Solutions to Volumetric Analysis & Redox Tutorial

(A) Discussion Questions (Volumetric Analysis)

Acid-Base Titration

 45 cm³ of concentrated aqueous NH₃ was diluted to 250 cm³ solution labelled as FA 1. Given that 10.0 cm³ of FA 1 required 23.20 cm³ of 0.18 mol dm⁻³ of HNO₃ for complete neutralisation, calculate the concentration of the concentrated aqueous NH₃.

[2.32 mol dm⁻³]

Eqn for rxn: $NH_3 + HNO_3 \rightarrow NH_4NO_3$

$$\eta_{NH_3}$$
 in 10.0 cm³ FA 1 = η_{HNO_3} used = 0.18 x $\frac{23.20}{1000}$ = 4.176 x 10⁻³ mol

 η_{NH_3} in 250 cm³ of FA 1 = 4.176 × 10⁻³ × $\frac{250}{10}$ = 0.1044 mol [NH₃]_{conc soln} = 0.1044 / ($\frac{45}{1000}$) = <u>2.32 mol dm⁻³</u>

- 2. A solution of a dibasic acid contains 7.30 g dm⁻³ of HOOC–(CH₂)*n*–COOH. 20.0 cm³ of this acid solution was titrated with 25.00 cm³ of NaOH(aq) containing 1.36 g of hydroxide ion per dm³. Calculate
 - (a) the relative molecular mass of the acid;

[146.0]

Eqn for rxn: $HO_2C-(CH_2)_n-CO_2H + 2NaOH \rightarrow NaO_2C-(CH_2)_n-CO_2Na + 2H_2O$

 $[OH^{-}] = \frac{1.36}{17.0} = 0.08 \text{ mol } dm^{-3}$ Amount of NaOH reacted = $\frac{25}{1000} \times 0.08 = 2.00 \times 10^{-3} \text{ mol}$ Amount of dibasic acid reacted = $\frac{1}{2} \times 2.00 \times 10^{-3} = 1.00 \times 10^{-3} \text{ mol}$

[dibasic acid] = $\frac{1.00 \times 10^{-3}}{\frac{20}{1000}}$ = 0.0500 mol dm⁻³

 $M_{\rm r}$ of dibasic acid = $\frac{7.30}{0.0500} = \frac{146.0}{0.0500}$

(b) the value of *n* in the formula.

 $M_{\rm r}$ of dibasic acid = 2(12.0 + 16.0 × 2 + 1.0) + **n**(12.0 + 2.0) = 146.0 **n** = 4.07 = <u>4</u> (to nearest integer) [4]

3. FA 8 solution contains 20.2 g of the acid HZO₄ per dm³ of solution.

FA 9 is a 0.100 mol dm⁻³ NaOH solution. In a titration, 20.0 cm³ of **FA 8** solution reacted with 21.05 cm³ of **FA 9** solution. Calculate the relative atomic mass of element **Z** and identify **Z**.

[126.9; I]

NaOH = HZO_4 (since HZO_4 is monobasic with 1 H⁺ per molecule)

Amount of NaOH = $0.100 \times \frac{21.05}{1000} = 2.105 \times 10^{-3}$ mol Amount of HZO₄ in 20.0 cm³ FA 8 = 2.105×10^{-3} mol

 $[HZO_4] = \frac{2.105 \times 10^{-3}}{20/1000} = 0.1053 \text{ mol dm}^{-3}$ $M_r \text{ of } HZO_4 = \frac{20.2}{0.1053} = 191.9$ $A_r \text{ of } Z = 191.9 - 1.0 - 4 \times 16.0 = 126.9$

Z is lodine.

4. Washing soda has the formula Na₂CO₃·nH₂O. A mass of 1.43 g of washing soda was made up to 250 cm³ with water. 25.0 cm³ of this solution was neutralised by 20.00 cm³ of 0.050 mol dm⁻³ dilute hydrochloric acid. The equation for the reaction is:

$$Na_2CO_3(aq) + 2HCl (aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

Find the value of *n*, and hence the chemical formula of the washing soda. [The equation for the dissolution of washing soda in water is: $Na_2CO_3 \cdot nH_2O(s) \rightarrow Na_2CO_3(aq) + nH_2O$]

[10]

Amount of HCl = $0.050 \times \frac{20}{1000} = 1.00 \times 10^{-3}$ mol Amount of Na₂CO₃ in 25.0 cm³ solution = $\frac{1}{2} \times 1.00 \times 10^{-3} = 5.00 \times 10^{-4}$ mol Amount of Na₂CO₃ in 250 cm³ solution = $5.00 \times 10^{-4} \times \frac{250}{25} = 5.00 \times 10^{-3}$ mol

Mass of Na₂CO₃ in 250 cm³ solution = $5.00 \times 10^{-3} \times (2 \times 23.0 + 12.0 + 3 \times 16.0)$ = 0.530 g

∴ mass of H₂O in 1.43 g washing soda = 1.43 - 0.530 = 0.900 g ∴ amount of H₂O in 1.43 g washing soda = $\frac{0.900}{18.0} = 0.0500$ mol

$$\frac{\eta_{\rm H_{20}}}{\eta_{\rm Na_{2}CO_{3}}} = \frac{0.0500}{5.00 \times 10^{-3}} = 10$$

10 mol of water combine with 1 mol of Na₂CO₃ ∴ n = 10; formula of washing soda is Na₂CO₃·<u>10</u>H₂O.

Back Titration

 3.92 g of an oxide of formula MO was completely dissolved in 30.0 cm³ of 2.00 mol dm⁻³ sulfuric acid. The resulting solution was made up to 100 cm³. 25.0 cm³ of this solution was neutralised by 27.50 cm³ of 0.10 mol dm⁻³ NaOH(aq).

What is the relative atomic mass of M? Identify the metal.

[55.9; Fe]

- **6.** 5.00 g of ammonium chloride contaminated with sodium chloride was boiled with 100.0 cm³ of 2 mol dm⁻³ NaOH solution until no ammonia was evolved. The residual solution was made up to 250 cm³ with water. 25.0 cm³ of this solution required 22.40 cm³ of 0.50 mol dm⁻³ HC*l* for neutralisation.
 - (a) What was the mass of sodium chloride in the ammonium chloride sample?

[0.292 g]

(b) Hence, calculate the percentage by mass of sodium chloride in the ammonium chloride sample.

[5.84%]

Percentage by mass of NaCl in the sample = $\frac{0.292}{5.00} \times 100\% = 5.84\%$

[5.58 g]

[44.2 %]

Redox Titration

FA 4 contains 10.0 g of Fe²⁺ and Fe³⁺, dissolved in 500 cm³ of solution. FA 5 contains 0.015 mol dm⁻³ KMnO₄.

In an experiment, 10.0 cm³ of solution of **FA 4** was pipetted into a titration flask. Excess dilute sulfuric acid was added and the mixture titrated with **FA 5**. 26.65 cm³ of **FA 5** was required to reach end-point.

(a) Calculate the mass of Fe^{2+} in 500 cm³ of **FA 4**.

$$\begin{split} &\mathsf{MnO_{4^-}+8H^++5Fe^{2+}} \to 5Fe^{3+}+\mathsf{Mn^{2+}+4H_2O} \\ &\mathsf{Amount} \text{ of }\mathsf{KMnO_4} \text{ reacted} = 0.015\times\frac{26.65}{1000} = 3.998\times10^{-4} \text{ mol} \\ &\mathsf{Amount} \text{ of } Fe^{2+} \text{ in } 10.0 \text{ cm}^3 \text{ FA } 4 = 5\times3.998\times10^{-4} = 1.999\times10^{-3} \text{ mol} \\ &\mathsf{Amount} \text{ of } Fe^{2+} \text{ in } 500 \text{ cm}^3 \text{ FA } 4 = 1.999\times10^{-3}\times\frac{500}{10} = 0.09995 \text{ mol} \\ &\mathsf{Mass} \text{ of } Fe^{2+} \text{ in } 500 \text{ cm}^3 \text{ FA } 4 = 0.09995\times55.8 = \underline{5.58} \text{ g} \end{split}$$

(b) Calculate the percentage by mass of Fe^{3+} ions in **FA 4**.

% by mass of Fe³⁺ in **FA 4** = $\frac{10.00 - 5.58}{10} \times 100 = \frac{44.2 \%}{10}$

8. Chlorate(V) ions, ClO_{3^-} , act as an oxidising agent according to the following half-equation: $ClO_{3^-} + 6H^+ + 6e^- \rightarrow Cl^- + 3H_2O$

(a) Chlorate(V) ions are reduced by
$$Fe^{2+}$$
 ions. Write a balanced equation for the reaction between Fe^{2+} and ClO_3^- .

[Hint: Write the half equation for Fe²⁺ oxidized to Fe³⁺ before combining the 2 half-equations]

 $ClO_{3}^{-} + 6H^{+} + 6Fe^{2+} \rightarrow Cl^{-} + 3H_{2}O + 6Fe^{3+}$

- (b) In an experiment, 25.0 cm³ of a solution of KClO₃ was titrated with a solution of iron(II) sulfate containing 6.72 g dm⁻³ of Fe²⁺. In the titration, 20.0 cm³ of iron(II) sulfate was used for the reaction.
 - (i) What other chemical is required for the titration? Suggest a reactant that can be added to the reaction mixture for the titration.

acid to provide H⁺; dilute H₂SO₄

Note: HNO_3 and HCl are not suitable acids as they will take part in redox reaction. HNO_3 is an oxidising agent (NO_3^- can undergo reduction) and Cl^- can undergo oxidation. (ii) Calculate the concentration of KC/O₃ in mol dm⁻³.

[0.0161 mol dm⁻³]

 $[Fe^{2+}] \text{ in mol } dm^{-3} = \frac{6.72}{55.8} = 0.1204 \text{ mol } dm^{-3}$ Amount of Fe²⁺ reacted = 0.1204 × $\frac{20}{1000}$ = 2.409 × 10⁻³ mol
Amount of KC/O₃ in 25.0 cm³ solution = $\frac{1}{6}$ × 2.409 × 10⁻³ = 4.014 × 10⁻⁴ mol $[KC/O_3] = \frac{4.014 \times 10^{-4}}{25.0/1000} = \frac{0.0161 \text{ mol } dm^{-3}}{25.0/1000}$

(iii) Calculate the mass of potassium in 1 dm³ of the KClO₃ solution.

[0.630 g]

Amount of K in 1 dm³ of solution = 0.0161 mol Mass of K in 1 dm³ of solution = $39.1 \times 0.0161 = 0.630$ g

- 9. FA 2 is a solution containing 6.70 g dm⁻³ of a metal ethanedioate, M₂C₂O₄.
 FA 3 is a solution containing 0.010 mol dm⁻³ of manganate(VII) ions, MnO₄⁻.
 10.0 cm³ of FA 2 was pipetted into a conical flask and dilute sulfuric acid was added in excess. The mixture was then titrated with FA 3 and the end-point was reached when 20.00 cm³ of FA 3 had been added.
 - (a) (i) How do you know when the end-point was reached?

Colour change from colourless to first permanent pale pink colour (after adding 1 excess drop of MnO_{4})

(ii) What other condition was required for the titration to be successful?

Conduct the titration in a hot water bath / heat the reaction mixture.

The reaction occurs too slowly at room temperature due to repulsion between like charges of the two reacting species, $C_2O_{4^{2-}}$ and $MnO_{4^{-}}$ (may result in lower than actual titre). Heat is required to overcome the high activation energy barrier.

(b) Calculate the relative formula mass of $M_2C_2O_4$ and the relative atomic mass of M.

[134.0; 23.0]

Overall eqn:
$$2MnO_4^- + 16H^+ + 5C_2O_4^2 \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$$

Amount of KMnO₄ reacted = $0.010 \times \frac{20}{1000} = 2.00 \times 10^{-4}$ mol Amount of C₂O₄²⁻ in 10.0 cm³ **FA 2** = $\frac{5}{2} \times 2.00 \times 10^{-4} = 5.00 \times 10^{-4}$ mol [C₂O₄²⁻] in **FA 2** = $\frac{5.00 \times 10^{-4}}{10.0/1000} = 0.0500$ mol dm⁻³ *M*_r of M₂C₂O₄ = $\frac{6.70}{0.0500} = 134.0$ *A*_r of M = $\frac{1}{2}$ [134.0 - (2 × 12.0 + 16.0 × 4)] = <u>23.0</u> **10.** Hydroxylamine, NH₂OH, can be oxidised to nitrogen according to the following half-equation: 2NH₂OH \rightarrow N₂ + 2H₂O + 2H⁺ + 2e⁻

Hydroxylamine can also be oxidised to dinitrogen oxide, N₂O, according to the following half-equation: $2NH_2OH \rightarrow N_2O + H_2O + 4H^+ + 4e^-$

(a) In an experiment, 40.00 cm³ of 0.05 mol dm⁻³ NH₂OH(aq) was reacted with 10.0 cm³ of 0.40 mol dm⁻³ Fe³⁺(aq). In the reaction, the Fe³⁺ was reduced to Fe²⁺. Calculate the amount of Fe³⁺ that reacted with 1 mole of NH₂OH.

[2]

[R] Fe³⁺ + e⁻ \rightarrow Fe²⁺ Amount of Fe³⁺ reacted = 0.40 × $\frac{10}{1000}$ = 4.00 × 10⁻³ mol Amount of NH₂OH reacted = 0.05 × $\frac{40}{1000}$ = 2.00 × 10⁻³ mol \therefore <u>2</u> mol of Fe³⁺ reacted with 1 mol of NH₂OH

(b) Hence deduce whether the NH₂OH is oxidised to N₂ or N₂O by the Fe³⁺ and write a balanced ionic equation for the reaction.

If NH₂OH was oxidised to N₂: Overall eqn will be $2NH_2OH + 2Fe^{3+} \rightarrow N_2 + 2H_2O + 2H^+ + 2Fe^{2+}$ 1 mol of Fe³⁺ should react with 1 mol of NH₂OH; <u>inconsistent</u> with answer in obtained in (a).

If NH₂OH is oxidised to N₂O: Overall eqn will be $2NH_2OH + 4Fe^{3+} \rightarrow N_2O+ H_2O + 4H^+ + 4Fe^{2+}$ 2 mol of Fe³⁺ should react with <u>1</u> mol of NH₂OH; <u>consistent</u> with answer in obtained in (a).

 \therefore NH₂OH was oxidised to N₂O in the reaction.

[+5]

 $[\frac{5}{3}]$

[2]

- A solution of vanadium ions, VO₂⁺(aq) is blue. The VO₂⁺(aq) are reduced by zinc powder and acid to violet V^{z+}(aq) ions.
 - (a) What is the oxidation number of the vanadium in VO_2^+ ?

Let O.S. of V be a a + 2(-2) = +1a = +5

- (b) The V^{z+}(aq) can be oxidised quantitatively to VO₂⁺(aq) by acidified MnO₄⁻(aq). It was found experimentally that 20.0 cm³ of 0.10 mol dm⁻³ V^{z+}(aq) reacted with 24.00 cm³ of 0.050 mol dm⁻³ MnO₄⁻(aq).
 - (i) Calculate the number of moles of $V^{z_+}(aq)$ that react with 1 mol of acidified MnO₄-(aq).

Amount of KMnO₄ reacted = $0.050 \times \frac{24}{1000} = 1.20 \times 10^{-3}$ mol Amount of V^{z+} reacted = $0.10 \times \frac{20}{1000} = 2.00 \times 10^{-3}$ mol

Amt of KMnO₄: Amount of V^{z+} = 1.20×10^{-3} : 2.00×10^{-3} = 3 : 5

:. Amount of V^{z+} that reacted with 1 mol of MnO₄⁻ = $\frac{5}{3}$ mol

(ii) Hence deduce the number of moles of electrons transferred per mole of V^{z+}(aq) in the reaction and value of z on V^{z+}.

 $[R]: MnO_{4^-} + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

During reduction, one mole of MnO₄⁻ gains 5e⁻; During oxidation, $\frac{5}{3}$ mole of V^{z+} loses 5e⁻

∴1 mole of V^{z+} loses 3e⁻

 \therefore no of electrons transferred (lost) per mole of V^{z+} is <u>3</u>.

O.S. of V in VO₂⁺ = +5 During oxidation, V^{z+} \rightarrow VO₂⁺ after losing 3 e⁻

Oxidation number of V increases by 3 units from +2 (in V^{z+}) to +5 (in VO₂⁺)

Hence z = 2

- A 25.0 cm³ sample of 0.0210 mol dm⁻³ potassium peroxodisulfate(VI),K₂S₂O₈, was treated with an excess of potassium iodide. The iodine liberated reacted with 21.00 cm³ of 0.0500 mol dm⁻³ thiosulfate.
 - (a) Calculate the amount of $S_2O_8^{2-}$ used.

Amount of $S_2O_8^{2-}$ used = 0.0210 × $\frac{25}{1000}$ = 5.25 × 10⁻⁴ mol

(b) Calculate the amount of I^- that reacted with 1 mol of $S_2O_8^{2-}$.

Reaction 1: $S_2O_8^{2-} + 2I^- \rightarrow ? + I_2$ (unbalanced)

The iodine liberated is then reacted with thiosulfate. Reaction 2: $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$ Amount of $S_2O_3^{2-} = 0.0500 \times \frac{21.00}{1000} = 1.05 \times 10^{-3}$ mol Amount of I_2 in Reaction $2 = \frac{1}{2} \times 1.05 \times 10^{-3}$ mol = 5.25 × 10⁻⁴ mol = Amt of I_2 formed in Reaction 1

Amount of I⁻ reacted in 1st rxn to form I₂ = 2 × 5.25 × 10⁻⁴ = 1.05 × 10⁻³ mol

 $\frac{\text{Amount of I}^{-}}{\text{Amount of S}_2 O_8^{2-}} = \frac{1.05 \times 10^{-3}}{5.25 \times 10^{-4}} = \frac{2}{1}$

 \therefore 2 mol of I⁻ reacted with 1 mol of S₂O₈²⁻

(c) Suggest a likely equation for the reaction between $K_2S_2O_8$ and KI, given that $S_2O_8^{2-}$ is reduced to SO_4^{2-} .

 $S_2O_8{}^{2-} \textbf{+} 2I^- \rightarrow 2SO_4{}^{2-} \textbf{+} I_2$

[2 mol]

[5.25 × 10⁻⁴ mol]

13. A solution contained 5.53 g dm⁻³ of a metal iodate(VII), **M**IO₄. 25.0 cm³ of the solution was added to excess acidified potassium iodide. The iodate(VII) ions reacted with the iodide according to the following equation:

$$IO_4^- + 7I^- + 8H^+ \rightarrow 4I_2 + 4H_2O$$

The iodine liberated was then titrated with 0.120 mol dm⁻³ S₂O₃^{2–}, where starch was added only when the solution turned pale yellow. It was found that 33.30 cm³ of S₂O₃^{2–} was required for the dark-blue colour to be discharged.

(a) Explain why it is necessary for the potassium iodide to be added in excess.

To ensure <u>all</u> IO_4^- reacted completely to give I_2 . (or else its amount determined by titrating with $S_2O_3^{2-}$ will be inaccurate)

(b) Why was the starch indicator not added at the beginning of the titration of iodine with thiosulfate?

high [I₂] at start of titration, some of the I₂ forms an insoluble complex with starch. Hence, not all the I₂ liberated reacts with S₂O₃^{2–}, titre value is lesser than actual. \therefore [IO₄–] calculated is thus inaccurate

(c) Calculate the relative atomic mass of element M. Suggest the identity of M.

[85.9; Rb]

Amount of $S_2O_3^{2-} = 0.120 \times \frac{33.30}{1000} = 3.996 \times 10^{-3} \text{ mol}$ Amount of $I_2 = \frac{1}{2} \times 3.996 \times 10^{-3} = 1.998 \times 10^{-3} \text{ mol}$ Amount of IO_4^- in 25.0 cm³ solution $= \frac{1}{4} \times 1.998 \times 10^{-3} = 4.995 \times 10^{-4} \text{ mol}$

 $[\mathbf{MIO}_4] = \frac{4.995 \times 10^{-4}}{25.0/1000} = 0.01998 \text{ mol } \text{dm}^{-3}$ $M_r \text{ of } \mathbf{MIO}_4 = \frac{5.53}{0.01998} = 276.8$ $A_r \text{ of } \mathbf{M} = 276.8 - 126.9 - 4 \times 16.0 = 85.9$ **M** is Rb.

(B) Discussion Questions (Redox Practice)

14	Nitrogen dioxide reacts with iodine under acidic conditions according to the equation shown.							
	$NO_2 + 2I^- + 2H^+ \rightarrow NO + I_2 + H_2O$							
	How many moles of electrons are gained by one mole of the nitrogen dioxide?							
	Α	1	В	2	С	3	D	4

Ans: (B)

Half equation: $2I^{-} \rightarrow I_2 + 2e^{-}$

2 moles of e⁻⁻ will be gained by 1 mole of NO₂.

- 15 Write the half-equations and balance them in the respective mediums.
- (a) $As_2O_3(s) + VO_2^+(aq) \rightarrow As_2O_5(s) + VO^{2+}(aq)$ (in acidic medium) Half eqn: [O] $As_2O_3 + 2H_2O \rightarrow As_2O_5 + 4H^+ + 4e^- -....(1)$ [R] $VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$ ------(2) x4 Overall eqn: $As_2O_3(s) + 4VO_2^+(aq) + 4H^+(aq) \rightarrow As_2O_5(s) + 4VO^{2+}(aq) + 2H_2O(l)$
- (b) $H_2O_2(aq) + Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + H_2O(l)$ (in acidic medium) Half eqn: [R] $H_2O_2 + 2H^+ + 2e^- \rightarrow H_2O + H_2O$ ------ (1) [O] $Sn^{2+} \rightarrow Sn^{4+} + 2e^-$ ----- (2) Overall eqn: $H_2O_2(aq) + Sn^{2+}(aq) + 2H^+(aq) \rightarrow Sn^{4+}(aq) + 2H_2O(l)$
- (c) $Cl_2(aq) \rightarrow Cl^-(aq) + ClO_3^-(aq)$ (in alkaline medium) Half eqn: [R] $Cl_2 + 2e^- \rightarrow 2Cl^-$(1) x5 [O] $Cl_2 + 12OH^- \rightarrow 2ClO_3^- + 10e^- + 6H_2O$ (2) Overall eqn: $6Cl_2(aq) + 12OH^-(aq) \rightarrow 10Cl^-(aq) + 2ClO_3^-(aq) + 6H_2O(l)$ Simplified eqn: $3Cl_2(aq) + 6OH^-(aq) \rightarrow 5Cl^-(aq) + ClO_3^-(aq) + 3H_2O(l)$
- (d) $MnO_4^{2-}(aq) \rightarrow MnO_2(s) + MnO_4^-(aq)$ (in alkaline medium) Half eqn: [R] $MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$ -----(1) [O] $MnO_4^{2-} \rightarrow MnO_4^- + e^-$ -----(2) x2 Overall eqn: $3MnO_4^{2-}(aq) + 2H_2O(l) \rightarrow MnO_2(s) + 2MnO_4^-(aq) + 4OH^-(aq)$
- 16 Write the half-equations and hence the full balanced equation for each reaction below.
- (a) Sodium sulfite, Na₂SO₃, reduces an orange acidified solution of dichromate(VI) ions, Cr₂O₇²⁻, to green solution containing Cr³⁺ ions. Sulfate ions are formed in the reaction.

Half eqn: [R] $Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3^+} + 7H_2O$ ------ (1) [O] $SO_3^{2^-} + H_2O \rightarrow SO_4^{2^-} + 2H^+ + 2e^-$ ------ (2) x3

Overall eqn: $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$

(b) When copper is added to concentrated nitric acid, the solution becomes pale blue due to Cu²⁺(aq), & brown fumes of nitrogen dioxide are produced.

Half eqn: [O] Cu \rightarrow Cu²⁺ + 2e⁻------ (1) [R] NO₃⁻ + 2H⁺ + e⁻ \rightarrow NO₂ + H₂O ------- (2) x2

Overall eqn: $Cu + 2NO_3^- + 4H^+ \rightarrow Cu^{2+} + 2NO_2 + 2H_2O_3$

(c) When potassium iodide (KI) is added to acidified hydrogen peroxide, brown I₂ solution is formed.

Half eqn: [O] $2I^{-} \rightarrow I_{2} + 2e^{-}$ (1) [R] $H_{2}O_{2} + 2H^{+} + 2e^{-} \rightarrow 2H_{2}O$ (2) Overall eqn: $H_{2}O_{2} + 2I^{-} + 2H^{+} \rightarrow I_{2} + 2H_{2}O$

(d) When heated, phosphorus acid, H_3PO_3 , gives phosphoric acid, H_3PO_4 , and phosphine gas, PH₃. Half eqn: [O] $H_3PO_3 + H_2O \rightarrow H_3PO_4 + 2H^+ + 2e^- ------(1) \times 3$ [R] $H_3PO_3 + 6H^+ + 6e^- \rightarrow PH_3 + 3H_2O$ ------(2)

Overall eqn: $4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$

(e) When zinc is added to silver nitrate solution, AgNO₃(aq), silver solid forms on the surface of zinc. Zn²⁺ ions are formed.

Half eqn: [O] $Zn \rightarrow Zn^{2+} + 2e^{-}$ ------ (1) [R] $Ag^+ + e^- \rightarrow Ag$ ------- (2) x2 Overall eqn: $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$