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Note  This article assume you already understand the properties of circle and 
parabola as taught in secondary school Additional Mathematics and 
Elementary Mathematics respectively. 

 
In general, all conic sections can be represented using the equation below,  
𝐴𝑥2 + 𝐵𝑥 + 𝐶𝑦2 + 𝐷𝑦 + 𝐸 = 0 
Different types of conic sections appears when we begin changing the value of 
𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 
 
If the conic section is an Ellipse, it has the following equation required in general: (Make 
sure the right-hand side is exactly 1 before proceeding!)  
 
(𝑥 − ℎ)2

𝑎2
+

(𝑦 − 𝑘)2

𝑏2
= 1 

 
For an ellipse to look vertically stretched, 𝑎 < 𝑏 

 
For an ellipse to look horizontally stretched, 𝑎 > 𝑏 

 
 
 
 



For an ellipse to have an exactly circular shape, 𝑎 = 𝑏, where 𝑎 represents the radius of 
a circle. (Circle is a special case of an ellipse.)  

 
 
Properties of an ellipse.  
The point where the centre lies is 𝐶(ℎ, 𝑘) 
The coordinates of vertices from up, down, left and right can be represented as the 
following 
 

Upper Vertex (Top of Ellipse) 𝑈(ℎ, 𝑘 + 𝑏) 

Lower Vertex (Bottom of Ellipse)  𝐷(ℎ, 𝑘 − 𝑏) 

Left Vertex (Left side of Ellipse) 𝐿(ℎ − 𝑎, 𝑘) 

Right Vertex (Right side of 
Ellipse) 

𝑅(ℎ + 𝑎, 𝑘) 

 
 
The lines of symmetry of an ellipse are represented by 𝑥 = ℎ, 𝑦 = 𝑘 
 
If the conic section is a Hyperbola, it has the following equation in general: (Make sure 
the right-hand side is exactly 1 before proceeding!) 
 
Hyperbola can be left and right opening as seen with the below diagram  

 
Properties of left-and-right-opening hyperbola as follows:  

Can be reduced to the following equation, 
(𝑥−ℎ)2

𝑎2
−

(𝑦−𝑘)2

𝑏2
= 1, where RHS is exactly 1 



 
Hyperbola can also be up-and-down-opening as seen with the below diagram  

 
 
Properties of up-and-down-opening hyperbola as follows:  

Can be reduced to the following equation,  
(𝑦−𝑘)2

𝑏2
− 

(𝑥−ℎ)2

𝑎2
= 1, where RHS is exactly 1 

 

Further Properties of Hyperbola 

 Left-and-Right-Opening Up-and-Down-Opening  

Centre 𝐶(ℎ, 𝑘) 𝐶(ℎ, 𝑘) 

Vertices Left Vertex, 𝐿(ℎ − 𝑎, 𝑘) 
Right Vertex, 𝑅(ℎ + 𝑎, 𝑘)  

Upper Vertex, 𝑈(ℎ, 𝑘 + 𝑏) 
Bottom Vertex,𝐵(ℎ, 𝑘 − 𝑏) 

Line of symmetry  𝑥 = ℎ 
𝑦 = 𝑘 

𝑥 = ℎ 
𝑦 = 𝑘 

Asymptotes  
𝑦 = 𝑘 +

𝑏

𝑎
(𝑥 − ℎ) 

 

𝑦 = 𝑘 −
𝑏

𝑎
(𝑥 − ℎ) 

 

𝑦 = 𝑘 +
𝑏

𝑎
(𝑥 − ℎ) 

 

𝑦 = 𝑘 −
𝑏

𝑎
(𝑥 − ℎ) 
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Flashback from Secondary School Elementary Mathematics 

Description of Rules  Demonstration  

Addition & Subtraction 
Rule: The act of adding 
any numbers to both 
sides of any inequalities 
doesn’t affect the sign.  

𝑥 > 8 
𝑥 + 4 > 8 + 4 
 
𝑥 ≤ 9 
𝑥 + 1 ≤ 9 + 1 
 

Multiplication & 
Division of Positive 
Numbers Rule: The act 
of multiplying or 
dividing of positive 
numbers to both sides 
of any inequalities 
doesn’t affect the sign.  

5𝑥 + 8 ≥ 9 
5𝑥

5
≥

1

5
 

𝑥 ≥
1

5
 

 
 

Multiplication & 
Division of Negative 
Numbers Rule: The act 
of multiplying and 
dividing of negative 
numbers to both sides 
of any inequalities will 
flip the inequality sign 
(i.e. ≤ changes to ≥ and 
≥ changes to ≤) 

2𝑥 > 6 
After dividing both sides by −2 , we get  
−𝑥 < −3 
 
𝑥

3
≥ 5 

After multiplying both sides by −3, we get 
−𝑥 ≤ −5 

 
 
 
 
 
 
 
 
 
 



Common Mistakes Made by Inexperienced Students when Solving Inequalities at H2 
Level Math.  

Mistake Number 1.  Cross Multiplication  
𝑥 − 6

2𝑥 + 3
> 1 

 
𝑥 − 6 > 2𝑥 + 3 
 
Issue: It is incorrect to cross multiply this way as it is currently 
not known if the sign of 2𝑥 + 3 is positive or negative.  
 

Mistake Number 2.  
 

Square Rooting Both Sides of Inequality  
𝑥2 ≥ 9 
 
𝑥 ≥ ±3 
 
Issue: It is not correct if you treat the inequality sign as if it 
were an equal sign for the purpose of square rooting both 
sides in this way.  

 
Correct Steps to Deal with Inequalities at H2 Mathematics as follows (The steps are to 
be followed with discretion, as not all steps are required for all question types.) 
 
1. Moving all the terms of inequalities from RHS to LHS, making sure the RHS of the 
inequality is 0 before proceeding to step 2.  
2. Add up everything on LHS (If LHS now has multiple algebraic fractions, add them up 
into a state where the LHS shares a common denominator.)  
3. Factorize the LHS [If LHS cannot be factored, apply quadratic formula to any quadratic 
portions of the inequality.]  
4. If the quadratic portion has no real roots (such as 𝑥2 + 𝑥 + 1), complete the square 
as such portion will be either always positive or always negative.  
5. For each linear factor, find the critical value that satisfy the inequality  
6. Mark all critical values on the number line, 𝑛 critical values divide the number line 
into 𝑛 + 1 interval  
7. Do a sign test on each interval to determine whether the function is positive or 
negative in that interval.  
8. Complete the sign diagram  
9. Determine the solution set, noting that any values that will cause the denominator to 
be zero must be excluded as division by zero is undefined.  
 



Q1: 
Solve the inequality 𝑥3 ≥ 𝑥(3𝑥 + 10). 
Step 1. Move terms from RHS to LHS of the inequality.  
𝑥3 − 𝑥(3𝑥 + 10) ≥ 0 
 
Step 2. Add up everything on LHS of inequality  
𝑥3 − 3𝑥2 − 10𝑥 ≥ 0 
 
Step 3. Take out 𝑥 by factoring.  
𝑥(𝑥2 − 3𝑥 − 10) ≥ 0 
 
Step 4. Further factorize to get the following.  
𝑥(𝑥 + 2)(𝑥 − 5) ≥ 0 
 
Note: to get sign test result on the bottom right of this page, substitute 𝑥 on LHS with 
sign test value.  
 
Example if your sign test interval is less than −2, find a value that is less than −2, in this 
case, I use −3 and substitute 𝑥 with −3 to get  
(−3)[(−3) + 2][−3 − 5] = −24 
 
Since the inequality in step 4 indicates the inequality has to be ≥ 0, we look out for set 
of values that will produce positive or zero. Which get us the following as a result.  
 
−2 ≤ 𝑥 ≤ 0 OR 𝑥 ≥ 5 
 

Sign Test  Result  

-3 -24 
(Negative) 

-1 6 
(Positive)  

1 -12 
Negative 

6 48  
(Positive)  

 
 
  
  
  

0 -2 5 



  
Q2: Solve the inequality 𝑥3 < 4𝑥2 − 𝑥 
Step 1. Move terms from RHS to LHS  
𝑥3 − 4𝑥2 + 𝑥 < 0 
 
Step 2. Factorize the LHS of the inequality  
𝑥(𝑥2 − 4𝑥 + 1) < 0 
 
Step 3. Use quadratic formula (which I will not further elaborate here) to deal with 
quadratic portion (Since it cannot be factorized).  
 
𝑥2 − 4𝑥 + 1 = 0 

𝑥 = 2 ± √3  
 
Final Inequality:  

[𝑥 − (2 + √3)] [𝑥 − (2 − √3)](𝑥) < 0 

 

𝑥 < 0  OR 2 − √3 < 𝑥 < 2 + √3  
 

Sign Test Result  

-2 -26 
(Negative)  

0.1 0.061 
(Positive 

3 -6 
(Negative)  

4 4 
(Positive)  

 
 
 
 
 
 
 
 
 
 
 
 

0 2 − √3 2 + √3 



Q3. Solve the inequality 
3𝑥−5

𝑥−1
≥

2

𝑥
 

 
Step 1: Move all terms from RHS to LHS of inequality  
3𝑥 − 5

𝑥 − 1
−

2

𝑥
≥ 0 

 
Step 2: Add up everything on the LHS of inequality 
𝑥(3𝑥 − 5)

𝑥(𝑥 − 1)
−

2(𝑥 − 1)

𝑥(𝑥 − 1)
≥ 0 

 
 
3𝑥2 − 5𝑥 − 2𝑥 + 2

𝑥(𝑥 − 1)
≥ 0 

 
 
3𝑥2 − 7𝑥 + 2

𝑥(𝑥 − 1)
≥ 0 

 
Step 3. Factorize any quadratic portion of the LHS of inequality.  
(3𝑥 − 1)(𝑥 − 2)

𝑥(𝑥 − 1)
≥ 0 

 
Step 4. Complete sign diagram and exclude any value that will cause the denominator to 
be 0.   
  
  
  
 𝑥 ≠ 0  𝐴𝑁𝐷 𝑥 ≠ 1 
  
 Therefore:  

 𝑥 < 0, 
1

3
≤ 𝑥 < 1 𝑂𝑅 𝑥 ≥ 2 

 
 
 
 
 
 
 
 

Sign 
Test  

Result  

-1 6 (Positive)  

0.25 -2.333 (Negative)  

0.5 3 (Positive) 

1.5 -2.333 (Negative) 

3 1.333 (Positive)  

0 
1

3
 1 2 



Q4. Solve the following inequality  

 
𝑥+1

𝑥−1
≤ 4 

 
Step 1. Move terms from RHS to LHS  
𝑥 + 1

𝑥 − 1 
− 4 ≤ 0 

 
Step 2. Add up all LHS terms together in the following way   

 
𝑥+1

𝑥−1
−

4(𝑥−1)

𝑥−1
≤ 0 

  

 
𝑥+1−4𝑥+4

𝑥−1
≤ 0 

  
−3𝑥 + 5

𝑥 − 1
≤ 0 

  
Step 3 Complete sign diagram and exclude values that will cause the denominator to be 
0. 
  
 𝑥 ≠ 1 
  
  
  
Therefore   

 𝑥 < 1 𝑂𝑅 𝑥 ≥
5

3
 

  
  
  
 
  
   
  
  
  
  

Sign Test Result  

0 -5 (Negative)  

1.5 1 (Positive)  

2 -1 (Negative)  

  

1 5

3
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Basic Concepts of Modulus Functions  

The absolute symbol of modulus functions will cause any negative values within the 
symbol to become positive and any positive values within the absolute symbol remain 
positive as illustrated in the following examples: 
|𝜋| = 𝜋 
|−6| = 6 
|−𝑒3| = 𝑒3 
|15| = 15 
Basic Properties of Equation Involving Modulus Functions  

If |𝑓(𝑥)| = 𝑘, it will also imply 𝑓(𝑥) = ± 𝑘 

Basic Properties of Inequalities Involving Modulus Functions   

If |𝑓(𝑥)| < 𝑘 , it will also imply −𝑘 < 𝑓(𝑥) < 𝑘 

If |𝑓(𝑥)| > 𝑘 , it will also imply 𝑓(𝑥) < −𝑘 𝑂𝑅 𝑓(𝑥) > 𝑘 

 

Basic Properties of Operations Involving Modulus Functions  

Given 𝑎, 𝑏 are real numbers, the following properties shall apply  
|𝑎𝑏| = |𝑎||𝑏| 

|
𝑎

𝑏
| =

|𝑎|

|𝑏|
 

|𝑎| ± |𝑏| ≠ |𝑎 ± 𝑏| 
|𝑎|2 = 𝑎2 
If |𝑎| < |𝑏|, |𝑎|2 < |𝑏|2, 𝑎2 < 𝑏2 

If |𝑎| > |𝑏|,  |𝑎|2 > |𝑏|2, 𝑎2 > 𝑏2 

 
 
 
 
 
 
 
 
 
 
 
 
 



Q1. Solve the following inequalities  
(a) |2𝑥 + 1| > 7 
(b) |1 − 𝑥| < 3 
(c) |2 − 𝑥| ≤ |3 + 2𝑥| 

 
1(a)  
|2𝑥 + 1| > 7 
 
Using Modulus Function Property:  
If |𝑓(𝑥)| > 𝑘 , it will also imply 𝑓(𝑥) < −𝑘 𝑂𝑅 𝑓(𝑥) > 𝑘 
 
2𝑥 + 1 < −7 𝑂𝑅 2𝑥 + 1 > 7 
2𝑥 < −8 𝑂𝑅 2𝑥 > 6 
𝑥 < −4 𝑂𝑅 𝑥 > 3 
 
1(b)  
|1 − 𝑥| < 3 
 
Using Modulus Function Property: If |𝑓(𝑥)| < 𝑘 , it will also imply −𝑘 < 𝑓(𝑥) < 𝑘 
 
−3 < 1 − 𝑥 < 3 
−4 < −𝑥 < 2 
 
Multiplying negative sign to the entire inequality, we get the following:  
4 > 𝑥 > −2 
 
1(c) 
|2 − 𝑥| ≤ |3 + 2𝑥| 
 
Using Modulus Function Property: If |𝑎| < |𝑏|, |𝑎|2 < |𝑏|2, 𝑎2 < 𝑏2 
 
|2 − 𝑥|2 ≤ |3 + 2𝑥|2 
[22 − 2(2)(𝑥) + 𝑥2] ≤ [32 + 2(3)(2)𝑥 + 4𝑥2] 
4 − 4𝑥 + 𝑥2 ≤ 9 + 12𝑥 + 4𝑥2 
−5 − 16𝑥 − 3𝑥2 ≤ 0 
−[(3𝑥 + 1)(𝑥 + 5)] ≤ 0 
 
Multiplying negative sign to the entire inequality, we get the following:  
(3𝑥 + 1)(𝑥 + 5) ≥ 0 

𝑥 ≥ −
1

3
 𝑂𝑅 𝑥 ≤ −5  



Q2. Solve the following inequalities 
(a) |𝑥 − 2| ≥ 𝑥2 

(b) |
2𝑥+1

𝑥−3
| > 1 

 
2(a) |𝑥 − 2| ≥ 𝑥2 
Using Modulus Function Property:  
If |𝑓(𝑥)| > 𝑘 , it will also imply 𝑓(𝑥) < −𝑘 𝑂𝑅 𝑓(𝑥) > 𝑘 
 
𝑥 − 2 ≤ −𝑥2 𝑂𝑅 𝑥 − 2 ≤ 𝑥2 
𝑥 − 2 + 𝑥2 ≤ 0 𝑂𝑅 𝑥 − 2 − 𝑥2 ≤ 0  
𝑥2 + 𝑥 − 2 ≤ 0 𝑂𝑅 − 𝑥2 + 𝑥 − 2 ≤ 0 
 
(𝑥 + 2)(𝑥 − 1) ≤ 0  
−2 ≤ 𝑥 ≤ 1 
 
Multiplying negative sign to the whole inequality, we get  
−𝑥2 + 𝑥 − 2 ≤ 0 
𝑥2 − 𝑥 + 2 ≥ 0 
 
Using quadratic discriminant rule, we calculate the discriminant to get the following:  
𝑏2 − 4𝑎𝑐 = (−1)2 − 4(1)(2) = 1 − 8 = −7 ∴ proving that this inequality has no real 
values that can satisfy itself.  
 
As a result, the only range of value that can satisfy the initial inequality is:   
−2 ≤ 𝑥 ≤ 1 
 

2(b) |
2𝑥+1

𝑥−3
| > 1 

Using Modulus Function Property, |
𝑎

𝑏
| =

|𝑎|

|𝑏|
 

|2𝑥 + 1|

|𝑥 − 3|
> 1 

 
Since the denominator is always positive as denoted by the absolute sign, we can be 
absolutely sure the denominator will not cause any signs to change when multiplied to 
both sides, we get the following as a result:  
|2𝑥 + 1| > |𝑥 − 3| 
 
Using Modulus Function Property: If |𝑎| > |𝑏|,  |𝑎|2 > |𝑏|2, 𝑎2 > 𝑏2 
|2𝑥 + 1|2 > |𝑥 − 3|2 = (2𝑥 + 1)2 > (𝑥 − 3)2 
4𝑥2 + 4𝑥 + 1 > 𝑥2 − 6𝑥 + 9 



3𝑥2 + 10𝑥 − 8 > 0 

𝑥 < −4 OR 𝑥 >
2

3
 

 
Going back to the original inequality, we have to exclude anything can will cause 
denominator values to be 0, ∴ 𝑥 ≠ 3 and hence there have to be two more solutions 
that would satisfy the initial inequality, 𝑥 < 3 and 𝑥 > 3 
 

Therefore, 𝑥 < −4 ,
2

3
< 𝑥 < 3, 𝑥 > 3 

 
Q3. Solve the following inequality 

(a) 
4

|𝑥|
> 𝑥 + 3 

 
Since the numerator of the LHS is positive, we can argue that |4| = 4 and put the 
absolute sign on numerator to get the following value:  
 
|4|

|𝑥|
> 𝑥 + 3 which can be rewritten as |

4

𝑥
| > 𝑥 + 3 

 
Using Modulus Function Property: 
If |𝑓(𝑥)| > 𝑘 , it will also imply 𝑓(𝑥) < −𝑘 𝑂𝑅 𝑓(𝑥) > 𝑘 
 
4

𝑥
< −(𝑥 + 3)  𝑂𝑅 

4

𝑥
> 𝑥 + 3 

 
4

𝑥
< −𝑥 − 3 𝑂𝑅 

4

𝑥
> 𝑥 + 3  

 
4

𝑥
<

(−𝑥 − 3)(𝑥)

𝑥
 𝑂𝑅 

4

𝑥
>

(𝑥 + 3)(𝑥)

𝑥
 

 
4

𝑥
<

−𝑥2 − 3𝑥

𝑥
  𝑂𝑅 

4

𝑥
>

𝑥2 + 3𝑥

𝑥
 

 
4

𝑥
−

−𝑥2 − 3𝑥

𝑥
< 0  𝑂𝑅 

4

𝑥
−

𝑥2 + 3𝑥 

𝑥
> 0 

 
4 + 𝑥2 + 3𝑥

𝑥
< 0 𝑂𝑅 

4 − 𝑥2 − 3𝑥

𝑥
> 0 

 
 



𝑥2 + 3𝑥 + 4 has a discriminant value of 𝑏2 − 4𝑎𝑐 = 32 − 4(1)(4) = 9 − 16 = −7 and 
𝑎 > 0. Therefore, no values could satisfy the inequality 4 + 𝑥2 + 3𝑥 < 0 
 
1

𝑥
< 0  

 
𝑥 < 0 
 
−𝑥2 − 3𝑥 + 4

𝑥
> 0 

 
Multiplying both sides by −1, we get the following  
 
𝑥2 + 3𝑥 − 4

𝑥
< 0 

 
Factorizing the numerator, we get the following 
[(𝑥 + 4)(𝑥 − 1)]

𝑥
< 0 

  
 
  
  
  
  
  
  
  
𝑥 < −4 OR 0 < 𝑥 < 1 

Sign 
Test  

Result  

-5 -1.2 
(Negative)  

-2 3 
(Positive) 

0.5 -4.5 
(Negative) 

2 3 
(Positive) 

 ∴ 𝑥 < 0 or 0 < 𝑥 < 1 
  

−4 0 1 



Q4. 
|𝑥|+5

2−|𝑥|
< 3 

 
Substitute 𝑢 = |𝑥| and we get the following:  
𝑢 + 5

2 − 𝑢
< 3 

 
𝑢 + 5

2 − 𝑢
− 3 < 0 

 
𝑢 + 5

2 − 𝑢
−

3(2 − 𝑢)

2 − 𝑢
< 0 

 
𝑢 + 5 − 6 + 3𝑢

2 − 𝑢
< 0 

 
4𝑢 − 1

2 − 𝑢
< 0 

 

𝑢 <
1

4
 OR 𝑢 > 2 

 
 
   
  
  
  

For 𝑢 = |𝑥| <
1

4
 , can be rewritten as −

1

4
< 𝑥 <

1

4
 

   
 
For 𝑢 = |𝑥| > 2,  can be rewritten as 𝑥 < −2 OR 𝑥 > 2 
 

∴ 𝑥 < −2  𝑂𝑅 −
1

4
< 𝑥 <

1

4
 𝑂𝑅 𝑥 > 2 

Sign Test Results 

0 -0.5 (Negative)  

0.5 0.667 (Positive)  

3 -11 Negative  

0.25 2 
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This portion is designed to address a basics of complex numbers addition, subtraction, 
multiplication and division and does not involve any geometry.  
 
Applicable to  

• JC ‘A’ Level H2 Mathematics 

• Nanyang Polytechnic, School of Engineering – Engineering Mathematics 1A  

• Nanyang Polytechnic, School of Information Technology – Diploma Plus Program 
(Mathematics)  

 
Introducing the imaginary unit 𝑖  (Engineering students use 𝑗 instead)  

𝑖 =  √−1 
 
If you have read my document on secondary school algebra, you will realize that I 
specifically tell students not to use 𝑖 in any algebra operations (unless question ask 
you to do so, of course) as it is reserved for specific use. For a long time, you may be 
thinking what exactly it is being used for, it is in fact used to represent the value of 

√−1 at higher level mathematics.  
 
Basic Operation of Imaginary Numbers  
Addition Rule  
𝑥𝑖 + 𝑦𝑖 = (𝑥 + 𝑦)𝑖  
 
Subtraction Rule  
𝑥𝑖 − 𝑦𝑖 = (𝑥 − 𝑦)𝑖  
 
Multiplication Rule 
𝑖(𝑖) =  −1  
(−𝑖)(𝑖) = 1  
𝑥𝑖 (𝑦𝑖) = 𝑥(𝑦)(−1) = −𝑥𝑦  
 
Division Rule  
𝑥𝑖

𝑦𝑖
=

𝑥

𝑦
 

 
 



 
Basic Examples:  
Q1.6𝑖 + 8𝑖  
Q2.5𝑖 − 3𝑖 
Q3.3𝑖(4𝑖) 

Q4.
2𝑖

5𝑖
 

 

Q1 6𝑖 + 8𝑖 = 14𝑖  

Q2 5𝑖 − 3𝑖 = 2𝑖 

Q3 3𝑖(4𝑖) =  −12  

Q4 2𝑖

5𝑖
=

2

5
 

 
 
If a number contains both an imaginary and a real number, the number is called a 
complex number.  
 
A complex number is in the following form  

𝑎 + 𝑏𝑖  
𝑎 is the real part, 𝑏𝑖 is the imaginary part. 
 
Complex Number Operations  
Addition Rule  
(𝑎 + 𝑏𝑖) + (𝑔 + ℎ𝑖) = (𝑎 + 𝑔) + (𝑏 + ℎ)𝑖 
 
Subtraction Rule  
(𝑎 + 𝑏𝑖) − (𝑔 + ℎ𝑖) = (𝑎 − 𝑔) + (𝑏 − ℎ)𝑖 
 
Multiplication Rule (I hope you recall your secondary school expansion and 
factorization class, as it is similar to that, with one exception, that 𝑖(𝑖) = −1) 
(𝑎 + 𝑏𝑖)(𝑔 + ℎ𝑖) = 𝑎𝑔 + 𝑏𝑔𝑖 + 𝑎ℎ𝑖 + (−1)𝑏ℎ 
𝑎𝑔 − 𝑏ℎ + 𝑏𝑔𝑖 + 𝑎ℎ𝑖 = (𝑎𝑔 − 𝑏ℎ) + (𝑏𝑔 + 𝑎ℎ)𝑖 
 
Division Rule (Students who took Additional Mathematics, this may ring a bell as it is 
similar to the method you used to rationalize denominator in secondary 3.)  
 
Situation 1.  
𝑎 + 𝑏𝑖

𝑔 + ℎ𝑖
=

𝑎 + 𝑏𝑖

𝑔 + ℎ𝑖
×

𝑔 − ℎ𝑖

𝑔 − ℎ𝑖
  

 



Situation 2.  
𝑎 + 𝑏𝑖 

𝑔 − ℎ𝑖 
=

𝑎 + 𝑏𝑖

𝑔 − ℎ𝑖
×

𝑔 + ℎ𝑖

𝑔 + ℎ𝑖 
 

 
This method is called complex conjugate multiplication, a complex conjugate has the 
following properties that makes the above method work.  
 

1. The conjugate multiplied to the complex number will always be equal to 1.  
2. The sign between the imaginary and real part of the denominator has to flip to 

become the conjugate. (i.e. “+” to “-” and “-” to “+”)  
 
 
Basic Examples  
Q5. (3 − 6𝑖) − (7 − 8𝑖) 
Q6. (15 + 6𝑖) + (5 − 3𝑖) 
Q7. (5 + 𝑖)(6 − 3𝑖) 
 

Q8. 
2+5𝑖

1+6𝑖
 

 
 

Q5.  By distributive law, the expression is equal to the following  
 
3 − 6𝑖 − 7 + 8𝑖 = 
3 − 7 − 6𝑖 + 8𝑖 =  
−4 + 2𝑖  
  

Q6. (15 + 6𝑖) + (5 − 3𝑖) = 
 
20 + 3𝑖  

Q7. 
 

(Like how you expand expression brackets in secondary school, with an 
exception to note, being 𝑖 × 𝑖 = −1 ) 
 
 
(5 + 𝑖)(6 − 3𝑖) 
 
5(6) + 6(𝑖) − 15𝑖 − 3(𝑖)(𝑖) = 
 
30 − 9𝑖 − 3(−1) =  
33 − 9𝑖 
 



Q8. The complex conjugate of the denominator of the expression 
2+5𝑖

1+6𝑖
 is 

1 − 6𝑖 
 
2 + 5𝑖

1 + 6𝑖
×

1 − 6𝑖

1 − 6𝑖
 

 

=
(2 + 5𝑖)(1 − 6𝑖)

(1 + 6𝑖)(1 − 6𝑖)
 

 

=
2 + 5𝑖 − 12𝑖 + 30

1 − 36𝑖(𝑖)
 

 

=
32 − 7𝑖

1 + 36
 

 

=
32 − 7𝑖

37
 

 

 



Title Complex Numbers – Argument and Modulus [Converting from Algebraic 
Form to Polar and Exponential Form Form] 

Author Lim Wang Sheng, School of Information Technology, Nanyang Polytechnic  
[CCA: NYP Mentoring Club]  

Date 15/12/2018 

 
Applicable to  

• Junior College ‘A’ Level H2 Mathematics  

• Nanyang Polytechnic, School of Engineering, Engineering Mathematics 1A   

• Nanyang Polytechnic, School of Information Technology, Mathematics (Diploma 
Plus Program)  

 

Basic Notation   

𝑟  The modulus of the complex number. (Also denoted in 
textbooks using the 2 vertical strokes. If 𝑧  is the complex 
number, the modulus can be written as |𝑧|.  

𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 The argument of the complex numbers. (Denoted in 
textbooks as arg(𝑧), given 𝑧 is the complex number.)  

 

Notation Example   

𝑎 + 𝑏𝑖 
(Algebraic Form)  

Algebraic Interpretation:  𝑎 is the real part of the complex 
number and 𝑏 is the imaginary part of the complex 
number.  
  

𝑟∠𝜃 
(Polar Coordinate Form)  

Given complex number 𝑎 + 𝑏𝑖 
𝑟 refers to the distance of the point on the complex plane 
relative to the origin point of the complex plane.  

Can be computed using 𝑟 = √𝑎2 + 𝑏2 (Also known as the 
modulus)  
 
𝜃 refers to angle of the line relative the positive real-axis, 
that start from the point of origin to the coordinate of 𝑎 +
𝑏𝑖 (Also known as the argument)  

𝑟(cos(𝜃) + 𝑖 sin(𝜃))  
(Polar Form)  

Given complex number 𝑎 + 𝑏𝑖 
𝑟 refers to the distance of the point on the complex plane 
relative to the origin point of the complex plane.  

Can be computed using 𝑟 = √𝑎2 + 𝑏2 (Also known as the 
modulus)  
 



𝜃 refers to angle of the line relative the positive real-axis, 
that start from the point of origin to the coordinate of 𝑎 +
𝑏𝑖 (Also known as the argument) 

𝑟𝑒𝑖𝜃   
(Exponential Form)  
 
 

Given complex number 𝑎 + 𝑏𝑖 
𝑟 refers to the distance of the point on the complex plane 
relative to the origin point of the complex plane.  

Can be computed using 𝑟 = √𝑎2 + 𝑏2 (Also known as the 
modulus)  
𝜃 refers to angle of the line relative the positive real-axis, 
that start from the point of origin to the coordinate of 𝑎 +
𝑏𝑖 (Also known as the argument) 

 
 
As you can see the required values for polar coordinate, polar form and exponential 
form are computed using the same formula, so I will just need to guide you all on how 
to compute the modulus and argument. 
 
(Make sure your calculator is in “Radian Mode” before proceeding)  
 
Step 1. Sketch a complex plane and plot the coordinate of the complex number within 
the complex plane. (This is also called an argand diagram.)  
Step 2. Draw a line, the line shall start from the origin point and reach the coordinate of 
the complex number.   
Step 3. Determine the Quadrant Number of the Complex Number.  
 
(Im means imaginary axis, Re means the real axis.) 
 
 
 
Step 4. Compute Basic Angle of the Complex Number  

Using 𝜃𝑏𝑎𝑠𝑖𝑐 = tan−1 (
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡
) 

 
 
Step 5. Use the following rules to deduce the argument 
For first quadrant  
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 =  𝜃𝑏𝑎𝑠𝑖𝑐 

 
For second quadrant  
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = 𝜋 − 𝜃𝑏𝑎𝑠𝑖𝑐  

1st 
Quadrant  

2nd  
Quadrant  

3rd  
Quadrant  

4th 
Quadrant  

Im  

Re 



 
For third quadrant  
𝜃𝑎𝑟𝑔𝑢𝑒𝑚𝑒𝑛𝑡 =  −𝜋 + 𝜃𝑏𝑎𝑠𝑖𝑐  

 
For fourth quadrant  
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 =  −𝜃𝑏𝑎𝑠𝑖𝑐 

 
 
Step 6. Compute 𝑟  using the below formula  

𝑟 = √𝑎2 + 𝑏2  
 
 
Find the modulus and argument of the following complex numbers.  

1. 3 + 6𝑖  
2. 1 − 3𝑖  
3. −1 + 3𝑖  
4. −1 − 𝑖  

 
Question 1.  
First quadrant therefore:  
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 =  𝜃𝑏𝑎𝑠𝑖𝑐 

 
3 + 6𝑖 as mapped on the complex plane 

 

𝜃 = tan−1 (
6

3
) = 1.11 𝑅𝑎𝑑𝑖𝑎𝑛𝑠  

 

𝑟 = √62 + 32 = √36 + 9 = √45 = 3√5 
 
 

Written in Polar Coordinate Form: 3√5 ∠ 1.11 

Written in Polar Form 3√5 (cos(1.11) + 𝑖 sin(1.11))  

Written in Exponential Form 3√5𝑒𝑖 (1.11) 



 
 
 
Question 2.  
1 − 3𝑖 as mapped on the complex plane.  

 
 
The complex position of the value lies in the fourth quadrant of the complex plane, 
therefore, 𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 =  −𝜃𝑏𝑎𝑠𝑖𝑐 

In this case, the opposite is the absolute value of the imaginary part while the adjacent 
is the real part of the complex number.  
 
*When dealing with angles, always convert coordinate values to absolute values.  
 

𝜃𝑏𝑎𝑠𝑖𝑐 = tan−1 (
3

1
) = 1.249 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 

𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = −1.249 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 

𝑟 = √12 + (−3)2 =  √10  
 

Written in Polar Coordinate Form:  √10∠ − 1.25𝑅𝑎𝑑𝑖𝑎𝑛𝑠  
Written in Polar Form  √10(cos(−1.25) + 𝑖 sin(−1.25)) 
Written in Exponential Form  √10 𝑒−1.25 𝑖  

 
 
 
 
 
 
 
 
 



 
 
 
Question 3. 
 −1 + 3𝑖 as mapped on the complex plane 

 
 
Since in Second Quadrant, the Argument is computed as follows  
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = 𝜋 − 𝜃𝑏𝑎𝑠𝑖𝑐  

𝜃𝑏𝑎𝑠𝑖𝑐 = tan−1 (
3

1
) = 1.24905 𝑅𝑎𝑑𝑖𝑎𝑛𝑠  

 
𝜃𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 =  𝜋 − 1.24905 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 = 1.89 𝑅𝑎𝑑𝑖𝑎𝑛𝑠  

 
 

𝑟 =  √32 + 12 =  √10  
 

Written in Polar 
Coordinate Form  

√10 ∠1.89 𝑅𝑎𝑑𝑖𝑎𝑛𝑠  

Written in Polar Form  √10 (cos(1.89) + 𝑖 sin(1.89))  
Written in Exponential 
Form  

√10(e1.89𝑖) 

 
 
 
 
 
 
 



Question 4. 
−1 − 𝑖  as mapped on the complex plane.  
 
 

 

 
 
 
Since the coordinate of the complex number lies in the third quadrant, we use the 
following formula  
𝜃𝑎𝑟𝑔𝑢𝑒𝑚𝑒𝑛𝑡 =  −𝜋 + 𝜃𝑏𝑎𝑠𝑖𝑐  

 

𝜃𝑏𝑎𝑠𝑖𝑐 = tan−1 (
1

1
) = 0.78540 𝑅𝑎𝑑𝑖𝑎𝑛𝑠   

 
𝜃𝑎𝑟𝑔𝑢𝑒𝑚𝑒𝑛𝑡 = −𝜋 + 0.78540 = −2.36 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 

 

𝑟 = √12 + 12 = 1.4142 
 

Written in Polar 
Coordinate Form  

√2 ∠ − 2.36 𝑅𝑎𝑑𝑖𝑎𝑛𝑠  

Written in Polar Form  √2 (sin(−2.36) + 𝑖 sin(−2.36) 
Written in Exponential 
Form  

√2 (𝑒−2.36𝑖 ) 

 
 
 
 



Title Differentiation of Inverse Trigonometric Functions  

Author AprilDolphin 

Date 19/9/2024 

Assumptions  This article assumes you already have good knowledge of using chain 
rule to differentiate functions as well as basic knowledge of finding 
derivatives of algebraic, logarithmic, exponential and trigonometric 
functions.  

 

Function  Derivatives  

𝑓(𝑥) = sin−1(𝑥) 
𝑓′(𝑥) =

1

√1 − 𝑥2
 

𝑓(𝑥) = cos−1(𝑥) 
𝑓′(𝑥) =

−1

√1 − 𝑥2
 

𝑓(𝑥) = tan−1(𝑥) 
𝑓′(𝑥) =

1

1 + 𝑥2
 

 

Chain Rule in General  

Given 𝑓(𝑥) = 𝑔(ℎ(𝑥)) 

𝑓′(𝑥) = 𝑔′(𝑥) ℎ′(𝑥) 

 

Application of Chain Rule to Inverse Trigonometric Functions  

Function  Derivatives  

𝑓(𝑥) = sin−1(𝑢) 
𝑓′(𝑥) =

1

√1 − 𝑢2
(𝑢′) 

 

𝑓(𝑥) = cos−1(𝑢) 
 

𝑓′(𝑥) =
−1

√1 − 𝑢2
(𝑢′) 

𝑓(𝑥) = tan−1(𝑢) 
𝑓′(𝑥) =

1

1 + 𝑢2
(𝑢′) 

 
 
 
 
 
 
 
 



Example 1. 
Find the derivative of the following functions 

(a) y = sin−1(𝑒6𝑡) 
 

Using chain rule 
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑡
 

 
𝑑𝑦

𝑑𝑢
=

1

√(1 − 𝑢2)
× 6𝑒6𝑡 =

6𝑒6𝑡

√1 − 𝑒12𝑡 
 

 
(b) 𝑦 = tan−1(2𝑥) 

 

Using chain rule 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
 

 
1

1 + (2𝑥)2
× 2𝑥 ln(2) =

2𝑥 ln (2)

1 + 22𝑥
 

 

(c) 𝑓(𝑥) =  cos−1 (
𝑥

3
) 

Using chain rule, where any composite function 𝑓(𝑥) = 𝑔(ℎ(𝑥))  will produce a 

derivative of 𝑔′(𝑥)ℎ′(𝑥). 
 

cos−1 (
𝑥

3
) = cos−1 (

1

3
𝑥) 

 

𝑓′(𝑥) =
−1

√1 − (
1
3

𝑥)
2

×
1

3
= −

1

3√1 −
1
9

𝑥2

= −
1

√9 √1 −
𝑥2

9

 

 

=  −
1

√9 −
√92𝑥

9

2

= −
1

√9 − 𝑥2
 

 

(d) 𝑦 = 𝑒sin−1(2𝑥) 
 

Using chain rule, where 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
 

 

2𝑒sin−1(2𝑥) ×
1

√1 − (2𝑥2)
=

2𝑒sin−1(2𝑥) 

√1 − 4𝑥2
 



Title Differentiation of Implicit Functions  

Author AprilDolphin  

Date 27/9/2024 

 
Definition of an explicit function, is where  
𝑦 can be defined as exactly equal to 𝑓(𝑥) or written mathematically, 𝑦 = 𝑓(𝑥) 
 
Definition of an implicit function is where  
𝑦 cannot be written as equal to solely just 𝑓(𝑥) but requiring the person to write or 
rewrite a function as where 𝑔(𝑥, 𝑦) = 0 
 

Examples of Explicit Functions  Examples of Implicit Functions  

𝑦 = 𝑥2 + ln(𝑥) + 2𝑥 + 4 𝑥2 + 𝑦2 + 2𝑥𝑦 = 25 

𝑦 = sin(𝑥4) + 𝑥5 − tan(𝑥) 
𝑦3 −

5𝑥

𝑦
= 6𝑥2𝑦6 + 9𝑥 − 64 

𝑦 = 𝑒sin (𝑥) − cos(𝑥) + 5 𝑦5 + sin(𝑥𝑦) = 𝑥2 + 𝑦5 
 
Rules of Differentiation Necessary to Ensure a Smooth Understanding of Implicit 
Differentiation:  
 

Chain Rule: 𝑓(𝑥) = 𝑔(ℎ(𝑥)), 𝑓′(𝑥) = 𝑔′(𝑥) ℎ′(𝑥) 

 
Product Rule: 𝑓(𝑥) = 𝑔(𝑥) ℎ(𝑥), 𝑓′(𝑥) = 𝑔′(𝑥) ℎ(𝑥) + ℎ′(𝑥) 𝑔(𝑥) 
 

Quotient Rule: 𝑓(𝑥) =
𝑔(𝑥)

ℎ(𝑥)
, 𝑓′(𝑥) =

ℎ(𝑥)𝑔′(𝑥)−𝑔(𝑥)ℎ′(𝑥)

[ℎ(𝑥)]2
  

 
Instruction to Implicit Differentiation  
 

1. Differentiate left side and right side of implicit function with respect to 𝑥 

2. Identify term where 𝑦 is differentiated, multiplying the derivative of 𝑓(𝑦) by 
𝑑𝑦

𝑑𝑥
 

3. Group terms with 
𝑑𝑦

𝑑𝑥
 together on one side and without on the other side  

4. Take out common factor of 
𝑑𝑦

𝑑𝑥
 on the side with the term of 

𝑑𝑦

𝑑𝑥
 

5. Remove terms without the factor of 
𝑑𝑦

𝑑𝑥
 by division, multiplication or any 

applicable method  
 
 
 



Example 1.  
Find the derivative of the following implicit function  
𝑦2𝑥2 + 𝑥 = 𝑦 − 10 
 
Step 1. Differentiate left hand side and right-hand side of implicit function with respect 
to 𝑥. 
 
𝑑

𝑑𝑥
 [𝑦2𝑥2 + 𝑥] =

𝑑

𝑑𝑥
[𝑦 − 10] 

 
 
Step 2. Differentiating term by term, we get the following and can identify the term 

where 𝑦 is differentiated then multiply the derivative by 
𝑑𝑦

𝑑𝑥
 

 

Terms  Derivatives  

𝑦2𝑥2 using product rule →  
[2𝑦(𝑥2)] ×

𝑑𝑦

𝑑𝑥
+ (2𝑥)(𝑦2) 

𝑥 using power rule → 1 

𝑦  1×
𝑑𝑦

𝑑𝑥
 

−10 0 

 
 
Putting all derivative together, we would get the following value:  

[2𝑦(𝑥2)] ×
𝑑𝑦

𝑑𝑥
+ (2𝑥)(𝑦2) + 1 = 1 ×

𝑑𝑦

𝑑𝑥
 

 

Step 3. Group terms with 
𝑑𝑦

𝑑𝑥
 together on one side and without on the other side 

 

2𝑦𝑥2 (
𝑑𝑦

𝑑𝑥
) + 2𝑥𝑦2 + 1 =

𝑑𝑦

𝑑𝑥
 

 

2𝑦𝑥2 (
𝑑𝑦

𝑑𝑥
) −

𝑑𝑦

𝑑𝑥
= −2𝑥𝑦2 − 1 

 

Step 4. Take out common factor of 
𝑑𝑦

𝑑𝑥
 on the side with the term of 

𝑑𝑦

𝑑𝑥
 

 

(2𝑦𝑥2 − 1) (
𝑑𝑦

𝑑𝑥
) = −2𝑥𝑦2 − 1 

 



Step 5. Remove terms without the factor of 
𝑑𝑦

𝑑𝑥
 by division, multiplication or any 

available method  
 
𝑑𝑦

𝑑𝑥
=

−2𝑥𝑦2 − 1

2𝑦𝑥2 − 1
 

 
 
Example 2. Differentiate the following implicit function  
𝑦2 = 2𝑥3 + 𝑦 + 7 
 
𝑑

𝑑𝑥
[𝑦2] =

𝑑

𝑑𝑥
[2𝑥3 + 𝑦 + 7] 

 

2𝑦 (
𝑑𝑦

𝑑𝑥
) = 6𝑥2 + 1 (

𝑑𝑦

𝑑𝑥
) + 0 

 

2𝑦 (
𝑑𝑦

𝑑𝑥
) − 1 (

𝑑𝑦

𝑑𝑥
) = 6𝑥2 

 
𝑑𝑦

𝑑𝑥
(2𝑦 − 1) = 6𝑥2 

 
𝑑𝑦

𝑑𝑥
=

6𝑥2

2𝑦 − 1
 

 
Example 3.  
2𝑥𝑦 + 𝑦2 − 3𝑥 − 𝑥2𝑦5 = 0 
 
𝑑

𝑑𝑥
[2𝑥𝑦 + 𝑦2 − 3𝑥 − 𝑥2𝑦5] =

𝑑

𝑑𝑥
[0] 

 

Terms  Derivative  

2𝑥𝑦 
2𝑥(1) ×

𝑑𝑦

𝑑𝑥
+ 2𝑦 

𝑦2 
2𝑦 ×

𝑑𝑦

𝑑𝑥
 

−3𝑥 −3 

−𝑥2𝑦5 
−2𝑥𝑦5 + 5𝑦4(−𝑥2) ×

𝑑𝑦

𝑑𝑥
 



0 0 

2𝑥 (
𝑑𝑦

𝑑𝑥
) + 2𝑦 + 2𝑦 (

𝑑𝑦

𝑑𝑥
) − 3 − 2𝑥𝑦5 + 5𝑦4(−𝑥2) ×

𝑑𝑦

𝑑𝑥
= 0 

 

2𝑥 (
𝑑𝑦

𝑑𝑥
) + 2𝑦 (

𝑑𝑦

𝑑𝑥
) + 2𝑦 − 3 − 2𝑥𝑦5 − 5𝑥2𝑦4 (

𝑑𝑦

𝑑𝑥
) = 0 

 

2𝑥 (
𝑑𝑦

𝑑𝑥
) + 2𝑦 (

𝑑𝑦

𝑑𝑥
) − 5𝑥2𝑦4 (

𝑑𝑦

𝑑𝑥
) = −2𝑦 + 3 + 2𝑥𝑦5 

 
𝑑𝑦

𝑑𝑥
(2𝑥 + 2𝑦 − 5𝑥2𝑦4) = −2𝑦 + 3 + 2𝑥𝑦5 

 
𝑑𝑦

𝑑𝑥
=

−2𝑦 + 3 + 2𝑥𝑦5

2𝑥 + 2𝑦 − 5𝑥2𝑦4
 

 
 
Example 4. 
𝑦 + 𝑦2 + 𝑥𝑦 = 5 − sin(𝑒3𝑦) 
 
𝑑

𝑑𝑥
[𝑦 + 𝑦2 + 𝑥𝑦] =

𝑑

𝑑𝑥
[5 − sin(𝑒3𝑦)] 

 

1 (
𝑑𝑦

𝑑𝑥
) + 2𝑦 (

𝑑𝑦

𝑑𝑥
) + 𝑦 + 𝑥 (

𝑑𝑦

𝑑𝑥
) = 0 − 3𝑒3𝑦 cos 𝑒3𝑦 (

𝑑𝑦

𝑑𝑥
) 

 

1 (
𝑑𝑦

𝑑𝑥
) + 2𝑦 (

𝑑𝑦

𝑑𝑥
) + 𝑥 (

𝑑𝑦

𝑑𝑥
) + 3𝑒3𝑦 cos(𝑒3𝑦) (

𝑑𝑦

𝑑𝑥
) = −𝑦 

 
 
𝑑𝑦

𝑑𝑥
[1 + 2𝑦 + 𝑥 + 3𝑒3𝑦 cos(𝑒3𝑦)] = −𝑦 

 
𝑑𝑦

𝑑𝑥
= −

𝑦

1 + 2𝑦 + 𝑥 + 3𝑒3𝑦 cos(𝑒3𝑦)
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Definition of Parametric Functions  

A parametric function is a function that express relationships of 2 variables using a 
third variable, in which the third variable is called a parameter.  
 
Example of a Parametric Function as follows  
𝑦 = 𝑡2 + 5𝑡 − 4 
𝑥 = 2𝑡 + 6 
 
In the above case, the relationship between 𝑥 and 𝑦 is expressed using parameter 𝑡. 

Simplest examples of applications of parametric functions: 
Kinematics Modeling – where a flying object (such as a bird or fighter jet) trajectory 
creates a situation where the object’s forward motion speeds up and the height 
follows a curve that goes up and down repeatedly.  
 
In this above case, it would be extremely difficult to express the variables in the non-
parametric way and using a parametric function for kinematic modelling is 
appropriate in this case in the following manner.  
 
The forward motion (being in acceleration) over time can be written as  
𝑥(𝑡) = 0.8𝑡 + 3𝑡2 
 
The altitude of the flying object in up and down motion over time can be written as  
𝑦(𝑡) = 5 + cos(𝑡) 

 

Differentiation involving parametric functions can be done using a technique derived 
from chain rule. 
 
Let 𝑥 be the first variable, 𝑦 be the second variable and 𝑡 be the parameter involved 
and our goal is to find the change in 𝑦 with respect to 𝑥. 
 

𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦
𝑑𝑡

)

(
𝑑𝑥
𝑑𝑡

)
=

𝑑𝑦

𝑑𝑡
×

𝑑𝑡

𝑑𝑥
 

 
 
 



1. Find  
𝑑𝑦

𝑑𝑥
  given that 𝑦 = 4𝑡2 + 3𝑡 − 1 and 𝑥 = 3𝑡4 − 2𝑡 

 
𝑑𝑦

𝑑𝑡
= 8𝑡 + 3 

 
𝑑𝑥

𝑑𝑡
− 12𝑡3 − 2 

 

𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦
𝑑𝑡

)

(
𝑑𝑥
𝑑𝑡

)
=

(8𝑡 + 3)

(12𝑡3 − 2)
 

 
 

2. Find 
𝑑𝑦

𝑑𝑥
 for the parametric equation 𝑥 = 2 sin(𝑡) and 𝑦 = 3 cos(𝑡) 

 
𝑑𝑦

𝑑𝑡
= −3 sin(𝑡) 

 
𝑑𝑥

𝑑𝑡
= 2 cos(𝑡) 

 

𝑑𝑦

𝑑𝑥
=

(
𝑑𝑦
𝑑𝑡

)

(
𝑑𝑥
𝑑𝑡

)
=

−3 sin(𝑡)

2 cos(𝑡)
= −

3

2
tan(𝑡) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. A curve is defined parametrically by 𝑥 =
2𝑡

𝑡+1
 and 𝑦 =

𝑡2

𝑡+1
 . 

Find 
𝑑𝑦

𝑑𝑥
.  

 

Using parametric differentiation, we can find the derivatives of 
𝑑𝑦

𝑑𝑡
  and 

𝑑𝑥

𝑑𝑡
 as follows. 

 

Quotient rule where 
𝑑

𝑑𝑥
[

𝑓(𝑥)

𝑔(𝑥)
] =

𝑔(𝑥)𝑓′(𝑥)−𝑓(𝑥)𝑔′(𝑥)

[𝑔(𝑥)]2
  

 
𝑑𝑦

𝑑𝑡
=

(𝑡 + 1)(2𝑡) − 1(𝑡2)

(𝑡 + 1)2
=

2𝑡2 + 2𝑡 − 𝑡2

(𝑡 + 1)2
=

𝑡2 + 2𝑡

(𝑡 + 1)2
 

 
𝑑𝑥

𝑑𝑡
=

(𝑡 + 1)(2) − 2𝑡(1)

(𝑡 + 1)2
=

2𝑡 + 2 − 2𝑡

(𝑡 + 1)2
=

2

(𝑡 + 1)2
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
×

𝑑𝑡

𝑑𝑥
=

𝑡2 + 2𝑡

(𝑡 + 1)2
×

(𝑡 + 1)2

2
=

𝑡2 + 2𝑡

2
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Basic Introduction to Integration by Substitution 
Integration by Substitution corresponds to chain rule as taught in differentiation and as 
a result it is sometimes also called the reverse chain rule as well.  
 
Important Concepts to Note as I would be using the concept quite frequently here:  
 

1 ÷
𝑑𝑦

𝑑𝑥
=

𝑑𝑥

𝑑𝑦
 

 
Instructions to Integration by Substitution.  
 
Step 1. Examine the questions carefully and define the value of 𝑢 as mentioned in the 
question.  
 
Step 2. Differentiate 𝑢 with respect to 𝑥.  
 
Step 3. Express 𝑑𝑥 in terms of 𝑑𝑢 
 
Step 4. Rewrite the original integral in terms of 𝑢 and 𝑑𝑢 
 
Step 5. Integrate according to relevant formula 
 
Step 6. Replace 𝑢 with the original expression of 𝑥 in step 1.  
 
Example 1.  

Evaluate ∫ 𝑥2 (𝑥3 + 4)8 𝑑𝑥 
 
Step 1. Set 𝑢 = (𝑥3 + 4) 
 
Step 2. Differentiate 𝑢 with respect to 𝑥: 2𝑥2 
 

Step 3. Express 𝑑𝑥 in terms of 𝑑𝑢: 
𝑑𝑢

𝑑𝑥
= 3𝑥2 , hence, 

𝑑𝑥

𝑑𝑢
=

1

3𝑥2
 

 

Step 4 Rewrite the original integral in terms of 𝑢 and 𝑑𝑢: ∫ 𝑥2  𝑢8 
𝑑𝑥

𝑑𝑢
 𝑑𝑢 =

∫ 𝑥2  𝑢8  (
1

3𝑥2
)  𝑑𝑢 



Step 5: Integrate according to relevant formula: ∫
1

3
𝑢8 𝑑𝑢 =

1

3
×

𝑢8+1

8+1
=

1

3
(

𝑢9

9
) =

𝑢9

27
 

 

Step 6: Replace 𝑢 with the original expression of 𝑥 in step 1: 
𝑢9

27
=

(𝑥3+4)
9

27
+ 𝐶 

 
 
Question 1.  

Evaluate ∫ 2𝑥(𝑥2 + 2)4  𝑑𝑥 
 
Set 𝑢 = 𝑥2 + 2 
 

Hence, 
𝑑𝑢

𝑑𝑥
= 2𝑥  

 
𝑑𝑥

𝑑𝑢
=

1

2𝑥
 

 
 

∫ 2𝑥 (𝑢)4 𝑑𝑥

𝑑𝑢
 𝑑𝑢 = ∫ 2𝑥  𝑢4 1

2𝑥
 𝑑𝑢   

 
 

∫ 𝑢4  𝑑𝑢 =
𝑢4+1

4 + 1
=

𝑢5

5
=

(𝑥2 + 2)4+1 

4 + 1
=

(𝑥2 + 2)5

5
+ 𝐶 

 
 
Question 2.  
Evaluate ∫(3𝑥 − 2)4 𝑑𝑥  
 
Set 𝑢 = 3𝑥 − 2 
 
𝑑𝑢

𝑑𝑥
= 3, therefore 

𝑑𝑥

𝑑𝑢
=

1

3
 

 

∫
1

3
 𝑢4  𝑑𝑢 

 
1

3
(

𝑢5

5
) =

(3𝑥2 − 2)5

15
+ 𝐶 

 
 
 



Question 3.  

Evaluate ∫
𝑥−2

(𝑥+4)2
 𝑑𝑥 using the substitution 𝑢 = 𝑥 + 4 

 

∫
(𝑥 + 4) − 6

(𝑥 + 4)2
 𝑑𝑥 

 
Set 𝑢 = 𝑥 + 4 
 

∫
𝑢 − 6

𝑢2
  𝑑𝑢 = 

 

∫
𝑢

𝑢2
−

6

𝑢2
𝑑𝑢 = 

 

∫
1

𝑢
−

6

𝑢2
 𝑑𝑢 = 

 

ln|𝑢| − ∫ 6𝑢−2 𝑑𝑢 = 

 

ln|𝑢| −
6𝑢−2+1

−2 + 1
= 

 

ln|𝑢| −
6𝑢−1

−1 
= ln|𝑢| +

6

𝑢
= ln|𝑥 + 4| +

6

𝑥 + 4
+ 𝐶 
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Formula for Integration by Parts  

∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣  𝑑𝑢 

 
In any integration by parts application, we choose the value of 𝑢 using a rule where the 
type of function mentioned first has the highest priority and the one mentioned second 
has lower priority and so on, the one mentioned the last will have the lowest priority.  
 
The rule is called 
“Logarithmic, Inverse Trigonometric, Algebraic, Trigonometric, Exponential” 
 
  
 
 
 
In short, the rule is called the L.I.A.T.E rule.  
The purpose of complying to the above rule is to ensure the function we selected is 
made easy by integration by parts rather than being made even more complicated. As 
seen with the below example.  
 
Example 1.  

∫ 𝑥 𝑒𝑥  𝑑𝑥 

 
If we select 𝑢 = 𝑥, in compliance with the rule mentioned above, we literally get the 
following:  
 
𝑢 = 𝑥 and 𝑑𝑣 = 𝑒𝑥  
 

𝑣 = ∫ 𝑒𝑥 = 𝑒𝑥 

 

∫ 𝑣 = 𝑒𝑥   
 
𝑑𝑢 = 1 𝑑𝑥 
 
As a result, we combined them together using the integration by parts formula  

Highest 
Priority 
 

Lowest 
Priority  



∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣  𝑑𝑢 

 
𝑥 𝑒𝑥 − 𝑒𝑥(1) = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶  
 
However, if we reversed the roles of 𝑢 and 𝑑𝑣 above, we get the following 
 
𝑢 = 𝑒𝑥  , 𝑑𝑣 = 𝑥 
 

𝑑𝑢 = 𝑒𝑥  , 𝑣 =
𝑥2

2
 

 
Combining them together, using the integration by parts formula, we get the following 
integral, literally,  
 

𝑒𝑥 (
𝑥2

2
) − ∫

𝑥2

2
  𝑒𝑥  𝑑𝑥 

 
 
Which becomes as difficult or even harder to integrate compared to the function we 
first being with and that’s not what we want.  
 
Question 1.  

Find ∫ ln 𝑥 𝑑𝑥 
 
Which can be rewritten as  
 

∫ ln 𝑥 (1) 𝑑𝑥  

 
Using the L.I.A.T.E rule explained earlier, we can choose 𝑢 = ln 𝑥 and therefore, 𝑑𝑣 = 1. 
 
𝑢 = ln 𝑥 
𝑣 = 𝑥 
 

∫ 𝑥
1

𝑥
 𝑑𝑥 = ∫ 1  𝑑𝑥 = 𝑥 

 
Combining them, we get 𝑥 ln(𝑥) − 𝑥 + 𝐶 
Question 2.  
Find ∫ 𝑥2 ln 𝑥 𝑑𝑥 



 
Selecting 𝑢 = ln 𝑥 and therefore 𝑑𝑣 = 𝑥2 
 

𝑣 = ∫ 𝑥2 =
𝑥3

3
  

 

∫ 𝑣  𝑑𝑢 = ∫
𝑥3

3
(

1

𝑥
) = ∫

1

3
𝑥2 =

(
1
3

)

2 + 1
𝑥2+1 =

1

9
𝑥3 

 
 

ln(𝑥) (
𝑥3

3
) −

𝑥3

9
+ 𝑐 

 
 
Question 3.  

Find ∫ 𝑥 cos 𝑥 𝑑𝑥  
 
Selecting 𝑢 = 𝑥  and therefore 𝑑𝑣 = cos 𝑥  
 

𝑣 = ∫ cos 𝑥 = sin 𝑥  

 
 

∫ 𝑣 𝑑𝑢 = ∫ sin(𝑥)  1 𝑑𝑥 = − cos 𝑥  

 
𝑥 sin 𝑥 + cos 𝑥 + 𝐶 
 
Question 4.  

Find ∫ tan−1 𝑥 𝑑𝑥 
 
Select 𝑢 = tan−1 𝑥  and 𝑑𝑣 = 1 𝑑𝑥  
 
𝑣 = 𝑥  
 

∫ 𝑣 𝑑𝑢 = ∫ 𝑥 (
1

𝑥2 + 1
) = ∫

𝑥

𝑥2 + 1
= 0.5 ln(𝑥2 + 1) 

 
𝑥 tan−1(𝑥) − 0.5 ln(𝑥2 + 1) 
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Differential Equations are equations that contain derivatives, where the so-called 
“Solutions” are the function(s) that can satisfy the derivatives. The act of finding the 
indefinite integral of derivatives is generally considered solving simple differential 
equations.  
 
Concepts to understand in any differential equations  

- Order – the order of a differential equation is simply the order of the highest 
derivative in the differential equation.  

- Degree – the degree of a differential equation is simply the power of the 
highest derivative of the differential equation.  

 
Example  

1. Given the following three examples, state the order and degree of the 
differential equation:  
 

(a) 𝑥 (
𝑑3𝑦

𝑑𝑥3
) + (3𝑦)2 = 6𝑥 − 8 

 
(b) 3𝑥(𝑦′′)2 − 𝑦2𝑦′ = 0 
 

(c)𝑥 (
𝑑𝑦

𝑑𝑥
) + 8 (

𝑑2𝑦

𝑑𝑥2
)

3

= 3𝑥 − 5𝑦 

 
 
1(a) Highest derivative is the third derivative – third order differential equation  
        Highest power of the highest derivative is 1 – first degree differential equation 
∴ Third order, first degree differential equation.  
 
1(b) Highest derivative is the second derivative – second order differential equation  
        Highest power of the highest derivative is 2 – second degree differential equation  
∴ Second order, second degree differential equation  
 
1(c) Highest derivative is the second derivative – second order differential equation  
        Highest power of the highest derivative is 3 – third degree differential equation  
∴ Second order, third degree differential equation.  
 



After understanding the above, we can go on and understand the concept of 
independent and dependent variables.  
 
Independent variables in any differential equation are the variables with respect to 
where differentiation occur and dependent variables are the variables being 
differentiated.  
 
In the below example, identify the dependent and independent variables.  
Example  
 2. 
 

 𝑥 (
𝑑3𝑦

𝑑𝑥3
) + (3𝑦)2 = 6𝑥 − 8 

 
 
 
 
Q1. Solve the following differential equation using direct integration 
 

(a) 
dy

dx
= ln 𝑥 

 
Move 𝑑𝑥 to the other side by multiplying both sides by 𝑑𝑥 to get the following  
𝑑𝑦 = ln 𝑥 𝑑𝑥  
 
Integrate both sides to get  

∫ 𝑑𝑦 = ∫ ln 𝑥 𝑑𝑥  

 
Using integration by parts for the right-hand side, we get the following  
 
Set 𝑢 = ln 𝑥  , 𝑑𝑣 = 1 
𝑣 = 𝑥 

𝑑𝑢 =
1

𝑥
 

 

∫ 𝑣 𝑑𝑢 = ∫
𝑥

𝑥
= ∫ 1 = 𝑥 

 
𝑦 = 𝑥(ln 𝑥 ) − 𝑥 + 𝐶 
 

𝑦 is the dependent variable  

𝑥 is the independent variable  



Q2. Solve the following differential equation by separation of variables. 

𝑥 + 𝑦 (
𝑑𝑦

𝑑𝑥
) = 2 

 

𝑦 (
𝑑𝑦

𝑑𝑥
) = 2 − 𝑥 

 
Multiply both sides by 𝑑𝑥  
 
𝑦 𝑑𝑦 = 2 − 𝑥 𝑑𝑥  
 
Integrate both sides to get the following  
 

∫ 𝑦 𝑑𝑦 = ∫ 2 − 𝑥 𝑑𝑥  

 
𝑦2

2
= 2𝑥 −

𝑥2

2
 

 
𝑦2 = 4𝑥 − 𝑥2 + 𝐶 
 
Q3. Solve the following differential equation by separation of variables. 
𝑑𝑦

𝑑𝑥
=

𝑥2

𝑦3
 

 
Cross-multiply both sides denominator and we get the following  
𝑦3 𝑑𝑦 = 𝑥2 𝑑𝑥  
 

∫ 𝑦3 𝑑𝑦 = ∫ 𝑥2 𝑑𝑥  

 
𝑦4

4
=

𝑥3

3
 

 
Cross multiply again to get  
 
3𝑦4 = 4𝑥3 
 
Divide both sides by 3 

𝑦4 =
4

3
𝑥3 + 𝐶 


