Name			Index Number		Class		
ST. ANTHONY'S CANOSSIAN SECONDARY SCHOOL Preliminary Examination 2023 Secondary 4 Express							
MATHE	MATHEMATICS 4052/01						
Paper 1			C A S		22 Au	gust 2023	
Setter: N	Idm Bey Young	g Keng			2 hours 1	5 minutes	
	NAL		VIA VENTIA				
Candidate	es answer on the (Question Paper.		EDI	Jon		
EDI	30.						
Write you Write in d You may Do not us Answer a If working Omission The use o If the deg three sign For π , use The numb The total	ark blue or black p use an HB pencil f e staples, paper c II questions. is needed for any of essential worki of an approved sci ree of accuracy is ificant figures. Giv e either your calcu	nber and class on all for any diagrams or g lips, glue or correction r question it must be ng will result in loss entific calculator is e not specified in the ve answers in degree lator value or 3.142,	on fluid. shown with the answer	iate. wer is not exa juires the ans	wer in terms	s of π.	
This document consists of 23 printed pages.							

[Turn over

4

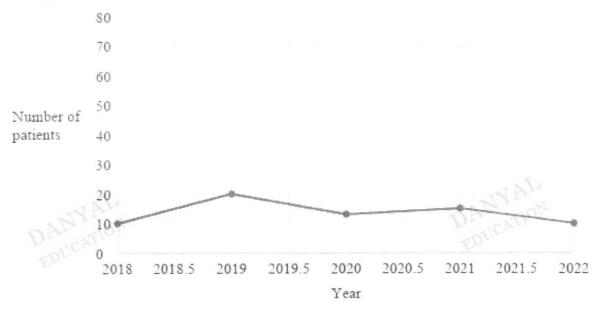
Answer all the questions.

$$\frac{282.334 - \sqrt{50.1}}{2.12 \times 5.07}$$

1 (a) Calculate 3.12×5.97 .

Write down the first five digits of your answer.

(b) Write your answer to part (a) correct to 2 significant figures.


Expand and simplify 3(5a-2)-(8-4a). 2

 $3 - \frac{x}{4} = \frac{2\left(x - 2\right)}{3}$ can be rewritten as Ax + B = 0 where A > B. The equation Find the value of A and the value of B.

3

4052/Math/01/4E

4 The line graph shows the number of patients in a hospital who are diagnosed with a certain type of blood disorder over the years.

(a) Calculate the percentage increase in the number of patients diagnosed with the blood disorder from 2018 to 2019.

Answer% [1]

(b) State and explain one aspect of the line graph that may be misleading.

PANNER PANNER EDUCATION EDUCATION

4052/Math/01/4E

5 (a) Express
$$x^2 - 6x - 16$$
 in the form $(x-p)^2 + q$.

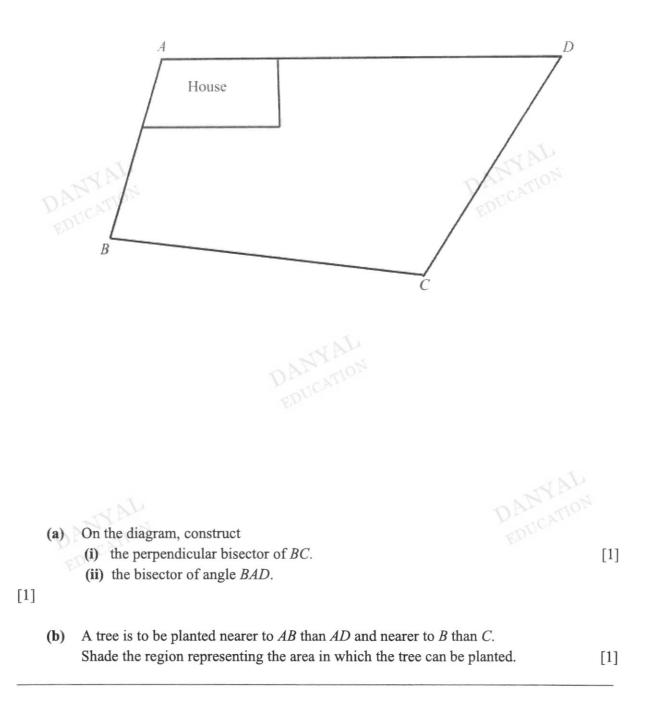
(b) Hence, explain why the value of $x^2 - 6x - 16$ cannot be -30.

DAAVYAL DAAVYAL EDUCATION EDUCATION [1]

6 (a) Express 336 as a product of its prime factors.

Answer 336 =..... [1]

(b) Given that $1764 = 2^2 \times 3^2 \times 7^2$,


(i) express the smallest integer which is a multiple of 336 and 1764 as a product of its prime factors,

1764*n*

(ii) find the smallest positive integer value of n such that 336 is a perfect square.

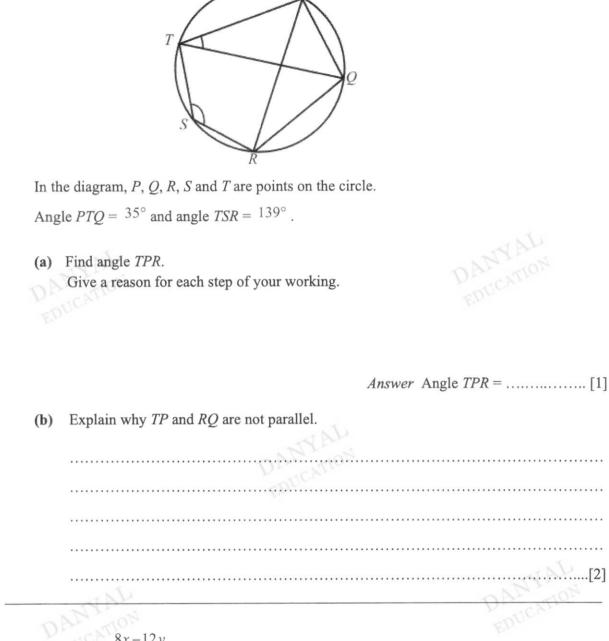
7 The diagram shows a plot of land *ABCD* with a house in one corner.

7

4052/Math/01/4E

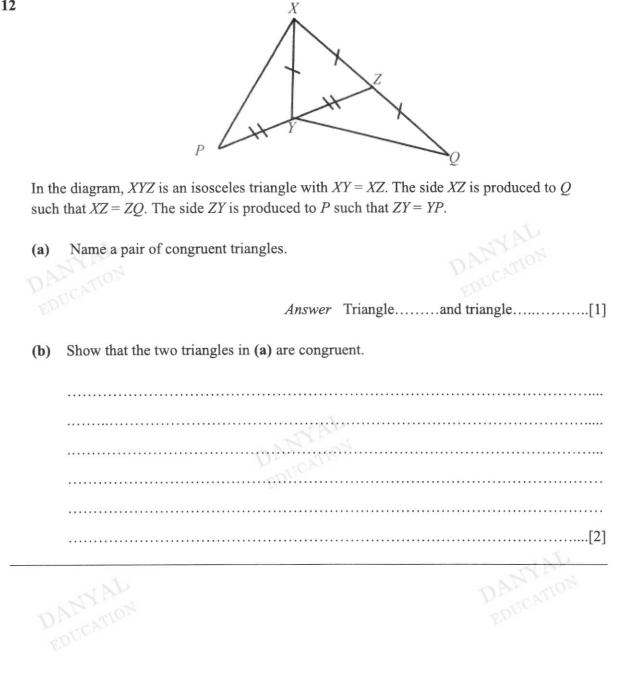
8 The table below shows the number of children in 100 families living in a housing estate.

Number of children	0	1	2 or 3
Number of families	10	25	65


The mean number of children per family is 1.82. Calculate the number of families with 2 children.

Answer[3]

9 The straight line 3x + 5y = 24 cuts the x-axis and y-axis at points P and Q respectively. Calculate the length of PQ.


Answer PQ =[3]

4052/Math/01/4E

11 Simplify $\frac{8x-12y}{2x^2-xy-3y^2}$

[Turn Over

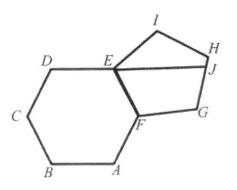
13 (a) The speed of light is 3×10^8 m/s. Express 3×10^8 as k million.

Answermillion [1]

(b) The relationship between the wavelength and frequency of a wave is given by $c = w \times f$ where c is the speed of light, 3×10^8 m/s, w is the wavelength in metres and f is the frequency in Hertz (Hz).

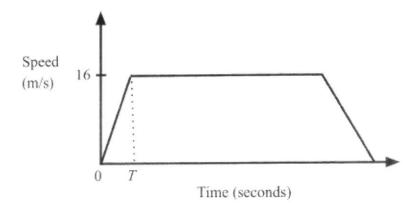
(i) The wavelength of a photon particle is observed to be 500 nanometres.

[1 nanometre = 10^{-9} metres]


Express 500 nanometres in metres, leaving your answer in standard form.

Answermetres [1]

(ii) Calculate the frequency of the photon particle, leaving your answer in standard form.


DANYAL

4052/Math/01/4E

In the diagram, a regular hexagon *ABCDEF* and a regular pentagon *EFGHI* are joined together at the side *EF*. *DEJ* is a straight line. Calculate angle *JEI*.

15 The diagram shows the speed-time graph of a car journey.

The car starts from rest and for T seconds, it accelerates at 2 m/s² until it reaches a speed of 16 m/s.

(a) Find the value of T.

(b) The car then travels at 16 m/s for 40 seconds, after which the driver applies the brakes and brings the car to rest in a further 10 seconds. Calculate the average speed of the car during the last 50 seconds.

Answerm/s [2]

16 Factorise completely $8a^3 + 8a^2b - 2ab^2 - 2b^3$.

ICATIO DAT 2

17 A sum of money was shared among Jess, Lin and Kim. Kim received $\frac{1}{5}$ of the sum and the remainder was shared among Jess and Lin in the ratio 2 : 3.

If Kim received \$640 more than Jess, calculate the amount of money Lin received.

Answer \$.....[4]

18 (a) Simplify the following leaving your answer in positive index.

(i)
$$\sqrt[4]{81a^{\frac{5}{3}}}$$
,

(ii) $18n^{-9} \div (3n^{-2})^2$.

(b) Given that $2^7 \times 16^k = 2^k$, find the value of k.

DANYAL

4052/Math/01/4E

[Turn Over

19 (a)	, ξ	= {students	in a school}				
	Η	= {students	with heights	greater than 17	70 cm}		
			-	laying basketba			
				vear spectacles			
		(
	(i)	Express i	n words the n	meaning of H'	$\cap B \neq \phi$.		
							[1]
		domotry	in set notatior ear spectacles		t, "All students v	who enjoy playing I	basketball
		N.	1				
					Answer	50Q3	[1]
		CALL ATION				DAAWAL	2 3
			n integer and	$41 \le x \le 54$			
	Р	$= \{x : x \text{ is } d$	livisible by 3}				
			livisible by 6}				
	2	(, ,				
	(i	Find t	he value of n(P). DANYA EDUCAT			
					Answer		[1]
				$P \cap O$			
	(i	i) List the o	elements in th	e set $T \cap \mathcal{Q}$.			
					Answer Pr	$Q = \dots$	[1]
	(1	ii) Draw [1]	a Venn	diagram	to represen	t ^ξ , P	and Q.
			1				
SACSS	S Preli	ninary Exam	2023	4052/Math/01	/4E		

20 Amy, Betsy and Carol took a Mathematics examination which consists of two papers, Paper 1 and Paper 2. Their marks for Paper 1 and Paper 2 are represented by the matrix, S.

17

Р	aper1	Paper	2
	64	70	Amy
S =	56	48	Betsy
	x	44)	Carol

The mark for the subject is then computed according to the weighting shown in the table below.

	Paper 1	Paper 2	Drick
Weighting	0.625	0.5	EDUC

(a) Express the weighting using a 2×1 matrix, W.

Answer W = [1]

(b) Given that T = SW, find the matrix T, in terms of x.

DAN EDUCATION

Answer T = [1]

- (c) Carol scores 42 marks after computation of her marks for both papers based on the weighting.
 - (i) Find the value of x.

18

(ii) Given that
$$\mathbf{R} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$
 evaluate the matrix, $\mathbf{D} = \frac{1}{3}\mathbf{RT}$.

Answer $\mathbf{D} = \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$ [1]


(iii) State what the matrix **D** represents.

 [1]

SACSS Preliminary Exam 2023

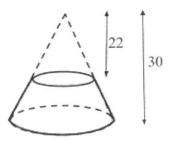
LMPQ represents a sculpture resting on level ground. The point *P* is vertically below *L*. MP = 15 m and angle PML = angle $QLM = 90^{\circ}$. The angle of depression of *M* from *L* is 30°

Calculate the difference in the vertical height of *L* and *M* from the ground.

Answerm [5]

4052/Math/01/4E

[Turn Over


- 20
- 22 The times taken for 20 people to clear the customs at the checkpoint on a weekday were recorded. The results are shown in the stem-and-leaf diagram below.
 - 4 6 7 2

 3
 2
 2
 2
 2
 8

 4
 1
 2
 3
 4
 4
 5
 5
 9

 5
 0
 1
 3
 4
 4
 5
 5
 9

 Key: 2 4 represents 24 minutes (a) Write down the mode. (b) Find the upper quartile. Answer.....minutes [1] (c) Calculate (i) the mean time, Answerminutes [1] (ii) the standard deviation. Answerminutes [1] (d) The standard deviation of times taken by another group of people to clear the customs at the same checkpoint on a weekend was 11.5 minutes. Comment on the times taken by the two groups of people to clear the customs. _____[1]

The diagram shows a cone with a height of 30 cm and a smaller cone with a height of 22 cm. The volume of the bigger cone is 600n.³

The small cone is removed from the top of the bigger cone. The diagram shows the solid remaining with a remaining slant height of x cm.

(b) Calculate the volume of the remaining solid.

(a) By using similar triangles, express the slant height of the smaller cone in terms of x.

DANGAMON [2] Answer

The table shows part of a pattern of consecutive odd integers being added. 24

Row	Mathematical sentence	Sum	Number of odd integers added
1	1+3	4	2
2	1 + 3 + 5	9	3
3	1 + 3 + 5 + 7	16	4
4	1 + 3 + 5 + 7 + 9	25	5
n	$1+3+5+7+9+\ldots+k$	S	
omple nswer	te the table below for Row 6.		

(a) Complete the table below for Row 6. Answer

Row	Mathematical sentence	Sum	Number of odd integers added
6			

[1]

(b) Explain why 200 cannot be a value in the column for the sum.

DANCATION[1]

(c) Find an expression, in terms of n, for (i) k,

DANTAN Answer $S = \dots [1]$

(d) In a certain row, the sum of odd integers is 1024. Find the number of odd integers that are added in that row.

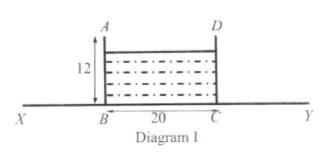
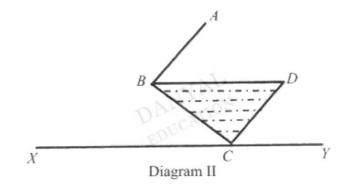



Diagram I shows a vertical cross section of a rectangular tank which stands on a horizontal table represented by XY. The tank has a height of 12 cm and a square base of side 20 cm. The tank is filled with some water.

The tank is then tilted about the edge through C so that some water spills out. The tank is tilted until a position as shown in Diagram II.

DANYAL Calculate the volume of water remaining in the tank as shown in Diagram II.

4052/Math/01/4E

- (b) The water remaining in the tank is then poured into a hemispherical bowl. When the tank is fully emptied, the hemispherical bowl is filled completely to the brim.
 - (i) Calculate the radius of the hemispherical bowl.

(ii) When the water is filled up to a depth of $d \, \text{cm}$, the radius of the horizontal water surface in the hemispherical bowl is 7 cm as shown in Diagram III.

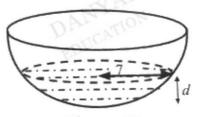


Diagram III

Calculate the value of d.

Name		Index Number		Class		
ST. ANTHONY'S CANOSSIAN SECONDARY SCHOOL Preliminary Examination 2023						
	Secondary 4	Express				
Mathem	natics			40	52/02	
Paper 2	Contraction	June 1		28 Aug	just 2023	
Setter: I	Mdm Bey Young Keng	17	21	hours 15	5 minutes	
	VALVERTAL	and a start of the second				
Candida	tes answer on the Question Paper.					
E						
READ THESE INSTRUCTIONS FIRST Write your name, index number and class in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. Answer all questions. If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 90. 90 Parent's signature:						
	This document consists of 23 printed pages.					
L						

Answer all the questions.

1 (a) It is given that
$$m = \sqrt[3]{\frac{5v - 4c^2}{v - 6}}$$

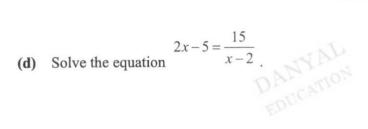
(i) Find the value of *m* when v = 3 and $c = \frac{1}{2}$.

Answer $m = \dots$ [1]

(ii) Express v in terms of c and m.

Answer $v = \dots$ [3]

(b) Solve the simultaneous equations.


$$2x + 5y = 25$$
$$3x - 2y = 9$$

You must show your working.

Answer $x = \dots$ $y = \dots [3]$ $\frac{2}{\left(3x-2\right)^2} - \frac{1}{2-3x}.$

(c) Write as a single fraction in its simplest form

DANYAL

DANYAL

SACSS Preliminary Exam 20234052/Math/02/4E

- 2 Bala and Clement each decided to buy a new car. The cash price of the new car was \$172 000.
 (a) Bala bought the new car on a hire purchase scheme. He paid 30% of the cash price as a deposit followed by instalments of \$3 825 per month over a period of 3 years.
 - Calculate
 - (i) the total amount of money Bala paid for the new car.

Answer \$.....[2]

(ii) the extra cost of buying the car by hire purchase as a percentage of the cash price.

Answer% [2]

(b) Clement also paid 30% of the cash price as a deposit. He then borrowed the remaining amount for 5 years at an interest rate of 4% per year compounded twice yearly. Calculate the total amount of interest Clement has to pay for 5 years.

Answer \$.....[4]

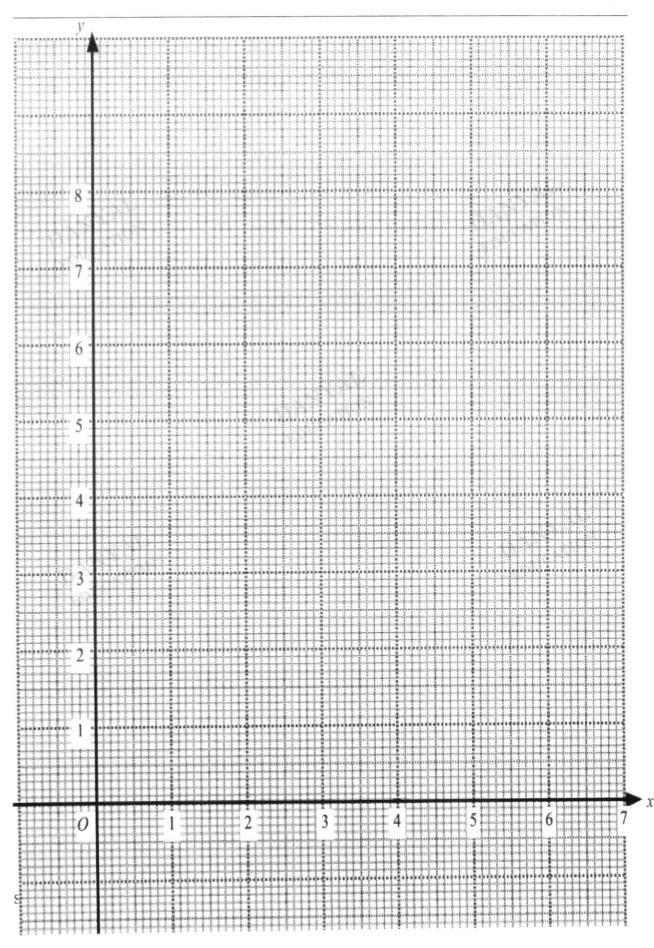
(c) The exchange rate of Singapore Dollars (S\$) and Malaysian Ringgit (RM) is S\$1 = RM3.32. The same car is sold in Malaysia for RM 328 416. Calculate the difference in cash price of the car, in Singapore Dollars.

Answer S\$.....[2]

- 9
- 3 The variables x and y are connected by the equation $y = \frac{x^2}{5} + \frac{12}{x} 4.$ Some corresponding values of x and y are given in the table below.

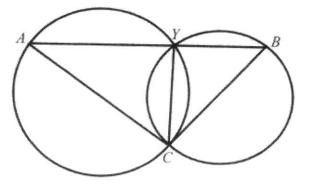
x	1	1.5	2	3	4	5	6	7
у	8	4.5	2.8	1.8	р	3.4	5.2	7.5

(a) Find the value of p.


(b) On the grid opposite, draw the graph of $y = \frac{x^2}{5} + \frac{12}{x} - 4$ for $1 \le x \le 7$. [3]

(c) Explain why your graph shows that there is no solution for $\frac{x^2}{5} + \frac{12}{x} - 5 = 0$.

(d) (i) On the same axes, draw the line 2y + x = 10 for $1 \le x \le 7$. [1]


(ii) Write down the x-coordinates of the points of intersection of the line 2y + x = 10 and the curve.

(iii) The values of x in d(ii) are the solutions of a cubic equation, $ax^3 + bx^2 + cx + d = 0$ where a, b, c and d are integers. Find this cubic equation.

10

4

The diagram shows two circles.

AC is the diameter of the bigger circle and it is also a tangent to the smaller circle at C. BC is the diameter of the smaller circle and it is also a tangent to the bigger circle at C.

(a) Show that triangle ACY is similar to triangle CBY.	
EDDL	
TANTA	
EDUCAL	
	-NAV
	100, 140
	EDUCA
«DUC	[2

- (b) Given that AC = 10 cm, BY = 4.81 cm and angle CAY = 0.663 radians,
 - (i) calculate the area of triangle CBY,

(ii) calculate the area of the shaded region.

The diagram shows a triangle ABC. X is a point on AB and Y is a point on BC such that AX : XB = 2 : 3 and BY : YC = 1 : 2.

$$AB = \mathbf{p}$$
 and $AC = \mathbf{q}$.

A -

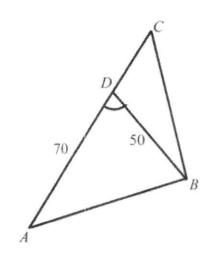
5

SACSS Preliminary Exam 20234052/Math/02/4E[Turn over

(a) P is the point (4, -3) and $PQ = \begin{pmatrix} -9\\ 4 \end{pmatrix}$.

14

(i) Express CB^{α} in terms of p and q, as simply as possible.


Answer $CB = \dots$ [1]

(ii) Express XY in terms of p and q, as simply as possible.

Answer $XY = \dots$ [3]

(iii) Find the area of triangle XBC if the area of triangle ABC = 30 cm².

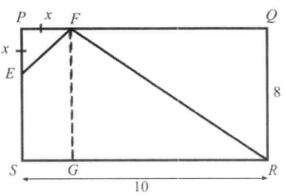
......cm² [1] Answer ... $\frac{MMM}{XM} = \frac{2}{15}\mathbf{p} + \frac{1}{6}\mathbf{q},$ explain why X, Y and M are collinear points.[2]

Points A, B, C and D lie on level ground. ADC is a straight line and AD = 70 m. BD = 50 m and angle $ADB = 62^{\circ}$. The point A is on a bearing of 220° from C.

Calculate

(a) the bearing of C from A,

DAMYA Answer


[1] . ا

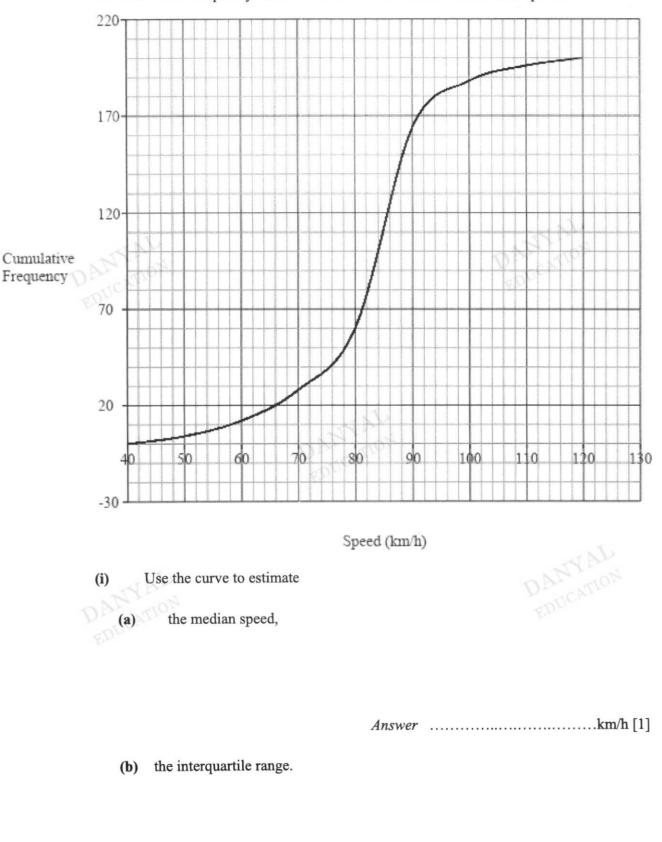
(c) the bearing of B from A.

DANYAL[3] Answer

16

In the diagram, *PQRS* is a rectangle where QR = 8 cm, RS = 10 cm and PE = PF = x cm. G is a point on RS such that FG is parallel to ES.

(a)


Form an equation in x and show that it simplifies to $x^2 - 8x + 14 = 0$.

(b) Solve the equation $x^2 - 8x + 14 = 0$, giving your solutions correct to two decimal places.

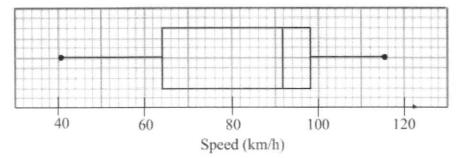
(c) Hence, find the smallest possible value of the area of triangle FQR.

DANYAL

BP~556

8 (a) The speeds of 200 vehicles travelling on an expressway one morning were recorded. The cumulative frequency curve below shows the distribution of their speeds.

(ii) The speed limit on the expressway is 90 km/h.Calculate the percentage of vehicles travelling above the speed limit.

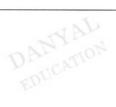

Answer% [2]

(iii) A vehicle is selected at random from the 200 vehicles.

The probability that the speed of the vehicle is more than y km/h is $\frac{1}{5}$. Find the value of y.

(iv) Two vehicles are selected at random from the 200 vehicles. Find the probability that only one of them travels at a speed of between 80 km/h to 100 km/h.

The speeds of another 200 vehicles travelling on the same expressway in the afternoon **(b)** were also recorded. The box-and-whisker plot shows the distribution of the speeds.



- (i) A vehicle is selected at random from these 200 vehicles. Find the probability that the vehicle selected travels at a speed less than or equal to 64 km/h. DANCATION [1]
- (ii) John said that the vehicles travelling on the expressway in the afternoon were slower than those which travel on the same expressway in the morning. Do you agree with John? Explain your answer.

Answer

DAMONTON	

BP~559

9 A class is planning to bake cookies for sale during the school's fun fair. They will pack the cookies in individual paper bags and each paper bag will contain 5 cookies. The class will prepare 50 bags of cookies.

The class uses the recipe for cookies as shown below.

Chocolate Chips Cookies I	Recipe
(Yields 4 dozen round cookies with radius of	2 cm approximately)
1 cup butter, softened	
2 cups brown sugar	
3 cups all-purpose flour	
$1\frac{1}{2}$ cups semi-sweet chocolate chips	
$\frac{1}{2}$ teaspoon salt	DANTE
2 eggs	En
2 teaspoons vanilla essence	
2 teaspoons hot water	

The class needs to adjust the amount of each ingredient in the recipe so that they have enough amount of each ingredient to bake the required number of cookies. This can be done by multiplying the amount of each ingredient in the recipe by a conversion factor. For the ease of measurement of each ingredient, the class rounds up the conversion factor to the next nearest whole number and they will hence bake more cookies than required.

(a) Calculate the conversion factor needed to make enough cookies for the fun fair.

DANYA Answer [1]

The class then proceeds to buy the materials needed using the information on the next page.

(b) Calculate the total cost of vanilla essence they have to buy.

BP~560

Conversion Basic Baking	on Chart g Ingredients	23
Ingredient	1 cup to grams	1
Butter	230 g	1
Flour	140 g	1
Brown sugar	160 g	1
Chocolate chips	190 g	1
Rolled oats	90 g	1
Almond flakes	90 g	1
Conversio	n Chart	-
Basic Baking	Ingredients	
Ingredient	1 teaspoon to	
	grams or ml	
Brown sugar	4.5 g	
Salt	7g	
Yeast	2.8 g	
Baking powder	4.8	
Vanilla essence	5 ml	

Answer \$......[2]

SACSS Preliminary Exam 20234052/Math/02/4E[Turn over

Prices of items sold in a supermarket				
Items	Price	Quantity		
All purpose flour	\$2.20 per packet	1 kg per packet		
Butter	\$4.40 per slab	250 g per slab		
Brown sugar	\$5.50 per packet	1 kg per packet		
Semi-sweet chocolate chips	\$6.90 per packet	340 g per packet		
Vanilla essence	\$2.00 per bottle	33 ml per bottle		
Salt	\$0.50 per packet	500 g per packet		
WAD	\$3.75	12 eggs per box		
Eggs	\$5.50	15 eggs per box		
DDC	\$7.85	30 eggs per box		
P 1 1	\$1	20 pieces per pack		
Food paper bags	\$2.85	60 pieces per pack		

(c) The class targets to make a profit of at least 50%. They have to ensure minimum wastage of the items they purchase. Suggest a sensible selling price to be charged for each bag of cookies. Justify the decision you make and show your calculations clearly.

......[7]

END OF PAPER

SACSS Preliminary Exam 20234052/Math/02/4E[Turn over

Qn	Worked Solution	Total	Remarks
1a	14.777	1	
16	15	1	-
2	3(5a-2)-(8-4a)		
	=15a-6-8+4a	2	Remove ()
	= 19 <i>a</i> - 14		
3 ×12:	$3 - \frac{x}{4} = \frac{2(x-2)}{3}$		Get rid of denominator
×12.	36 - 3x = 8(x - 2) 36 - 3x = 8x - 16		DANYAL
	36 - 3x = 8x - 16	2	DEUCATIO
	-11x + 52 = 0 11x - 52 = 0		EDT
	A = 11, B = -52		
4a	Percentage increase = $\frac{20-10}{10} \times 100$ = 100%	I	
4b	The scale used on the vertical axis is very small while the scale use on the horizontal axis is very big. Therefore, the increase in the number of patients looks much lesser than it should be, for example, from 2018 to 2019, there was a sharp increase of 100% but the graph shown a much gradual increase.	I	Accept if able to identify inappropriate scale for either vertical <u>or</u> horizontal axis and state the misleading representation.
5a	$x^{2}-6x-16$ = $(x-3)^{2}-(3)^{2}-16$ = $(x-3)^{2}-25$	1	ANYA
5b	$= (x-3)^{2} \ge 0 \text{ for all real values of } x$ $(x-3)^{2} - 25 \ge -25$ Hence, $x^{2} - 6x - 16$ is always -25 or more (or minimum is -25) and hence cannot be -30.	I	Needs to show algebraically why the minimum is -25 Not accepted if just state minimum point is (3, -25) Accept if set completed square expression to -30 and showed x is not defined and conclude expression cannot be -30 . If just state, x is undefined without conclusion, no A1.

St. Anthony's Canossian Secondary School orking Scheme for 2023 Prelim 4E Mathematics Paper

Qn	Worked Solution	Total	Remarks
6a	$336 = 2^4 \times 3 \times 7$	1	
6bi	LCM of 336 and $1764 = 2^4 \times 3^2 \times 7^2$	1	-
6bii	$n = 2^2 \times 3 \times 7 = 84$	1	
7	See attached solution.		Minus 1 mark if never label a(i) and a(ii)
8	Total number of children =1.82 ×10 =182 Let the number of families with 2 children be n 25+2n+3(65-n)=182 220+2n-3n=182 -n=-38 n=38	3	Find total Form equation
0			A REAL PROPERTY AND IN THE
9	On x-axis, $y = 0$: $3x = 24$ x = 8 P = (8,0) On y-axis, $x = 0$: $5y = 24$ y = 4.8 Q = (0,4.8) Length of $PQ = \sqrt{(8-0)^2 - (0-4.8)^2}$ = 9.33 units	3	Either correct P or Q coordinates or showing either the x or y intercept value Length formula based on their coordinates.
10-	$\angle TPR = 180^{\circ} - 139^{\circ} (\angle s \text{ in opp segments})$	+	
10a	$= 41^{\circ}$	1	
10b	$\angle PRQ = 35^{\circ}(\angle s \text{ in same segment})$ $\angle PRQ = 35^{\circ} \text{ and } \angle TPR = 41^{\circ}. \angle PRQ \text{ and } \angle TPR$ are alternate angles that are not equal, hence TP and RQ are not parallel.	2	Must show why $\angle PRQ \neq \angle TPR$ and quote property. Not accepted if $\angle PRQ$ and $\angle TPR$ are not alternate angles.
11	$\frac{\frac{8x-12y}{2x^2 - xy - 3y^2}}{\frac{4(2x-3y)}{(2x-3y)(x+y)}} = \frac{4}{\frac{4}{x+y}}$	3	Factorise numerator and denominator.

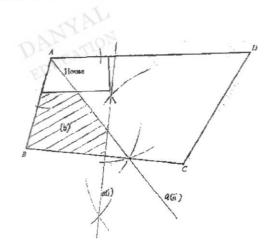
Qn	Worked Solution	Total	Remarks
12a	Triangle XYP and Triangle QZY	1	Must be correct order of points.
12b	$XY = QZ \text{ (Given)}$ $PY = YZ \text{ (Given)}$ $\text{Let } \angle XYP = a^{\circ}$ $\angle XYZ = 180^{\circ} - a^{\circ} \text{ (adj. } \angle \text{s on a st. line)}$ $\angle XYZ = \angle XZY \text{ (base } \angle \text{s, isosceles } \Delta\text{)}$ $\therefore \angle YZQ = 180^{\circ} - (180^{\circ} - a^{\circ}) \text{ (adj. } \angle \text{s on a st. line)}$ $= a^{\circ}$	2	Identify 2 pairs of equal sides with reasons. For proving, if the order of alphabet for sides and angles not in correct order, can accept. Reasons must be seen for each step.
	$\therefore \angle XYP = \angle YZQ = a^{\circ}$ Triangle <i>XYP</i> and Triangle <i>QZY</i> are congruent (SAS Test)		Prove one pair of equal angles and conclude with correct test
	An.		DBLATION
13a 🔨	$\frac{3 \times 10^8}{10^6} = 300 \text{ million}$	1	EDUC
13bi	$500 \times 10^{-9} = 5 \times 10^{-7} \mathrm{m}$	1	Accept 5.0 or 5.00 seen
13bii	$f = \frac{3 \times 10^8}{5 \times 10^{-7}} \text{ or } f = \frac{3 \times 10^8}{500 \times 10^{-9}}$ $f = 6 \times 10^{14}$	1	
14	One interior angle of pentagon = $\frac{(5-2) \times 180^{\circ}}{5}$ = 108° One exterior angle of hexagon = $\frac{360^{\circ}}{6}$ = 60° $\angle JEI = 108^{\circ} - 60^{\circ}$ = 48°	3	Minus I mark if no statement at all for workings. Never write degree symbol for in between steps but wrote at final answer, let go.
OR	One interior angle of pentagon = $\frac{(5-2)\times180^{\circ}}{5}$ = 108° One interior angle of hexagon = $\frac{(6-2)\times180^{\circ}}{6}$ = 120° $\angle FEJ = 180^{\circ} - 120^{\circ} (adj. \angle s \text{ on a st line})$ = 60° $\angle JEI = 108^{\circ} - 60^{\circ}$ = 48°	3	EDUCAL

Qn	Worked Solution	Total	Remarks
15a			
	$\frac{16}{T} = 2$	1	
	T = 8 seconds		
15b		1	
	Distance travelled = $\frac{1}{2}(40+50) \times 16$		
	= 720 m	2	
	Average speed = $720 \div 50$		
	= 14.4 m/s		
16	$8a^3 + 8a^2b - 2ab^2 - 2b^3$		
	$=8a^2(a+b)-2b^2(a+b)$		
	$= (a+b)(8a^2-2b^2)$		1
	4	3	DANYAL
	$=2(a+b)(4a^2-b^2)$		NOT TAG
	$= 2(a+b)(4a^{2}-b^{2})$ = 2(a+b)(2a+b)(2a-b)	1	DANYAL
	= 2(a+b)(2a+b)(2a-b)	f	EDT
			NGC
17	2 3 6	+	
17	Fraction of sum Jess gets = $\frac{2}{5} \times \frac{3}{5} = \frac{6}{25}$		
			Calculate fraction either
	Fraction of sum Lin gets = $\frac{3}{5} \times \frac{3}{5} = \frac{9}{25}$		Jess or Lin gets.
	5 5 25		
	Ratio of sum received for Jess : Lin : Kim		
	Y CAN	4 .	Ratio of sum
	$= 6 : 9 : 10^{-10}$		
	4 units\$640		
	1 unit $640 \div 4 = 160$		Calculate 1 unit based on their ratio
	\therefore Lin gets 9×160		-IN
	= \$1440		1 Mar
OR	2 3 6		DECAT
	Fraction of sum Jess gets = $\frac{2}{5} \times \frac{3}{5} = \frac{6}{25}$		EDUC
	Difference between Kim and Jess		
	2 6	i.	1. The second se
	$=\frac{1}{5}-\frac{1}{25}$		
	4	*	
	$=\frac{1}{25}$	1	
	25		1

1	Worked Solution	Total	Remarks
	$\frac{4}{25}$ \$640	4	
	$\frac{1}{25} \$ \frac{640}{4}$		
	$\frac{9}{25} \$ \frac{640}{4} \times 9$		
	= \$1440		
18ai	$\sqrt[3]{81a^{\frac{5}{3}}}$		
	$= 3\left(a^{\frac{5}{3}}\right)^{\frac{1}{4}}$	1	
			J.
	$=3a^{\frac{5}{12}}$	6	NYAN
8aii			DAMINION
,	$18n^{-9} \div (3n^{-2})^2$		EDC
	$= 18n^{-9} \div 9n^{-4}$		For 9n ⁻⁴
	$= 2n^{-9+4}$	2	
	$= 2n^{-5}$		
	2		
	$=\frac{2}{n^5}$		
18b	$2^7 \times 16^k = 2^k$		
	$= \frac{2}{n^5}$ $2^7 \times 16^k = 2^k$ $2^7 \times 2^{4k} = 2^k$ EDUCATION		Change to base 2
	7 + 4k = k		
	. 7	2	
	$k = -\frac{7}{3}$		
	4		AL
	Accept $k = -2\frac{1}{3}$		nA an
	100 CON 100 CO		Prochi
19ai	There are students whose heights are not greater than		Not accept below 170 cm,
	170 cm (or 170 cm or less) and who enjoy playing	1	must be 170 cm or below
10.12	basketball.		
19aii	$B \subset S$	1.	-
19bi	$P = \{ 42, 45, 48, 51, 54 \}$	1	
	n(P) = 5		
19bii	$Q = \{ 42, 48, 54 \}$	- 21	
	$P \cap Q = \{42, 48, 54\}$	1	A0 if no { }
	a the state of the		

Qn	Worked Solution	Total	Remarks
19bili	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	B0 if no P and Q seen bedside circle. B0 if the 2 circles drawn as
20a	$\mathbf{W} = \begin{pmatrix} 0.625\\ 0.5 \end{pmatrix}$	1	
20b	$\mathbf{T} = \begin{pmatrix} 64 & 70 \\ 56 & 48 \\ x & 44 \end{pmatrix} \begin{pmatrix} 0.625 \\ 0.5 \end{pmatrix}$ $= \begin{pmatrix} 75 \\ 59 \\ 0.625x + 22 \end{pmatrix}$	1	A0 if working showed W as a 1x2 row matrix in working even if correct answer.
20ci	0.625x + 22 = 42 0.625x = 20 x = 32	1	
20cii	$\mathbf{D} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 75\\ 59\\ 42 \end{pmatrix} \qquad \qquad \text{PDICATION} \\ = \frac{1}{3} \begin{pmatrix} 176 \end{pmatrix} \\ = (58.7) \end{pmatrix}$	1	A0 if no () for answer. Accept $\left(\frac{176}{3}\right) or \left(58\frac{2}{3}\right)$
20ciii	Matrix D gives the <u>average (mean) mark</u> of the <u>3</u> girls which is 58.7.	1	3 girls must be seen. Value must be quoted as a decimal else B0.
	O AL STOP	<u>.] :</u>	EDU
21		5	
	$Q \qquad P \qquad X$ $\angle PLM = 90^{\circ} - 30^{\circ}$ $= 60^{\circ}$	C.	Finding angle in 1 st right- angled triangle derived from angle of depression. Correct value only.

n	Worked Solution	Total	Remarks
	$\sin 60^\circ = \frac{15}{PI}$		
	1 L		
	$PL = \frac{15}{\sin 60^\circ}$		Finding QL based on their
	PL = 17.321		angle.
	$\angle MPL = 180^\circ - 90^\circ - 60^\circ (\angle \text{ sum of } \Delta)$ $= 30^\circ$		
			Finding angle in 2 nd right
	$\angle MPX = 90^{\circ} - 30^{\circ}$ $= 60^{\circ}$		angled triangle. Correct
	= 60°		value only.
	MX		
	$\sin 60^\circ = \frac{MX}{15}$		WAL
	$MX = 15 \sin 60^{\circ}$		Finding MX based on their
	MX = 12.990		angle.
	Difference in vertical height = $17.321 - 12.990$		If used shorter method, the
	= 4.33 m		last step of answer is 2
	– 4.55 m		marks.
OR	$\angle LME = 30^{\circ} (alt. \angle s)$		Correct value only
	$\angle EMP = 90^{\circ} - 30^{\circ}$ $= 60^{\circ}$ $\cos 60^{\circ} = \frac{EM}{15}$		
	= 60°		Correct value only
	$\cos 60^\circ = \frac{EM}{15}$		
	15		
	$EM = 15\cos 60^{\circ}$		Finding EM based on their
		5	angle.
	EM = 7.5 m		
	$\tan 30^\circ = \frac{EL}{7.5}$		Based on their EM
	7.5		Dased on their EM
	$EL = 7.5 \tan 30^\circ$		EDU
	EL = 4.33 m		
22a	32 mins	.1	
22b	$\frac{45+49}{2} = 47$ mins	1	Working needed.
	2	i	
22ci	40.2 mins	1	
22cii	9.06 mins	I	2


Qn	Worked Solution	Total	Remarks
22d	The times taken to clear the custom on a weekday were more consistent than that on a weekend as the	1	Need to quote values of SD. Accept if used 1 st group and 2 nd group.
	standard deviation for weekday (9.06 minutes) is smaller than that for weekend (11.5 minutes).		Accept if write only the "times" without stating taken to clear the custom.
23a	Let the slant height of the small cone be I_s cm.		
	$\frac{l_s}{l_s + x} = \frac{22}{30}$		
	$\frac{l_s}{l_s + x} = \frac{11}{15}$	2	
	$15l_{s} = 11l_{s} + 11x$		DANYAL
	$4l_s = 11x$ $l_s = \frac{11}{4}x$		DANYAL EDUCATION
23b	Let the volume of the small cone be V_s cm ⁻		
	$\frac{V_s}{100} = \left(\frac{11}{15}\right)^3$		Similarity concept for volume.
	$V_s = \left(\frac{11}{15}\right)^3 \times 600\pi$ $= 743.37 \text{ cm}^3$	4	Correct value of volume of small cone.
	Volume required = $600\pi - 743.37$		
	=1141.59 $=1140 \mathrm{cm}^3 (3 \mathrm{sf})$		Subtract volumes to get value based on their volume of small cone.
OR	Let radius of big cone be R cm		DAUCATH
	$\frac{1}{3}\pi R^2(30) = 600\pi$		D'
	$R = \sqrt{\frac{600 \times 3}{30}}$	4	
	$R = \sqrt{60}$ or 7.74597		
	Let radius of big cone be r cm		
	$\frac{r}{\sqrt{60}} = \frac{11}{15}$		Similarity concept based on their R.

Qn	Worked Solution	T	otal	Remarks
	$r = \frac{11}{15} \times \sqrt{60}$			
	15			
	= 5.6804			
	Volume of small cone = $\frac{1}{3}\pi (5.6804)^2 (2)^2$	22)		
	$= 743.38 \text{ cm}^3$			Correct value of volume of small cone.
	Volume required = $600\pi - 743.38$			
	=1141.58			Subtract volumes to get value based on their volume of small cone.
	$=1140 \mathrm{cm}^3 (3 \mathrm{sf})$			DALVAL EDUCATION
	MARIAN			DALCATION
	EDUCATIO			EDUC
24-		Number of		
24a	Row Mathematical sum	odd integers added	l	
	6 1+3+5+7+9+11+13 49	7		
24b	The numbers in the column for sum are a squares but <u>200 is not a perfect square</u> cannot be a value for a sum.		1	
24ci	k = 2n + 1			
24cii	$S = \left(n+1\right)^2$		2	Accept $S = n^2 + 2n + 1$
24d	$\left(n+1\right)^2 = 1024$			Accept if found answer by
	$n = \pm \sqrt{1024} - 1$			just taking $\sqrt{1024} = 32$
	n = 31 or $n = -32$ (reject) Number of odd integers = 32	-	2	Finding n. Accept if never show -32 or never reject
25a	Volume of tank = $20 \times 20 \times 12 = 4800$ cm	n ³		
	Volume of water = $\frac{1}{2} \times 4800 = 2400$ cm ³		2	
OR	Volume of water = $\left(\frac{1}{2} \times 20 \times 12\right) \times 20$		2	Correct triangular cross section
	$= 2400 \text{ cm}^3$			

.

Qn	Worked Solution	Total	Remarks
25bi	Let radius of hemispherical bowl be r cm. $\frac{2}{3}\pi r^{3} = 2400$ $r = \sqrt[3]{\frac{2400 \times 3}{2\pi}}$	2	Volume of hemisphere based on their (a)
	<i>r</i> = 10.464 <i>r</i> = 10.5		
25bii	10.464		DANYAL EDUCATION
	$x^{2} + 7^{2} = (10.464)^{2}$ $x = \sqrt{(10.464)^{2} - 7^{2}}$	2	Pythagoras Theorem based on their radius.
	= 7.7779 $d = 10.464 - 7.7779$ $= 2.69$		

7 The diagram shows a plot of land ABCD with a house in one corner.

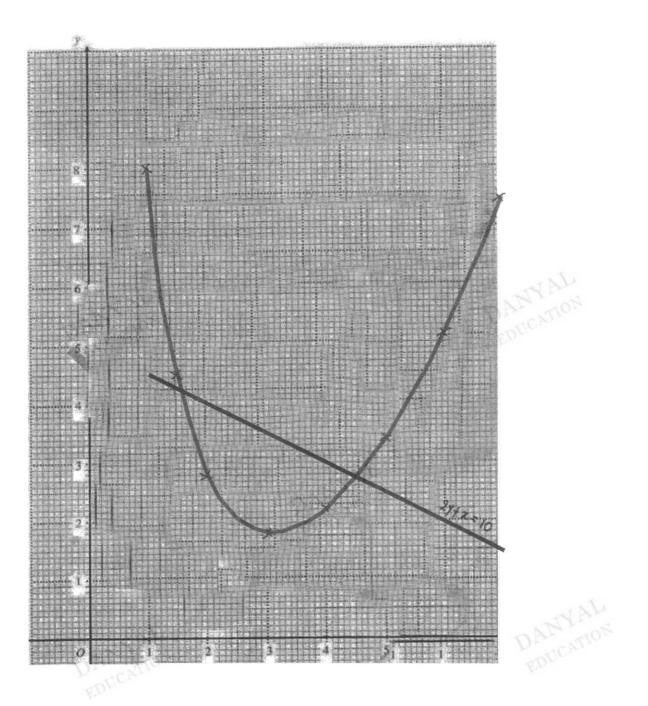
St. Anthony's Canossian Secondary School

Marking Scher	me for 2023	Prelim 4F	Mathematics	Paner 7

Qn	Marking Scheme for 2023 Prelim 4E Mar Worked Solution	Total	Remarks
1ai	$m = \sqrt[3]{\frac{5v - 4c^2}{v - 6}}$		
	$m = \sqrt[3]{\frac{5(3) - 4\left(\frac{1}{2}\right)^2}{3 - 6}}$	1	
	m = -1.6711		
	m = -1.67 (3 sf)		
1aii	$m = \sqrt[3]{\frac{5\nu - 4c^2}{\nu - 6}}$		DANYAL
	$m^{3} = \frac{5v - 4c^{2}}{v - 6}$		DANYA
	$m^{3}v - 6m^{3} = 5v - 4c^{2}$ $m^{3}v - 5v = 6m^{3} - 4c^{2}$	3	Cube both sides and get rid of denominator.
	$m v - 5v = 6m - 4c^{2}$ $v(m^{3} - 5) = 6m^{3} - 4c^{2}$		Factorisc
	$v = \frac{6m^3 - 4c^2}{m^3 - 5}$	2	Accept $v = \frac{4c^2 - 6m^3}{5 - m^3}$
1b	2x + 5y = 25 (1) 3x - 2y = 9 (2)	C.	
	$(1) \times 3: \ 6x + 15y = 75(3)$ $(2) \times 2: \ 6x - 4y = 18(4)$		Attempt elimination or substitution method.
	(3) - (4): 19y = 57		
	y = 3		Y.
	Put $y = 3$ in (1):	3	DALCA
	2x + 5(3) = 25		EDDC
	2x = 10		
	<i>x</i> = 5	1	а.
	· · · ·		<u> </u>

Qn	Worked Solution	Total	Remarks
	2 1		
1c	$\frac{1}{(3x-2)^2} - \frac{1}{2-3x}$		
	2 1		
	$=\frac{2}{(3x-2)^2}+\frac{1}{3x-2}$	2	
	2+3x-2		
	$=\frac{2+3x-2}{(3x-2)^2}$		
	3x		
	$\overline{(3x-2)^2}$		
1d	$2x-5 = \frac{15}{x-2}$		
	(2x-5)(x-2)=15		
	$2x^2 - 4x - 5x + 10 - 15 = 0$		WAL
	$2x^2 - 9x - 5 = 0$	3	Expand to get quadratic equation
	(2x+1)(x-5)=0		Factorise
	$x = -\frac{1}{2}$ or $x = 5$		2 correct answers
	2		
2ai	Deposit = $\frac{30}{100} \times 172000$		Find deposit
Jar 681			
	= \$51 600	2	
	Total amount paid = $51\ 600 + (36 \times 3825)$		
	= \$189 300		
2aii	$Extra cost = \frac{189300 - 172000}{172000} \times 100$	2	Using their total amount
	= 10.1 %	2	
2b	$Balance = \frac{70}{10} \times 172000$		Finding balance
20	100		
	= \$120 400		Total amount based on their
	Total amount = $120400 \left(1 + \frac{2}{100}\right)^{10}$	4	balance, r and n must be
	(100)		correct
	= \$146 766.928		Their total amount minus
	Total interest = $146766.928 - 120400$		their balance
	= \$26 366.928		
	= \$26 366.93		
2c	RM3.32 S\$1		
	RM 328 416 S\$ $\frac{328416}{3.32}$		
	3.32 = S\$98 920.482	2	
	= 5598 920.482 Difference = S\$(172 000 - 98 920.482)		
	= S\$73 079.52		

Qn	Worked Solution	Total	Remarks
3a	4^2 12		
	$p = \frac{4^2}{5} + \frac{12}{4} - 4$	1	
	p = 2.2	-	
3b	Correct points		+
50	Smoothness	3	
3c			
	$\frac{x^2}{5} + \frac{12}{x} - 5 = 0$		
	+1: $\frac{x^2}{5} + \frac{12}{5} - 4 = 1$		
	JA		
	The line $y = 1$ does not intersect the curve	1	
	$y = \frac{x^2}{5} + \frac{12}{x} - 4$, hence there is no solution for		
	$y = \frac{1}{5} + \frac{1}{x} - 4$, hence there is no solution for		17.
	x^2 12		WAL
	$\frac{-+5=0}{5}$		DAL TON
3di	$\frac{x^2}{5} + \frac{12}{x} - 5 = 0.$ $2y + x = 10$	1	DANYAL
	DUCA		Er
	$y = -\frac{1}{2}x + 5$		
	$\begin{bmatrix} x \\ 1 \end{bmatrix}$ 7	1	
	v 4.5 1.5		
	Line drawn passing through endpoints at $x = 1$ and		
	x = 7		
3dii	x = 1.6 (accept 1.55, 1.65) or	2	
	x = 4.5 (accept 4.45, 4.55)		
3diii	$x = 4.5 (accept 4.45, 4.55)$ Put $y = -\frac{1}{2}x + 5$ in $y = \frac{x^2}{5} + \frac{12}{x} - 4$:		
	$Put y = -\frac{1}{2}x + 5$ if $y = \frac{1}{5} + \frac{1}{x} - 4$.		
	$1 - x^2 + 12$		Substitute one equation
	$-\frac{1}{2}x+5=\frac{x^2}{5}+\frac{12}{5}-4$		into the other and
$\times 10x$:	$-5x^2 + 50x = 2x^3 + 120 - 40x$	2	attempt to remove
			denominator.
	$2x^3 + 5x^2 - 90x + 120 = 0$	+	
4 a			Dr. ar
48	$\angle AYC = 90^{\circ}(\angle \text{ in a semicircle})$		EDUC
	$\angle CYB = 90^{\circ}(\angle \text{ in a semicircle})$		
	$\therefore \angle AYC = \angle CYB$		Show 1st pair of equal
	let $\angle CAY = x^{\circ}$		angles
	$\angle ACY = 180^{\circ} - 90^{\circ} - x^{\circ} (\angle \text{ sum of } \Delta)$		
	$=90^{\circ}-x^{\circ}$	2	
	$\angle BCA = 90^{\circ} (\text{radius } \perp \text{ tangent})$		
	$\angle BCY = 90^{\circ} - (90^{\circ} - x^{\circ})$		
	$=x^{\circ}$		
	$\therefore \ \angle CAY = \angle BCY = x^{\circ}$		Chain On July 25
	$\therefore \angle CAI = \angle DCI = x^{-1}$		Show 2nd pair of equal angles
	Triangle ACY is similar to triangle BCY (AAA test)		


Qn	Worked Solution	Total	Remarks
4bi	$\sin 0.663 = \frac{CY}{10}$		
	$CY = 10 \sin 0.663$		Find CY
	= 6.1548		
	Area of triangle CBY	1	
	$=\frac{1}{2}(6.1548)(4.81)$	3	Area of triangle using their <i>CY</i>
	= 14.802		
	$= 14.8 \text{ cm}^2$		
OR	From (a), $\angle CAY = \angle BCY$ $\therefore \angle BCY = 0.663$ radians		
	$\tan 0.663 = \frac{4.81}{CY}$		Find CY
	$CY = \frac{4.81}{\tan 0.663}$	3	JAL
	= 6.1594		KONTA
	Area of triangle $CBY = \frac{1}{2}(6.1594)(4.81)$		Area of triangle using their BY
	= 14.813 = 14.8 cm ²		
4bii	Let centre of bigger circle be O		
	$\angle COY = 2 \times 0.663$		Finding ZCOY
	= 1.326 radians		
	Area of segment CY $= \frac{1}{2} (5)^{2} (1.326) - \frac{1}{2} (5)^{2} \sin 1.326$ $= 4.4477 \text{ cm}^{2}$ Area of shaded part = 14.802 - 4.4477		Areas of sector minus area of triangle based on their
	2	4	ZCOY
	$= 4.4477 \text{ cm}^2$		
	Area of shaded part		
	= 14.802 - 4.4477	1	
	= 10.3543 = 10.4 cm ²		
	10. T Chi		
5ai	$\overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} -9\\4 \end{pmatrix}$		DANYAJ EDUCATIO
	$\overrightarrow{OQ} = \begin{pmatrix} -9\\4 \end{pmatrix} + \overrightarrow{OP}$		EDUCATIO
	$\overrightarrow{OQ} = \begin{pmatrix} -9\\4 \end{pmatrix} + \begin{pmatrix} 4\\-3 \end{pmatrix}$		Find \overline{OQ}
	$\left(\begin{array}{c} -4 \end{array} \right) \left(-3 \right)$	2	
	$=\begin{pmatrix} -5\\1 \end{pmatrix}$	2	
	$\left \overline{OQ}\right = \sqrt{\left(-5\right)^2 + l^2}$		
	= 5.10 units		

)n	Worked Solution	Total	Remarks
5aii	Gradient of $PQ = -\frac{4}{9}$		Finding gradient
	Equation of $PQ: y = -\frac{4}{9}x + c$		
	Subst. $(4, -3), -3 = -\frac{4}{9}(4) + c$	2	
	$c = -\frac{11}{9}$		
	$y = -\frac{4}{9}x - \frac{11}{9}$ or $9y = -4x - 11$		
5bi	CB = CA + AB	1	
5bii	$= -q + p$ $X\dot{Y} = X\hat{B} + B\dot{Y}$		AN
	$= \frac{3}{5}\overline{AB} + \frac{1}{3}\overline{BC}$		DANIATION
	$=\frac{3}{5}p + \frac{1}{3}(q - p)$	3	For \overrightarrow{XB} , \overrightarrow{BY} in terms of p and q
	$=\frac{3}{5}p+\frac{1}{3}q-\frac{1}{3}p$		
	$=\frac{4}{15}p+\frac{1}{3}q$		
5biii	$\frac{\text{Area of } \Delta \text{XBC}}{\text{Area of } \Delta \text{ABC}} = \frac{3}{5}$		
	$\frac{\text{Area of } \Delta \text{XBC}}{\text{Area of } \Delta \text{ABC}} = \frac{3}{5}$ $\text{Area of } \Delta \text{XBC} = \frac{3}{5} \times 30$ $= 18 \text{ cm}^2$	1	
5biv	$X\dot{Y} = 2\left(\frac{2}{15}p + \frac{1}{6}q\right) = 2\overline{XM}$		Show $\overline{XY} = 2\overline{XM}$
	$(15^{\circ} 6^{\circ})$ Since $XY = 2XM$ and X is a common point, X, Y, M	2	Conclude collinear with
	are colinear points.		evidence of a common point in the pair of parallel vectors.
	DALINTON		EDU
6a	$x = 220^{\circ} - 180^{\circ}$		
	= 40°		
	$y = 40^{\circ}$ (alt. \angle s, parallel lines)	.1 -	
	Bearing of C from $A = 040^{\circ}$		
6b	$AB^2 = 70^2 + 50^2 - 2(70)(50)\cos 62^\circ$	1	
	$AB = \sqrt{4113.70}$		Show value in square root
	AB = 64.138	3	
	AB = 64.1 m		

Qn	Worked Solution	Total	Remarks
6c	$\sin \angle BAD = \frac{\sin 62^{\circ}}{\cos 62^{\circ}}$		Sine rule based on their AB.
	$\frac{1}{50} = \frac{1}{64.138}$		
	$\sin (0.10) \sin 62^{\circ}$		
	$\sin\angle BAD = \frac{\sin 62^\circ}{64.138} \times 50$		
	$\sin\angle BAD = 0.68832$	3	
	$\angle BAD = \sin^{-1}(0.68832)$	5	
	= 43.497°		
	Bearing of B from A		
	$=40^{\circ}+43.497^{\circ}$		
	= 083.5°	+	
7a	Area of trapezium PQRD		. 1.
	$=\frac{1}{2}(x)\left[8+(8-x)\right]$		Correct area of trapezium
	11		DALATION
D	$=\frac{1}{2}(x)(16-x)$		EDUC
1			Simplified, correct answer
	$=8x-\frac{1}{2}x^{2}$		only
	Area of triangle QCR		
	$=\frac{1}{2}(8)(10-x)$	5	Correct area of triangle
	=40-4x		
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{40}$ $4x = 47$		Equate their sum of the 2 areas to 47
	$8x - \frac{1}{2}x + 4x - 7 = 0$ Physical descent for the second s		
$\times(-2):$	$x^2 - 8x + 14 = 0$		
7b	$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(14)}}{2(1)}$	1	M1: Quadratic formula
	$x = \frac{2(1)}{2(1)}$		M1: For their $b^2 - 4ac$
	8+ /Q	4	ANYAI
	$x = \frac{8 \pm \sqrt{8}}{2}$		DA AG
	x = 2.5858 or $x = 5.4142$		DUCALL
1	x = 2.59 or $x = 5.41$		EU
7c	Use $x = 5.4142$	1	
	Smallest possible area of triangle FQR		Using their larger x to find
	$=\frac{1}{2}(8)(10-5.4142)$	2	smallest possible FQ
	$= 18.3 \text{ cm}^2$		
		-	

Qn	Worked Solution	Total	Remarks
8ai(a)	Median = 84 km/h	1	
8ai(b)	Interquartile range = $88 - 78$	-	Working needed.
	= 10 km/h	2	No working, minus 1 mark.
8a(ii)			Correct number of vehicles
04(11)	Required percentage = $\frac{200 - 164}{200} \times 100$	2	with speed > 90 km/h.
0 (110)	= 18%		
8a(iii)	$P(speed > y) = \frac{1}{5}$		
	5	1	
	40	1	
	$=\frac{40}{200}$		
	y = 89.5 km/h (accept 89 km/h)		
8a(iv)	Number of vehicles with speed between 80 km/h to		
04(11)	100km/h		1
	=188-60		WAL
	= 128	2	DAL MON
			DANYAL
	Required probability = $\left(\frac{128}{200}\right)\left(\frac{72}{199}\right) + \left(\frac{72}{200}\right)\left(\frac{128}{199}\right)$		EDE
	(200)(199) (200)(199)		
	= 0.463		2304
	*		Accept 4975
8bi	Lower quartile = 64 km/h	1	
		1	Accept 0.25
	Required probability = $\frac{1}{4}$		
8bii	No, I disagree.		
0011	On average, the vehicles travelling on the		Must quote values of
	expressway in the afternoon are faster as their	1	median.
	median speed (92 km/h) is greater than the median	· ·	
	speed (89.5 km/h) of vehicles in the morning.		
	speed (ovis raish) of temeter in the morning.		
9a	250		
	Conversion factor = $\frac{250}{48}$		
	40	1	
	= 5.2083		TA
	= 6		"Dr.
9b	Amount of vanilla essence needed $= 6 \times 10$		Dran
	= 60 ml		DUC
	Cost of vanilla essence $= 2 \times \$2$	2	D.
	=\$4		
			2.
9c	Total amount needed for each ingredients:		**
	Butter $230 \times 6 = 1380 \text{ g}$		Attempt to calculate
	Brown sugar $(160 \times 2) \times 6 = 1920g$		amount of at least 3
		1	ingredients
	Flour $(140 \times 3) \times 6 = 2520g$		
		7	
	Chocolate chips $(190 \times 1.5) \times 6 = 1710g$		
	Eggs $-2 \times 6 = 12 \text{ eggs}$		
	Salt $3.5 \times 6 = 21 \text{ g}$		
	218		

Worked Solution	Total	Remarks
Cost of each ingredient:		
Butter $\frac{1380}{250} = 5.52$ slabs		Calculate cost of at least 2 ingredients based on their total amount needed for
Cost of butter = $6 \times 4.40 = 26.40		each item.
Brown sugar $\frac{1920}{1000} = 1.92$ packets		
Cost of brown sugar = $2 \times 5.50 = $ \$11		
Flour $\frac{2520}{1000} = 2.25$ packets		
Cost of flour $= 3 \times 2.20 = $ \$6.60		
Chocolate chips— $\frac{1710}{340}$ =5.029 packets		1.
Cost of chocolate chips = $6 \times 6.90 = 41.40		NAU
50		Calculate cost of eggs and sait.
Cost of salt = \$0.50	1	- DUC
= 26.40 + 11 + 6.60 + 41.40 + 3.75 + 0.50 + 4 + 2.85		Correct total cost only
100%\$96.50	1	
150% size \$ 150×96.50		Attempt to calculate total
= \$ 144.75		sales value to enjoy 50% profit.
50 = \$2.895		Correct selling price per
Any selling price \geq \$2.90 will enable at least 50%		Any sensible amount \geq
		\$2.90 with correct previous
number value is easier to collect money.		A1 step.
		DANYA
TAL		nAn in
	Cost of each ingredient: Butter $\frac{1380}{250} = 5.52$ slabs Cost of butter = 6 × 4.40 = \$26.40 Brown sugar $\frac{1920}{1000} = 1.92$ packets Cost of brown sugar = 2 × 5.50 = \$11 Flour $\frac{2520}{1000} = 2.25$ packets Cost of flour = 3 × 2.20 = \$6.60 Chocolate chips $\frac{1710}{340} = 5.029$ packets Cost of chocolate chips = 6 × 6.90 = \$41.40 Cost of 12 eggs = \$3.75 Cost of salt = \$0.50 Total cost of ingredients and paper bags = 26.40 + 11 + 6.60 + 41.40 + 3.75 + 0.50 + 4 + 2.85 = \$96.50 100%\$96.50 150%\$\$150 × 96.50 150%\$\$26100 = \$144.75 Selling price of each bag of cookies = $\frac{144.75}{50}$ = \$2.895	Cost of each ingredient: Butter $\frac{1380}{250} = 5.52$ slabs Cost of butter = $6 \times 4.40 = \$26.40$ Brown sugar $\frac{1920}{1000} = 1.92$ packets Cost of brown sugar = $2 \times 5.50 = \$11$ Flour $\frac{2520}{1000} = 2.25$ packets Cost of flour = $3 \times 2.20 = \$6.60$ Chocolate chips $\frac{1710}{340} = 5.029$ packets Cost of chocolate chips = $6 \times 6.90 = \$41.40$ Cost of 12 eggs = $\$3.75$ Cost of salt = $\$0.50$ Total cost of ingredients and paper bags = $26.40 + 11 + 6.60 + 41.40 + 3.75 + 0.50 + 4 + 2.85$ = $\$96.50$ 100% $\$96.50$ 150% $\$ \frac{150 \times 96.50}{100}$ = $\$ 144.75$ Selling price of each bag of cookies = $\frac{144.75}{50}$ = $\$2.895$ Any selling price \ge \$2.90 will enable at least 50% profit. Hence, the selling price can be \$3, whole number value is easier to collect money.

