River Valley High School 2023 JC2 Preliminary Examinations Physics Paper 1

Qn	Ans	Qn	Ans	Qn	Ans
1	В	11	С	21	A
2	D	12	С	22	A
3	С	13	В	23	D
4	С	14	A	24	A
5	С	15	В	25	В
6	С	16	D	26	D
7	В	17	A	27	В
8	D	18	D	28	В
9	C	19	D	29	A
10	А	20	D	30	D

Qn	Key	guide
1	В	Change in vector = final – initial
2	D	Option A \rightarrow 2500 W per hour
		Option B \rightarrow Based on J1 practical exercise ~ 1.9 m ²
		Option C $\rightarrow \frac{1}{2}(100)(10)^2 = 5000 \text{ J}$
		Option D \rightarrow Atmospheric pressure is already 100 KPa
3	С	Equation of motion $v^2 = u^2 + 2as$ gives $\left(\frac{v_A}{3}\right)^2 = v_A^2 + 2(-9.81)(0.40)$ gives
4	<u> </u>	$v_A = 2.97 = 3.0 \text{ III S}^{-1}$
4	C	of momentum gives $mv + 0 = 2mV$, giving $V = \frac{1}{2}v$.
		Initial kinetic energy $E_k = \frac{1}{2}mv^2$ and after collision, kinetic energy of the
		system is $\frac{1}{2}(2m)\left(\frac{v}{2}\right)^2 = \frac{1}{4}mv^2$. so change in kinetic energy is
		$\frac{1}{2}mv^2 - \frac{1}{2}mv^2 = -\frac{1}{2}mv^2 = -\frac{E_k}{2}$
5	С	Acceleration along the slope = $\frac{30-0}{-5 \text{ m s}^{-1}}$.
-	_	$\frac{1}{6}$ = 3 III S
		Resolve weight along and perpendicular to slope. Along the slope the
		component of weight is $mgsing$. Hence Newton's 2 haw gives
		$m(gsin\theta) = 5m, so \theta = sin^{-1}(\frac{s}{9.81}) = 30.6^{\circ}$
6	С	Let W be the weight on the board
		When the child is not on the board.
		F(2.0) = W(2.5)
		The force on the spring $F = 1.25W$
		When the child is on the board
		F'(2 0) = W(2 5) + (40)(9 81)(5 0)
		The force on the spring $F' = 1.25W + 981$
		Hence, the addition force on the spring due to the child is 981 N.
		The additional compression on the spring
		= 981/10000
		= 9.8 cm
7	B	Additional energy stored in spring = $1 \times 101 \times (0.026^2 - 0.021^2) = 0.027201$
'		$\frac{1}{2} \times 181 \times (0.036^2 - 0.021^2) = 0.07738$

		loss in GPE = $3.8 \times (0.178 - 0.163) = 0.057$ J
		Hence, work done by force = $0.07738 - 0.057 = 0.0204$ J
		Option C distractor if student did not subtract GPE from the EPE
8	D	Let driving force by the car be <i>F</i> , so Newton's second law gives
		$F - 200 = 800 \times 0.5$, giving $F = 600$ N.
		Hence power = $Fv = 600 \times 20 = 12\ 000\ W$
9	С	Centripetal acceleration
		$= r\omega 2$
		$= r(2\pi/T)^2$
		Since both r and T are constants, centripetal acceleration does not change
10	•	Over ume.
10	A	Conservation of energy gives $2400 \times 120 = 0.106 \times 2260000 + \text{heat loss}$.
		Heat loss = 48 440 J. So rate of heat loss = $\frac{10110}{120}$ = 404 = 400 W
11	С	density of the gas $\frac{6.80 \times 10^{15}}{10^{15}} \times \frac{2.02 \times 10^{-3}}{10^{-3}} - 2.282 \times 10^{-5} \text{ kg m}^{-3}$
		1×10^{-6} 6.02×10^{23} 2.202×10^{10} Kg m
		pressure $p = \frac{1}{3} \times 2.282 \times 10^{-5} \times 1900^2 = 27.456 \text{ Pa}$
12	С	equating $n = \frac{pV}{r}$ at 40 m deep and at the surface, we get
		$(\rho qh + p_{atm}) \times 20 \text{ cm}^3$ $p_{atm} \times V$ and
		$\frac{35 - 1}{R(4+273.15)} = \frac{1}{R(20+273.15)}$, and
		$\rho gh = 1200 \times 9.81 \times 40 = 4.709 \times 10^5 \text{ Pa}$
		So $V = \left(\frac{4.709+1.0}{293.15}\right) \left(\frac{293.15}{293.15}\right) \times 20 \text{ cm}^3 = 120.8 = 120 \text{ cm}^3$
13	B	(1.0) (277.15)
15	В	$u - g - i \omega$
		Since g can also be expressed as
		$Gm G 4 3 4 \pi$
		$g = \frac{1}{r^2} = \frac{1}{r^2} \rho(\frac{1}{3}\pi r^3) = \frac{1}{3}G\rho\pi r$
		7 7 5 5
		The values of a at the equator and the pole will increase when r increases.
14	Α	GMm_{man}
		$F = \frac{R^2}{R^2}$
		$- (6.67 \times 10^{-11})(6.0 \times 10^{24})(60)$
		= (4.23 × 10 ⁷) ²
		= 13.4 N
15	В	Potential energy vs time, for a situation of oscillating object at extreme
4.5	_	position at $t = 0$ s.
16	D	D is always not true because the damping force can be in the same direction as the
47	•	acceleration of the body.
17	A	
10	D	
		after a short
		instant
		original waveform
		Since Q is at maximum displacement, it should have zero speed. To check
		the movement of P and Q, draw the waveform at a short instant later. From
		the diagram, we can see that P is moving upwards while R is moving
		downwards.

19	D	$\tan \theta = \frac{y_1}{L} = \frac{y_1}{4.8}$ $\sin \theta = \frac{\lambda}{b} = \frac{630 \times 10^{-9}}{0.32 \times 10^{-3}}$
		$y_1 = 9.45 \times 10^{-3} \text{ m}$
		Since the width of the central bright fringe is $2y_1$ and the width of each higher order bright fringe is y_1 ,
		$y = 3y_1 = 3(9.45 \times 10^{-3}) = 28 \text{ mm}$
20	D	$H_{R_{2}} = \frac{\left \left \right \right }{R_{1}} + \frac{\left \left \right \right }{R_{2}} + \frac{\left \left \right \right }{R_{2}} + \frac{\left \left \left \right \right }{R_{2}} + \frac{\left \left \left \left \right \right \right }{R_{2}} + \left \left$
		principle of potential divider, the p.d. between OP also reduces which leads to a lower potential at P (lower positive potential value).
		Since p.d between OP reduces, it will lead to a larger p.d. between OQ and a lower potential at Q (lower negative potential value).
21	Α	Using I = Ne/t
		Number of particles travelling in one second = I/e = 10 x 10-6 / 1.6 x 10-19 = 6.25 x 1013
		Since the particles travel 2.5 x 107 m in one second, The number of particles in one centimetre length = 6.25 x 1013 / 2.5 x 109 = 25000
22	A	Algebraic sum of potential due to charges at A and B is zero, so $\frac{1}{4\pi\varepsilon_0} \frac{+2.4 \times 10^{-6}}{7.0 \text{ cm}} + \frac{1}{4\pi\varepsilon_0} \frac{-2.9 \times 10^{-6}}{\text{BX cm}} = 0$ giving BX = 8.458 cm Pythagoras theorem gives $L = \sqrt{8.458^2 - 7.0^2} = 4.74$ cm
23	D	In the setup, VPQ = 3/ (3+1.5+22)12.0 = 1.31 V.
		Hence, if the test cell is in range of mV, Vpq need to be further reduced, thus, increase 22 Ω to 1 k Ω .
24	Α	Closer magnetic flux lines means a stronger field to the left.

		Flux lines pointing left to right suggests a N pole at the left.
		N pole of bar magnet will be repel while S pole will be attracted, therefore bar
		magnet will turn anticlockwise and to the left.
25	В	
26	D	F = B / L = <i>(</i> B L) /
		Gradient of F vs I graph = B L = 10 / 0.25 = 40
		e.m.f. induced = B L v = (40) ($x_o \omega$) = (40) (0.024) ($2\pi 80$) = 480 V
27	В	$P = \frac{mc\Delta\theta}{t} \Longrightarrow t = \frac{mc\Delta\theta}{P}$
		For steady d.c
		$mc\Delta\theta$
		$t = \frac{1}{I^2 R}$ or $R = 12R$
		For a.c with resistance 2R,
		$mc\Delta\theta$ $mc\Delta\theta$
		$t_{ac} = \frac{I}{(I_{ac})^2 2R} = \frac{I}{I^2 R}$
		$\left(\frac{\sqrt{2}}{\sqrt{2}}\right)^2 2R$ $P_{ac} = \left(\frac{\sqrt{2}}{\sqrt{2}}\right)^2 2R$
		as v2
		$I_{ac} = T$
28	B	Current = power / voltage = $1 \times 106 / 66 \times 103 = 15.15 A$
20	D	$\frac{1}{100}$
		Power loss = I2R = (15.2)2(5) = 1100 W
29	Α	$hf = \phi + E_{k,max}$ gives $\frac{hc}{2} = \phi + E_{k,max}$, so
		$6.63 \times 10^{-34} \times 3.0 \times 10^{\frac{1}{8}}$ 1
		$\frac{250 \times 10^{-9}}{250 \times 10^{-9}} = 4.0 \times 10^{-19} + \frac{1}{2} \times 9.11 \times 10^{-31} \times v_{max}^2$
		$v_{max} = 9.3 \times 10^5 \mathrm{m s^{-1}}$
30	D	Rate of decay $A = \lambda N = \frac{\ln 2}{t_{1/2}} N = \frac{\ln 2}{t_{1/2}} (nN_A)$ where <i>n</i> and <i>N_A</i> are number of moles
		and Avogadro's number respectively.
		Hence $A \propto \frac{n}{200}$ is the smallest i.e. 0.0323
		Hence $A \propto \frac{1}{t_{1/2}}$. The ratio $\frac{1}{6200}$ is the smallest, i.e. 0.0525.
		Option A is 0.0476
		Option B is 0.0755
		Option C is 0.129