at all, from the hydrochloric acid?

	рН	volume of NaOH needed
		for neutralisation
Α	higher than HCl	lower than for HCl
В	higher than HCl	equal to HC/
С	lower than HCl	lower than for HCl
D	lower than HCl	equal to HC <i>l</i>


- **14** What is a characteristic property of all bases?
 - **A** Alkalis are bases which are insoluble in water.
 - **B** They dissolve in water to produce hydroxide ions.
 - C They form salts with acids.
 - **D** They react with ammonia to form ammonium salts.
- **15** Which statements about oxides are correct?
 - 1 An aqueous solution of sulfur dioxide has a pH less than 7. ✓
 - 2 An aqueous solution of potassium oxide turns blue litmus paper red. * [blue]
 - 3 Carbon dioxide reacts with ammonia to make a salt. ✓
 - 4 Carbon monoxide reacts with hydrochloric acid to make a salt. * [CO = neutral]
 - **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 3 and 4
- 16 Which of the following method could **not** be used to prepare a dry sample of lead salt?

	name of salt	method		
Α	lead(II) carbonate	add aqueous sodium carbonate to aqueous lead(II)		
^	icad(ii) carbonate	nitrate		
В	lead(II) chloride	add hydrochloric acid to aqueous lead(II) nitrate		
С		add nitric acid to lead(II) carbonate, then add aqueous		
	lead(II) iodide	potassium iodide		
D	lead(II) sulfate	add sulfuric acid to lead(II) carbonate [insoluble]		

17 Ammonia is produced from Haber Process using a suitable catalyst.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

The following graph shows the different yields of ammonia at different temperature and pressure.

Which of the following is **not** true?

- **A** A higher percentage yield of ammonia can be obtained at higher pressure.
- **B** A higher percentage yield of ammonia can be obtained at lower temperature.
- C Some of the ammonia formed will decompose to form hydrogen and nitrogen. [reversible]
- D At the right conditions of temperature and pressure, all of the hydrogen and nitrogen can be converted into ammonia.

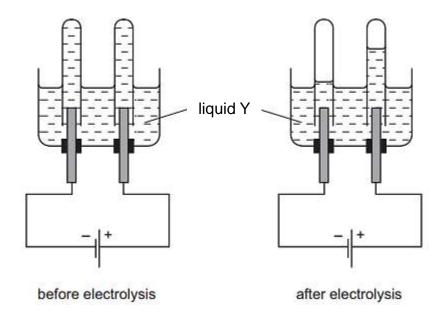
18 Three tests are carried out on salt X.

S/N	test	result
1	To 2 cm ³ of salt X, add aqueous sodium	White precipitate, soluble in
	hydroxide until no further change. Warm	excess giving a colourless
	the mixture. Keep the mixture for Test 4.	solution. [Al ³⁺ / Pb ²⁺ / Zn ²⁺]
2	To 2 cm ³ of salt X, add aqueous	White precipitate, soluble in
	ammonia until no further change.	excess giving a colourless
		solution. [Zn²+]
3	To 2 cm ³ of salt X, add dilute nitric acid	No visible reaction. [no Cl ⁻]
	followed by aqueous silver nitrate.	
4	To 2 cm ³ of the mixture in test 1, add	Gas evolved turns damp litmus
	aluminium foil.	paper blue. [NO ₃ -]

C zinc chloride

What is the identity of salt X?

A aluminium chloride

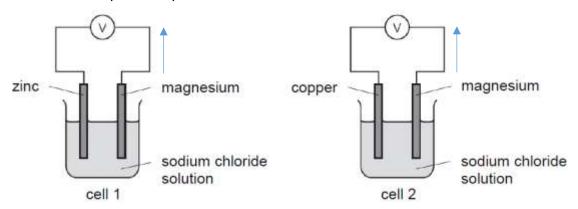

B ammonium nitrate D zinc nitrate

19 A disproportionation reaction occurs when the same element undergoes both oxidation and reduction simultaneously in a chemical reaction.

Which of the following is **not** a disproportionation reaction?

- A $Mg + FeCl_2 \rightarrow MgCl_2 + Fe$
- $\label{eq:Bound} \textbf{B} \quad H_2SO_4 + Cu_2O \rightarrow Cu + CuSO_4 + H_2O$
 - +1 0 +2
- $\label{eq:continuous} \textbf{C} \quad 2H_2O_2 \rightarrow O_2 + 2H_2O$
 - -1 0 -2
- $\textbf{D} \quad 2\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$
 - +4 +3 +5

20 The diagrams show an electrolysis set-up using inert electrodes.



Which could be liquid Y? $[2H_2O(l) \rightarrow 2H_2(g) + O_2(g)]$

2 1

- 1 aqueous magnesium nitrate [H+, OH, Mg2+, NO3-]
- 2 aqueous copper(II) sulfate [H+, OH-, Cu2+, SO42-]
- 3 concentrated hydrochloric acid [\mathbf{H}^+ , \mathbf{OH}^- , $\mathbf{C}I^-$]
- 4 dilute sulfuric acid [H+, OH-, SO₄2-]
- **A** 1 and 4 only **B** 2 and 4 only **C** 1, 2 and 4 only **D** 1, 3 and 4 only

21 A student set up two simple cells as shown below.

He recorded four statements in his notebook.

statement 1: In cell 1, sodium ions gain electrons to form sodium. ★ [H+ ions] statement 2: In cell 2, copper(II) ions gain electrons to form copper. ★ [H+ ions] statement 3: In both cells, magnesium loses electrons to form magnesium ions. ✓ statement 4: The voltage of cell 1 is greater than cell 2. ★ [smaller]

Which statements are **incorrect**?

A 1 and 2

B 1 and 4

C 1, 2 and 4

D 2, 3 and 4

- 22 Which statement regarding the Periodic Table is correct?
 - A The elements are arranged by increasing relative atomic mass. [proton no.]
 - B Across a period from left to right, elements have weaker reducing power.
 - C Down Group 1, the elements become stronger oxidising agents. [reducing]
 - **D** Down Group 17, the elements become weaker reducing agents. [oxidising]
- 23 Excess bromine is shaken with a mixture of sodium chloride and sodium iodide solutions. Which substances will the final mixture contain?

 $Br_2 + NaCl \rightarrow no reaction$

Br₂ + 2Nal → 2NaBr + I₂

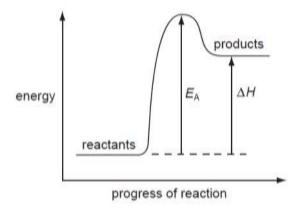
- A bromine, iodine, sodium bromide
- B bromine, iodine, sodium bromide, sodium chloride
- **C** bromine, iodine, sodium bromide, sodium iodide
- **D** iodine, sodium bromide, sodium chloride

The properties of the element vanadium, V, can be predicted from its position in the Periodic Table. [transition metal]

Which row identifies the properties of vanadium?

	can be used	conducts	forms coloured	haa a law danaity
	as a catalyst	electricity at r.t.p.	compounds	has a low density
Α	<u>✓</u>	✓	✓	<u>*</u>
В	✓	✓	×	✓
С	✓	×	✓	✓
D	*	✓	✓	✓

[key: √ = yes; × = no]


25 The table below shows three unknown metals and their method of extraction.

metal	method of extraction	e.g.
Р	reduction of ore by carbon	Fe
Q	electrolysis	Na
R	mining from the ground	Au

Which statement regarding the three metals is true?

- A Metal Q should be found high up in the reactivity series.
- **B** Metal R is most likely to be found above hydrogen in the reactivity series.
 - **≭** [below]
- C Metal R is the most reactive metal among all three. ★ [least]
- D The oxide of P must be the most stable compared to the oxides of the other two metals. **▼** [Q]

26 The diagram shows the energy profile for a chemical reaction.

What is the correct description of the reaction?

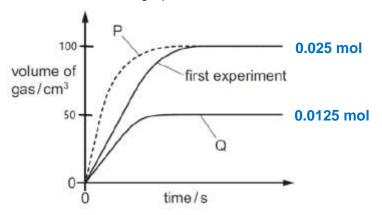
	sign of E_{A}	sign of ΔH	overall energy change
Α	-	-	exothermic
В	±	±	<u>endothermic</u>
С	-	+	endothermic
D	+	+	exothermic

27 Methane burns in excess oxygen to produce carbon dioxide and water.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Given the following information of the bond energies, calculate the enthalpy change of the reaction.

bond	C — H	O = O	C = 0	O – H
bond energy / kJmol ⁻¹	410	496	805	460


A −359 kJ/mol

B <u>-818 kJ/mol</u> **C** +102 kJ/mol

D +818 kJ/mol

energy absorbed = 4(410) + 2(496) = 2632 kJ/molenergy released = 2(805) + 4(460) = 3450 kJ/molenthalpy change = 2632 + (-3450) = -818 kJ/mol

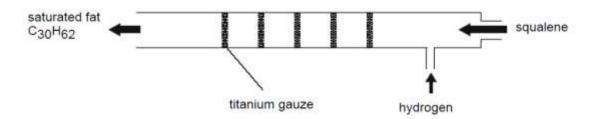
- 28 In which reaction is pressure least likely to affect the rate of reaction?
 - **A** $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - **B** $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
 - **C** $CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$
 - D K_2CO_3 (s) + H_2SO_4 (aq) $\rightarrow K_2SO_4$ (aq) + H_2O (l) + CO_2 (g)
- 29 In the first experiment, excess magnesium reacts with 25 cm³ of 1.0 mol/dm³ hydrochloric acid [0.025 mol] to produce hydrogen gas. The volume of hydrogen produced is measured and shown in the graph.

Graphs P and Q show the volume of hydrogen produced under different conditions. What changes in conditions produce graphs P and Q?

- A P uses a higher temperature and Q uses a lower temperature.
- **B** P uses 25 cm³ of 1.5 mol/dm³ hydrochloric acid [0.0375 mol] and Q uses 25 cm³ of 0.5 mol/dm³ hydrochloric acid [0.0125 mol].
- C P uses a catalyst and Q uses 25 cm³ of 0.5 mol/dm³ hydrochloric acid [0.0125 mol].
- **D** P uses smaller strips of magnesium of the same mass and Q uses a **lower** temperature.

30 The table shows the boiling points of four fractions P, Q, R and S, obtained when crude oil is distilled.

fraction	boiling point range / °C
Р	35 – 75
Q	80 – 145
R	150 – 250
S	> 250

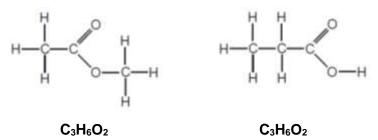

How is fraction P different from fraction S?

- A Fraction P is in less demand than S.
- **B** Fraction P is more viscous than fraction S.
- C <u>Fraction P is more flammable than fraction S.</u>
- **D** Fraction P contains molecules of larger relative molecular masses than fraction S.
- 31 Biodiesel, an alternative fuel made from vegetable oil, can be used as a fuel for vehicles. Although carbon dioxide is released during the combustion of biodiesel, scientists still claim that it is a carbon neutral fuel.

Which is the basis for this claim?

- A Biodiesel is not a carbon compound.
- **B** Biodiesel produces less carbon dioxide when it burns.
- **C** Plants release carbon dioxide during respiration.
- D Plants absorb carbon dioxide during photosynthesis.
- **32** Pentane, C₅H₁₂, and octane, C₈H₁₈, are alkanes present in the petrol fraction. Which statements about alkanes are correct?
 - 1 They are unsaturated hydrocarbons. * [saturated]
 - 2 Their general formula is C_nH_{2n+2}. ✓
 - 3 Pentane has a higher boiling point than octane. * [lower]
 - 4 Both pentane and octane undergo substitution reaction with chlorine in the presence of light. ✓
 - **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4

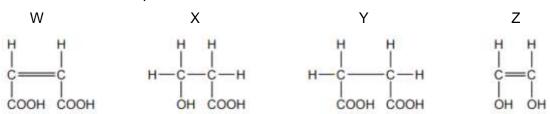
33 Squalene, a naturally occurring polyunsaturated oil present in sharks can be reduced to form a saturated hydrocarbon using titanium as a catalyst.



A 0.100 mol sample of squalene reacted with 14.4 dm³ of hydrogen **[0.6 mol]** at room temperature and pressure to form a saturated hydrocarbon, $C_{30}H_{62}$. **[1:6 ratio]**

What is the molecular formula of squalene?

- A <u>C₃₀H₅₀</u>
- **B** $C_{30}H_{52}$
- \mathbf{C} $C_{30}H_{54}$
- **D** $C_{30}H_{56}$


34 The displayed formulae of two compounds are shown.

Which statement(s) about the compounds is/are correct?

- 1 Both compounds are from the same homologous series. * [ester vs acid]
- 2 Both compounds have the same molecular formula. ✓ [C₃H₆O₂]
- 3 Both compounds have the same percentage mass of carbon. ✓
- 4 Both compounds undergo the same type of reactions. **★ [different]**
- A 1 and 2 only
- **B** 1 and 4 only
- C 2 and 3 only
- **D** 3 and 4 only

35 The structures of compounds W, X, Y and Z are shown below.

What reactions do compounds W, X, Y and Z undergo?

	decolourises	decolourises acidified decolourises				
		aqueous potassium	aqueous sodium			
	aqueous bromine	manganate(VII)	carbonate			
	[C=C]	[– OH]	[-COOH]			
Α	X and Y	X and Z	W and Y			
В	X and Y	W, X and Y	W and Y			
С	W and Z	X and Z	W, X and Y			
D	W and Z	W, X and Y	W, X and Y			

36 Two esters have the same molecular formula, C₃H₆O₂.

What are the names of these two esters?

- 1 methyl ethanoate 3C
- 2 ethyl methanoate 3C
- 3 ethyl propanoate **5C**
- 4 propyl methanoate 4C
- **A 1 and 2 B** 1 and 3 **C** 2 and 4 **D** 3 and 4
- 37 Engine oil is used to lubricate the car engine. Certain polymers are added to improve the viscosity of engine oil. A portion of the chain of one such polymer is shown below.

A molecule of this polymer contains 40 carbon atoms. How many molecules of monomer are required to form one molecule of this polymer? [40 \div 5 = 8]

- **A** 4
- **B** 5
- C <u>8</u>
- **D** 10

38 The structure below shows part of a polymer.

Which one of the following options show the correct monomers?

	one of the following opins	
A	HO N NH ₂	OH O=O NH NH
В	H ₂ N N COH	HO N NH ₂
С	HO C N	H ₂ N N C OH
D	HO C OH	H_2N N N NH_2

A sample of air is slowly passed through aqueous sodium hydroxide [remove CO_2] and then over heated copper [removes O_2].

A carbon dioxide and water vapour

Which gases are removed by this process?

- **C** nitrogen and oxygen
- B carbon dioxide and oxygen
- **D** nitrogen and water vapour

40 Nitrogen monoxide, NO, is formed in the engines of petrol-powered cars. One constituent of petrol is pentane, C₅H₁₂. Nitrogen monoxide is removed from exhaust fumes by catalytic converters.

Which row identifies the reactants that produce nitrogen monoxide and a reaction that removes it in the catalytic converter?

	reactants that produce NO	reaction that removes NO
Α	pentane + one gas found in air	$NO + CO \rightarrow \frac{1}{2}N_2 + CO_2$
В	pentane + one gas found in air	$NO + CO_2 \rightarrow NO_2 + CO$
С	two gases found in air	NO - 00 1/N 00
	$N_2 + O_2 \rightarrow 2NO$	$\underline{NO + CO \to \frac{1}{2}N_2 + CO_2}$
D	two gases found in air	$NO + CO_2 \rightarrow NO_2 + CO$

The Periodic Table of Elements

	18	He Helium	10	Ne	neon	20	18	Ā	argon 40	36	궃	krypton	84	24	Xe	xenon	131	98	씸	radon	1	118	Ö	oganesson	t)
	17		6	ш	fluorine	19	17	C	chlorine 35.5	35	ъ	bromine	80	53	Н	iodine	127	82	¥	astatine	1	117	T _S	tennessine	Ü
	16		8	0	oxygen	16	16	S	sulfur 32	34	Se	selenium	79	52	<u>e</u>	tellurium	128	84	Ъ	polonium	1	116	۲	livermorium	ţ)
	15		7	z	nitrogen	14	15	۵	phosphorus 31	33	As	arsenic	75	51	Sb	antimony	122	83	ä	bismuth	209	115	Mc	moscovium	ţ,
	14		9	ပ	carbon	12	14	Si	silicon 28	32	ge	germanium	73	20	S	ţ	119	82	Ъ	lead	207	114	Fl	flerovium	t
	13		2	ш	poron	1	13	ΑI	aluminium 27	31	Ga	galfium	70	49	딤	mnipui	115	81	11	thallium	204	113	Ę	nihonium	Ļ)
									12	30	Zu	zinc	65	48	ပ္ပ	cadmium	112	80	Ε̈́	mercury	201	112	ပ်	copernicium	Ē
									=	59	_D	copper	64	47	Ag	silver	108	79	Αn	plog	197	111	Rg	roentgenium	Ü
Group									10	28	z	nickel	59	46	Pd	pelladium	106	78	₫	patinum	195	110	Ds	darmstadtium	I)
									6	27	ပိ	cobalt	59	45	R	modium	103	77	ĭ	midium	192	109	₹	meitnerium	î
		Hydrogen							8	26	Fe	iron	26	44	Ru	ruthenium	101	92	Os	osmium	190	108	H	hassium	I
								7	25	Σ	manganese	55	43	2	technetium	1	75	Re	rhenium	186	107	В	bohrium	Ľ	
		Key	umber	pol		relative atomic mass			9	24	ပ်	chromium	52	42	Mo	molybdenum	96	74	>	tungsten	184	106	Sg	seaborgium	Ü
			proton (atomic) numb	atomic symbol	name				2	23	>	vanadium	51	41	q	miobium	93	73	ā	tantalum	181	105	g G	dubnium	L)
			proton	ato		relativ			4	22	F	titanium	48	40	Z	zirconium	91	72	Ξ	hafnium	178	104	抷	rutherfordium	Ü
									3	21	Sc	scandium	45	39	>	yttrinm	89	57-71	lanthanoids			89-103	actinoids		
	2		4	Be	beryllium	o	12	Mg	magnesium 24	20	Ca	calcium	40	38	Š	strontium	88	26	Ba	barium	137	88	Ra	radium	I))
	-		3	:=	lithium	7	11	Na	sodium 23	19	¥	potassium	39	37	&	rubidium	85	55	S	caesium	133	87	ī	francium	ı

71	2	Intetium	175	103	۲	lawrencium	1
2	χp	ytterbium	173	102	8	nobelium	1
69	Ē	thulium	169	101	Md	mendelevium	1
89	щ	erbum	167	100	FB	fermium	1
29	운	holmium	165	66	Es	einsteinium	1
99	ò	dysprosium	163	86	ರ	californium	1
65	₽ P	terbium	159	26	š	berkelium	ı
64	рg	gadolinium	157	96	S S	curium	ı
63	Еп	europium	152	92	Am	americium	1
62	Sm	samarium	150	94	Pu	plutonium	1
61	Pa	promethium	Ī	93	ď	neptunium	1
9	PN	neodymium	144	92	⊃	uranium	238
29	ፈ	praseodymium	141	91	Ра	protactinium	231
28	Ö	cerium	140	90	드	thorium	232
57	Гa	lanthanum	139	89	Ac	actinium	1
	lanthanoids)			actinoids		

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.). The Avogadro constant, $L=6.02\times10^{23}\,mol^{-1}$.

MARK SCHEME

1	2	3	4	5	6	7	8	9	10
С	С	В	В	В	D	D	В	D	В
11	12	13	14	15	16	17	18	19	20
Α	С	В	С	В	D	D	D	Α	Α
21	22	23	24	25	26	27	28	29	30
С	В	В	Α	Α	В	В	D	С	С
31	32	33	34	35	36	37	38	39	40
D	D	Α	С	С	Α	С	Α	В	С

<u>Tally</u>

A - 8

B – 12

C – 11

D – 9