4. Differentiation and its Applications (solutions)

(I) Tangents and Normals (Normal/Implicit Differentiation)

(a) Let
$$y = \frac{x}{\sin^{-1}(3x)}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin^{-1}(3x) - x\left(\frac{3}{\sqrt{1 - 9x^2}}\right)}{\left(\sin^{-1}(3x)\right)^2} = \frac{\sqrt{1 - 9x^2}\sin^{-1}(3x) - 3x}{\left(\sin^{-1}(3x)\right)^2\sqrt{1 - 9x^2}}$$

(b)
$$y^{\cos 2x} = x^3$$

Taking ln on both sides, $(\cos 2x)(\ln y) = \ln x^3 = 3 \ln x$

Differentiate w.r.t. x,

$$(-2\sin 2x)(\ln y) + (\cos 2x)\frac{1}{v}\frac{dy}{dx} = \frac{3}{x}$$
(1)

At
$$x = \pi$$
, $y^{\cos 2\pi} = \pi^3 \Rightarrow y = \pi^3$

Subst into (1): $(-2\sin 2\pi) \left(\ln \pi^3\right) + (\cos 2\pi) \frac{1}{\pi^3} \frac{dy}{dx} = \frac{3}{\pi}$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 3\pi^2$$

Note

There is no need to simplify $\frac{dy}{dx}$ expression.

We need the corresponding *y*-coordinate to evaluate the gradient to the curve at $x = \pi$.

(i)
$$y = xe^{-x}$$
 \Rightarrow $\frac{dy}{dx} = e^{-x} - xe^{-x} = e^{-x} (1-x)$

Graph is decreasing: $\frac{dy}{dx} < 0$

$$e^{-x}(1-x) < 0$$
 \Rightarrow $x >$

[Also accept $x \ge 1$]

(ii)
$$\frac{d^2y}{dx^2} = e^{-x}(-1) - e^{-x}(1-x) = e^{-x}(x-2)$$

Graph is concave downwards: $\frac{d^2y}{dx^2} < 0$

$$e^{-x}(x-2) < 0$$
 \Rightarrow $x < 2$

Need x > 1 and x < 2

Therefore, for graph to be decreasing <u>and</u> concave downwards: 1 < x < 2. [Also accept $1 \le x < 2$, $1 < x \le 2$, or $1 \le x \le 2$]

(iii) Consider gradient at $(a,b) = e^{-a}(1-a)$:

$$\frac{h-b}{0-a} = e^{-a} (1-a)$$
Since $b = ae^{-a}$

$$h - ae^{-a} = -ae^{-a} (1-a)$$

$$h = ae^{-a} - ae^{-a} (1-a) = a^2e^{-a}$$

Alternative

Tangent at (a,b): $y-b=e^{-a}(a-2)(x-a)$

Subst R(0,h) into tangent and $b = ae^{-a}$:

$$h = ae^{-a} - ae^{-a} (1-a) = a^2e^{-a}$$

$$\frac{\mathrm{d}h}{\mathrm{d}a} = 2a\mathrm{e}^{-a} - a^2\mathrm{e}^{-a} = a\mathrm{e}^{-a}(2-a)$$

At max/min point: $\frac{dh}{da} = 0$

$$a\mathrm{e}^{-a}\left(2-a\right)=0$$

$$a = 2$$
 or $a = 0$

а	2 -	2	2+
$\frac{\mathrm{d}h}{\mathrm{d}a}$	+	0	-
Slope			

а	0 -	0	0^{+}
$\frac{\mathrm{d}h}{\mathrm{d}a}$	_	0	+
Slope	/		/

Alternative: Second derivative Test

$$\frac{d^2h}{da^2} = e^{-a}(2-4a+a^2) < 0$$
 when $a = 2$

Greatest possible $h = 4e^{-2}$ at a = 2.

Alternative:

From the graph, greatest h occurs when $\frac{dy}{dx}$ is most negative (i.e. where

 $\frac{dy}{dx}$ is min, in this case).

Thus need
$$\frac{d^2y}{dx^2} = 0 \Rightarrow x = 2$$

Greatest possible $h = 2^2 e^{-2} = \frac{4}{e^2}$

3. y = f(x) strictly increasing $\Rightarrow f'(x) > 0$

(i) y = f(x) concave downwards $\Rightarrow f''(x) < 0$ [so the gradient function f'(x) decreases]

We observe from y = f'(x) graph that x > 1 (ans)

x	(-3)-	-3	$(-3)^{+}$
f '(x)	-ve	0	-ve
tang	\		/

Point of inflexion at x = -3

x	0-	0	0^{+}
f '(x)	-ve	0	+ve
tang			
M::			

Minimum point at x = 0.

[We observe the signs from y = f'(x) graph]

(iii)

Differentiating
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{a}$$
 w.r.t. x , $\frac{1}{x^2} - \frac{1}{y^2} \frac{dy}{dx} = 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y^2}{x^2}$$

Since $x \neq 0, y \neq 0, x^2 > 0$ and $y^2 > 0$.

It follows that $\frac{dy}{dr} < 0$ and thus y is a decreasing function.

- (ii)
- From (i), $\frac{dy}{dx} < 0$ at all points (x, y). Thus there are no points on the curve such that $\frac{dy}{dx} = 0$ There are no stationary points on the curve.
- (iii)

Gradient at
$$(2a, 2a) = -\frac{(2a)^2}{(2a)^2} = -1$$

Equation of tangent at (2a, 2a): y-2a = -1(x-2a) i.e. y = -x + 4a

Solving
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{1}{a} \\ y = -x + 4a \end{cases}$$

$$\frac{1}{x} + \frac{1}{4a - x} = \frac{1}{a}$$

$$\Rightarrow x^2 - 4ax + 4a^2 = 0$$

 $\Rightarrow x^2 - 4ax + 4a^2 = 0$ $\Rightarrow (x - 2a)^2 = 0 \qquad \Rightarrow x = 2a, \text{ which is the point where we construct the tangent}$

With no other intersection points, the tangent does not meet the curve again.

$$f(x) = \tan\left(e^{g(x)}\right) \Rightarrow f'(x) = \sec^2\left(e^{g(x)}\right)g'(x)e^{g(x)}$$

$$f'(5) = \left[\sec^2(e^1)\right](-3)e^1 = \frac{-3e}{\cos^2(e)} = -9.81$$

$$y = \frac{x^2}{2x-1} \Rightarrow \frac{dy}{dx} = \frac{(2x-1)(2x)-x^2(2)}{(2x-1)^2} = \frac{2x(x-1)}{(2x-1)^2}$$

Function is increasing $\Rightarrow \frac{dy}{dx} > 0 \Rightarrow \frac{2x(x-1)}{(2x-1)^2} > 0$, where $x \neq \frac{1}{2}$

Thus inequality reduces to x(x-1) > 0

$$\therefore x < 0$$
 or $x > 1$

[Accept $x \le 0$ or $x \ge 1$]

6(i)
$$3x^2 - 4xy + 2y^2 - 2 = 0$$

Differentiate with respect to x:

$$6x - 4\left[x\frac{dy}{dx} + y\right] + 2\left(2y\frac{dy}{dx}\right) - 0 = 0$$

$$3x - 2x\frac{dy}{dx} - 2y + 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{3x - 2y}{2x - 2y} \quad \text{(shown)}$$

(ii) For tangents to the curve parallel to x-axis,
$$\frac{dy}{dx} = 0$$

$$\frac{3x - 2y}{2x - 2y} = 0$$

$$\Rightarrow y = \frac{3}{2}x$$

Solving
$$\begin{cases} 3x^2 - 4xy + 2y^2 - 2 = 0 \\ y = \frac{3}{2}x \end{cases}$$
,

$$3x^{2} - 4x\left(\frac{3}{2}x\right) + 2\left(\frac{3}{2}x\right)^{2} - 2 = 0 \Rightarrow 3x^{2} - 4 = 0$$
$$x = \frac{2}{\sqrt{3}}, y = \sqrt{3}$$
$$x = -\frac{2}{\sqrt{3}}, y = -\sqrt{3}$$

The points are $\left(\frac{2}{\sqrt{3}}, \sqrt{3}\right)$ and $\left(-\frac{2}{\sqrt{3}}, -\sqrt{3}\right)$

Such points (x, y) must satisfy 2 conditions:

1.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

2. Lie on the curve $3x^2 - 4xy + 2y^2 - 2 = 0$

(iii) At
$$P(0,1)$$
, $\frac{dy}{dx} = \frac{3(0) - 2(1)}{2(0) - 2(1)} = 1$

Gradient of normal = -1

Equation of normal at P: y-1=-1(x-0) i.e. y=1-x

Solving
$$\begin{cases} 3x^2 - 4xy + 2y^2 - 2 = 0 \\ y = 1 - x \end{cases}$$
,

$$3x^{2} - 4x(1-x) + 2(1-x)^{2} - 2 = 0$$

$$9x^{2} - 8x = 0$$
$$x(9x - 8) = 0$$
$$x = \frac{8}{9} \text{ or } 0$$

At point
$$Q$$
, $x = \frac{8}{9}$

Area of triangle
$$OPQ = \frac{1}{2}(1)(\frac{8}{9}) = \frac{4}{9}$$

 $\frac{8}{9}$ **Note:** Wherever the *y*-coord point *Q*, triangle *OPQ* has base of length 1 and height $\frac{8}{9}$.

7(i)
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
, for $x > 0, y > 0$, a positive constant

Differentiate with respect to x:

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\sqrt{y}}{\sqrt{x}} \neq 0 \quad \text{since } y \neq 0$$

Hence C has no stationary points.

(ii) As
$$x \to 0$$
, $\frac{dy}{dx} \to -\infty$. The tangent to C approaches the line $x = 0$ (the y-axis).

8(i)
$$(4x-y)^2 + 16y = 48 - ... (1)$$

Differentiate with respect to x:

$$2(4x-y)\left(4-\frac{\mathrm{d}y}{\mathrm{d}x}\right)+16\frac{\mathrm{d}y}{\mathrm{d}x}=0$$

$$8(4x-y)-2(4x-y)\frac{dy}{dx}+16\frac{dy}{dx}=0$$

$$[2(4x-y)-16]\frac{dy}{dx} = 8(4x-y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4(4x - y)}{(4x - y) - 8}$$

(ii) Tangent // x-axis
$$\Rightarrow \frac{dy}{dx} = 0 \Rightarrow 4x - y = 0$$

Same concept as Q6(ii).

Substitute into eqn (1): $0^2 + 16y = 48 \Rightarrow y = 3$

 \Rightarrow eqn of tangent is y = 3. Coordinates of $P = \left(\frac{3}{4}, 3\right)$

(iii) Tangent // y-axis
$$\Rightarrow \frac{dy}{dx}$$
 is undefined $\Rightarrow (4x - y) - 8 = 0$: $y = 4x - 8$

Substitute into eqn (1): $8^2 + 16(4x - 8) = 48 \implies x = \frac{7}{4}$

Eqn of tangent is $x = \frac{7}{4}$. Coordinates $Q = (\frac{7}{4}, -1)$

(iv) | Coordinates
$$R(\frac{7}{4},3)$$

Area of triangle $PQR = \frac{1}{2} [3 - (-1)] (\frac{7}{4} - \frac{3}{4}) = 2$ units²

[Note that triangle *PQR* is a right angled triangle!!!]

(II) Tangents and Normals (Parametric Equations)

9(i)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^t \sin t + \mathrm{e}^t \cos t; \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -\mathrm{e}^{-t} \cos t + \mathrm{e}^{-t} (-\sin t)$$

$$\frac{dy}{dx} = \frac{-e^{-t}\cos t + e^{-t}(-\sin t)}{e^t \sin t + e^t \cos t}$$
$$= \frac{-e^{-t}(\cos t + \sin t)}{e^t (\sin t + \cos t)} = -e^{-2t}$$

Gradient of normal at t = p is $-\frac{1}{-e^{-2p}} = e^{2p}$.

Equation of normal is $y - e^{-p} \cos p = e^{2p} (x - e^p \sin p)$

$$y = e^{2p}(x - e^p \sin p) + e^{-p} \cos p$$

(ii) For
$$p = \frac{\pi}{2}$$
, equation of normal becomes $y = e^{\pi}(x - e^{\frac{\pi}{2}})$

At
$$x = 0$$
, $y = -e^{\frac{3\pi}{2}}$.

At
$$y = 0$$
, $x = e^{\frac{\pi}{2}}$.

Area of Triangle
$$OAB = \frac{1}{2} \left(e^{\frac{3\pi}{2}} \right) \left(e^{\frac{\pi}{2}} \right) = \frac{1}{2} e^{2\pi} \text{ unit}^2$$

10(i)
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2 \times \frac{1}{2t} = \frac{1}{t}$$

At P, $\frac{dy}{dx} = \frac{1}{p}$ and gradient of normal = -p

Equation of normal to $C: y-2p=-p(x-p^2)$, i.e. $y=-px+p^3+2p$

(ii) For
$$p = 2$$
, equation of normal becomes

$$y = -2x + 8 + 2(2)$$

$$y = -2x + 12$$

When this normal cuts C,

$$2t = -2t^2 + 12$$

$$t^2 + t - 6 = 0$$

$$(t-2)(t+3)=0$$

$$t = 2$$
 or $t = -3$

At *P*,
$$t = 2$$
. Hence, at *Q*, $t = -3 \cdot Q = (9, -6)$

Solve simultaneous eqn

$$\begin{cases} x = t^2, y = 2t \\ y = -2x + 12 \end{cases}$$

Since P = (4,4), $\angle \alpha = \tan^{-1} \left(\frac{4}{4}\right) = \frac{\pi}{4}$

Since Q = (9, -6), $\angle \beta = \tan^{-1} \left(\frac{6}{9}\right) = \tan^{-1} \left(\frac{2}{3}\right)$

Hence the angle $QOP = \angle \alpha + \angle \beta = \frac{\pi}{4} + \tan^{-1} \left(\frac{2}{3}\right)$ (shown)

[Note: Support your proof with a diagram]

11(i) $x = 3(1-t), y = \frac{1}{t^3} \text{ for } t \neq 0.$

$$\frac{dy}{dx} = \frac{-3t^{-4}}{-3} = \frac{1}{t^4}$$

For $t \neq 0$, $t^4 > 0$ and hence $\frac{dy}{dx} = \frac{1}{t^4} > 0$.

The curve is an increasing function.

(ii) Equation of tangent L_1 at $\left(3-3t, \frac{1}{t^3}\right)$:

$$y - \frac{1}{t^3} = \frac{1}{t^4} \left[x - (3 - 3t) \right]$$
$$y = \frac{1}{t^4} x - \frac{3}{t^4} + \frac{3}{t^3} + \frac{1}{t^3}$$
$$y = \frac{1}{t^4} x - \frac{3}{t^4} + \frac{4}{t^3}$$

Sub x = 0, y = 0,

$$0 = \frac{1}{t^4} (0) - \frac{3}{t^4} + \frac{4}{t^3}$$

$$\frac{3}{t^4} = \frac{4}{t^3}$$

3 = 4t (since $t \neq 0$)

Thus $t = \frac{3}{4}$

Coordinates of $P = \left(\frac{3}{4}, \frac{64}{27}\right)$

(iii) Gradient of $L_1 = \frac{1}{\left(\frac{3}{4}\right)^4} = \frac{256}{81}$ $\therefore \frac{1}{t^4} = \frac{256}{81}$ $t^4 = \frac{81}{256}$

It is clear that $t = -\frac{3}{4}$ is the only distinct t value to obtain the same gradient.

$$t = \frac{3}{4}$$
 (rejected :: it's point P) or $t = -\frac{3}{4}$

Equation of L_2 :

$$y = \frac{256}{81}x - \frac{3}{\left(-\frac{3}{4}\right)^4} + \frac{4}{\left(-\frac{3}{4}\right)^3}$$
, i.e. $y = \frac{256}{81}x - \frac{512}{27}$

(iv) Coordinates of
$$Q = \left(0, -\frac{512}{27}\right)$$

Area of triangle $OPQ = \frac{1}{2} \left(\frac{3}{4} \right) \left(\frac{512}{27} \right) = \frac{64}{9} \text{ unit}^2$

Similar to **Q6(iii)**: Find area of triangle *OPQ*.

12(i)
$$x = u^{\frac{1}{2}} \qquad y = \frac{1}{u^2} - 2u$$
$$\frac{dx}{du} = \frac{1}{2\sqrt{u}} \qquad \frac{dy}{du} = -\frac{2}{u^3} - 2$$
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \left(-\frac{2}{u^3} - 2\right) \times 2\sqrt{u} = -4u^{\frac{-5}{2}} \left(1 + u^3\right)$$

(ii) At
$$x = 1$$
, $u = 1$. Thus $y = -1$ and $\frac{dy}{dx} = -8$.

Equation of tangent: $y+1=-8(x-1) \Rightarrow y=-8x+7$.

When y = 0, $x = \frac{7}{8}$ and when x = 0, y = 7.

The tangent meets the axes at $A\left(\frac{7}{8},0\right)$ and $C\left(0,7\right)$.

Equation of normal:
$$y+1=\frac{1}{8}(x-1) \Rightarrow y=\frac{1}{8}x-\frac{9}{8}$$
.

When y = 0, x = 9 and when x = 0, $y = -\frac{9}{8}$.

The normal meets the axes at B(9,0) and $D(0,-\frac{9}{8})$.

Finally
$$AB = 9 - \frac{7}{8} = \frac{65}{8}$$
 and $CD = 7 + \frac{9}{8} = \frac{65}{8}$

$$\therefore AB = CD \text{ (shown)}$$

Let G be
$$\frac{dy}{dx}$$
. Thus $G = -4u^{-\frac{5}{2}}(1+u^3)$

$$\Rightarrow \frac{dG}{du} = -4\left(-\frac{5}{2}u^{\frac{-7}{2}} + \frac{1}{2}u^{\frac{-1}{2}}\right) = -2u^{\frac{-7}{2}}\left(u^3 - 5\right)$$

When
$$u = 2$$
, $\frac{dG}{dt} = \frac{dG}{du} \times \frac{du}{dt} = -2\left(2^{\frac{-7}{2}}\right)\left(2^3 - 5\right) \times (0.5) = -\frac{3}{8\sqrt{2}}$ the rate of change of $\frac{dy}{dx}$.

 $\Rightarrow \frac{dy}{dx}$ is decreasing at $\frac{3}{8\sqrt{2}}$ units per second.

$$\frac{\mathrm{d}G}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right),$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{t}, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = 1 - \frac{1}{t} = \frac{t-1}{t} \qquad \therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{t-1}{t\mathrm{e}^{t}}$$

For tangents parallel to y-axis, $\frac{dy}{dx}$ is undefined.

$$\Rightarrow te^t = 0$$

Since t > 0 for the curve C, $te^t > 0$ and thus there is no solution.

Hence there are no tangents parallel to y-axis. (Shown)

For tangents parallel to x-axis, $\frac{dy}{dx} = 0$

$$\Rightarrow t-1=0$$

$$\Rightarrow t=1$$

When t = 1, $y = 1 - \ln 1 = 1$.

Thus equation of the tangent that is parallel to the x-axis is y = 1.

As
$$t \to 0$$
, $\frac{dy}{dx} = \frac{t-1}{te^t} \to -\infty$ and $x \to 1^+$

Thus tangents to C will tend to the vertical line x = 1.

(iii)

$$\frac{dx}{dt} = -2\sin t, \quad \frac{dy}{dt} = \cos t \quad \Rightarrow \frac{dy}{dx} = \frac{-\cos t}{2\sin t}$$

Equation of tangent at $P(t = \theta)$:

$$y - \sin \theta = \frac{-\cos \theta}{2\sin \theta} (x - 2\cos \theta)$$

$$(2\sin \theta)y - 2\sin^2 \theta = (-\cos \theta)x + 2\cos^2 \theta$$

$$(2\sin \theta)y + (\cos \theta)x = 2(\sin^2 \theta + \cos^2 \theta)$$

$$(\cos \theta)x + (2\sin \theta)y = 2 \text{ (shown)}$$

Keep to $\sin \theta$ and $\cos \theta$ (Observe the final equation to show)

Equation of normal at $P(t = \theta)$:

$$y - \sin \theta = \frac{2\sin \theta}{\cos \theta} (x - 2\cos \theta)$$

 $(\cos\theta)y - \sin\theta\cos\theta = (2\sin\theta)x - 4\sin\theta\cos\theta$

$$(2\sin\theta)x - (\cos\theta)y = 3\sin\theta\cos\theta$$
 (shown)

Solving
$$\begin{cases} x = 2\cos t, y = \sin t \\ (\cos \theta)x + (2\sin \theta)y = 2 \end{cases}$$
$$(\cos \theta)(2\cos t) + (2\sin \theta)(\sin t) = 2$$
$$\cos \theta \cos t + \sin \theta \sin t = 1$$
$$\cos(t - \theta) = 1$$
Check MF26
$$\cos(t - \theta) = 1$$
Cosine addition formulae
$$t - \theta = 0$$
$$t = \theta$$

Since the tangent at point P intersects the curve only at $t = \theta$, the tangent does not cut the curve again.

(ii) At
$$A$$
, $y = 0$

$$(2\sin\theta)x = 3\sin\theta\cos\theta$$

$$x = \frac{3}{2}\cos\theta$$
At B , $x = 0$

$$-(\cos\theta)y = 3\sin\theta\cos\theta$$

$$y = -3\sin\theta$$
mid-point of AB : $\left(\frac{3}{4}\cos\theta, -\frac{3}{2}\sin\theta\right)$

As θ varies, the mid-point traces a curve with x- and y- coordinates always satisfying the parametric equations: $x = \frac{3}{4}\cos\theta$, $y = -\frac{3}{2}\sin\theta$ Yes, this is the parametric eqn of the curve traced by the mid-point.

Converting the parametric equations to cartesian equation:

$$\cos^2\theta + \sin^2\theta = 1$$

$$\frac{16x^2}{9} + \frac{4y^2}{9} = 1$$

$$\frac{x^2}{\left(\frac{3}{4}\right)^2} + \frac{y^2}{\left(\frac{3}{2}\right)^2} = 1$$

The curve is a vertical ellipse, centre at (0,0), with major axis 3 units and minor axis $\frac{3}{2}$ unit.

OR

The curve is a vertical ellipse, centre at (0,0), with **semi**-major axis $\frac{3}{2}$ units and **semi**-minor axis $\frac{3}{4}$ units.

15(i) As $t \to -\infty$, $x \to \sin t$ and $y \to -\cos t$.

Using trigonometric identity $\sin^2 t + \cos^2 t = 1$, the cartesian equation of C is $x^2 + y^2 = 1$.

The shape of C tends to a <u>circle</u> with <u>centre at the origin</u> and <u>unit radius</u> as $t \to -\infty$.

[We call this the unit circle with centre (0,0)]

(ii)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^t + \cos t \ , \ \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^t + \sin t \ . \ . \ . \ . \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^t + \sin t}{\mathrm{e}^t + \cos t}$$

At *P*, gradient of normal is $-\frac{e^{\theta} + \cos \theta}{e^{\theta} + \sin \theta}$.

$$\therefore \text{ equation of normal is } y - \left(e^{\theta} - \cos \theta\right) = -\frac{e^{\theta} + \cos \theta}{e^{\theta} + \sin \theta} \left[x - \left(e^{\theta} + \sin \theta\right)\right]$$

$$\Rightarrow y = -\frac{e^{\theta} + \cos \theta}{e^{\theta} + \sin \theta} \left[x - \left(e^{\theta} + \sin \theta \right) \right] + \left(e^{\theta} - \cos \theta \right) \Rightarrow y = -\frac{e^{\theta} + \cos \theta}{e^{\theta} + \sin \theta} x + 2e^{\theta}$$

(iii) Using equation of normal found in (ii), point D is $(0, 2e^{\theta})$.

E is a point on C.

From $y = e^t - \cos t$, when y = 0, $\Rightarrow e^t = \cos t$

By inspection, t = 0. $\therefore x = e^0 + \sin 0 = 1$. Hence point E is (1, 0).

(iv) The mid-point of DE is $\left(\frac{1}{2}, e^{\theta}\right)$. As θ varies through <u>positive</u> values, the x-coord is fixed (at

 $\frac{1}{2}$) and the y-coord = $e^{\theta} > 1$,

 \therefore The path is part of a vertical line with equation $x = \frac{1}{2}$ and y > 1.

[Part of a straight line is called a half-line]

(III) Rate of change and Maximisation/Minimisation problems

Let V m³ be the volume of water in the pond at time t sec.

$$V = \pi (4.5)^2 h = 20.25\pi h \implies \frac{dV}{dh} = 20.25\pi$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$$

 $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ Water is pumped <u>out</u> of the pond. $-0.8 = 20.25\pi \times \frac{dh}{dt}$ Thus V <u>decreases</u> and $\frac{dV}{dt} = -0.8$.

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-0.8}{20.25\pi} = -0.012575 = -0.0126$$

 \therefore rate of change of depth = -0.0126 m/s (3 s.f.)

Time required = $\frac{1.9 - 1.2}{0.012575}$ = 55.7s (3 s.f.) (ii)

We can just do $\frac{\text{depth}}{\text{rate}}$ since the depth is decreasing at a <u>constant</u> rate.

17. Given $V = \frac{1}{L} p^n$,

$$\frac{dV}{dp} = \frac{1}{k} n p^{n-1} = \frac{1}{k} n \left(\frac{p^n}{p} \right) = \frac{n}{p} \left(\frac{1}{k} p^n \right) = \frac{nV}{p} = -2.3 \left(\frac{V}{p} \right) \text{, given } n = -2.3$$

When V = 32, p = 105, $\frac{dp}{dt} = 0.2$:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}p} \times \frac{\mathrm{d}p}{\mathrm{d}t}$$

 $\frac{dV}{dt} = \frac{dV}{dp} \times \frac{dp}{dt}$ Note Using this method, we won't need to calculate the value of k.

$$=-2.3\left(\frac{32}{105}\right)\times0.2 = -0.140$$
 (to 3 s.f.)

Thus the rate of decrease of volume at the instant is $0.140 \text{ cm}^3 \text{s}^{-1}$.

Let BC = x cm and $\angle BAC = \theta$ radians. 18

(a) By cosine rule,
$$x^2 = 3^2 + 2^2 - 2(3)(2)\cos\theta$$

$$x^2 = 13 - 12\cos\theta$$

Differentiate with respect to t,

$$2x\frac{\mathrm{d}x}{\mathrm{d}t} = 12\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

When
$$\theta = \frac{\pi}{3}$$
, $x = \sqrt{7}$.

$$2\sqrt{7} \frac{dx}{dt} = 12 \left(\frac{\sqrt{3}}{2}\right) (0.1)$$
 [Given $\frac{d\theta}{dt} = 0.1$ always]

$$\frac{dx}{dt} = \frac{0.3\sqrt{3}}{\sqrt{7}} = 0.196 \text{ cm/s } (3 \text{ s.f.})$$

(b)
$$x^2 - xy = p^2 + y^2$$

Differentiate with respect to
$$x$$
: $2x - x \frac{dy}{dx} - y - 2y \frac{dy}{dx} = 0$
$$\frac{dy}{dx} = \frac{2x - y}{x + 2y}$$

Normal parallel to the x-axis \Rightarrow tangent parallel to the y-axis. i.e. $x + 2y = 0 \Rightarrow x = -2y$

Substitute back to the original equation:

$$(-2y)^2 - y(-2y) = p^2 + y^2$$

$$5y^2 = p^2$$

$$y = \pm \frac{p}{\sqrt{5}}$$

$$y = \frac{p}{\sqrt{5}}, \ x = -\frac{2p}{\sqrt{5}}.$$

$$y = -\frac{p}{\sqrt{5}}, \ x = \frac{2p}{\sqrt{5}}.$$

Thus the coordinates are $\left(-\frac{2p}{\sqrt{5}}, \frac{p}{\sqrt{5}}\right)$ and $\left(\frac{2p}{\sqrt{5}}, -\frac{p}{\sqrt{5}}\right)$.

19. Volume,
$$V = \pi r^2 h + \frac{1}{2} \left(\frac{4}{3} \pi r^3 \right) = 500$$

$$\pi r^2 \left(h + \frac{2}{3}r \right) = 500 \Rightarrow h = \frac{500}{\pi r^2} - \frac{2}{3}r$$

Surface area, $S = \pi r^2 + 2\pi rh + \frac{1}{2}(4\pi r^2)$

$$= 3\pi r^2 + 2\pi r \left(\frac{500}{\pi r^2} - \frac{2}{3}r \right)$$
 Make S in terms of a single variable, r.

$$= \frac{5}{3}\pi r^2 + \frac{1000}{r}$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} = \frac{10}{3}\pi r - \frac{1000}{r^2} = \frac{10\pi r^3 - 3000}{3r^2}$$

$$\frac{dS}{dr} = 0 \implies 10\pi r^3 - 3000 = 0$$

$$\Rightarrow r = \sqrt[3]{\frac{300}{\pi}}$$

$$\frac{d^2S}{dr^2} = \frac{10}{3}\pi + \frac{2000}{r^3} > 0 \text{ when } r = \sqrt[3]{\frac{300}{\pi}}. \text{ Thus } S \text{ is min when } r = \sqrt[3]{\frac{300}{\pi}}.$$

Minimum surface area =
$$\frac{\frac{5}{3}\pi\left(\frac{300}{\pi}\right) + 1000}{\sqrt[3]{\frac{300}{\pi}}} = 1500\sqrt[3]{\frac{\pi}{300}} = 328.1715$$

Cost of box with minimum surface area = (328.1715)(0.015) = \$4.92 (2 d.p.)

20.
$$V = (\text{Base Area}) \times \text{height}$$

$$2\sqrt{3} = \left(\frac{1}{2}x^2\sin 60^\circ\right) \times h$$

$$2\sqrt{3} = \left(\frac{1}{2}x^2 \frac{\sqrt{3}}{2}\right) \times h$$

$$h = \frac{8}{x^2}$$
 (shown)

Total cost of constructing prism,

$$C = 1 \times (\text{edges}) + 2\sqrt{3}(2 \times \text{triangles}) + 2(3 \times \text{rectangles})$$

$$= (3h+6x) + 2\sqrt{3} \left(2\left(\frac{1}{2}x^2 \frac{\sqrt{3}}{2}\right) \right) + 2(3xh)$$

$$= \left(3\left(\frac{8}{x^2}\right) + 6x \right) + 3x^2 + 2\left(3x\left(\frac{8}{x^2}\right) \right)$$

$$= \frac{24}{x^2} + 6x + 3x^2 + \frac{48}{x}$$

$$= 3x^2 + 6x + 48x^{-1} + 24x^{-2} \text{ (shown)}$$

$$\frac{dC}{dx} = 6x + 6 - \frac{48}{x^2} - \frac{48}{x^3} = 0$$

For stationary C, $\frac{dC}{dx} = 0$

$$6x+6-\frac{48}{x^2}-\frac{48}{x^3}=0$$

$$x^4 + x^3 - 8x - 8 = 0$$

$$x^3(x+1) - 8(x+1) = 0$$

$$(x^3 - 8)(x + 1) = 0$$

$$x^3 = 8$$
 or $x = -1$ (rejected)

$$x = 2$$

$$\frac{d^2C}{dx^2} = 6 + \frac{96}{x^3} + \frac{144}{x^4} > 0 \text{ when } x = 2. \text{ Thus } C \text{ is min when } x = 2.$$

Min
$$C = 3(2)^2 + 6(2) + 48(2)^{-1} + 24(2)^{-2} = 54$$

Minimum cost is \$54.

21(i)
$$k = \left(\frac{1}{2}x^{2}\sin\frac{\pi}{3} + hx\right)(3x) = \frac{3\sqrt{3}}{4}x^{3} + 3hx^{2}$$

$$\therefore h = \frac{1}{3x^{2}}\left(k - \frac{3\sqrt{3}}{4}x^{3}\right) = \frac{k}{3x^{2}} - \frac{\sqrt{3}}{4}x$$

$$A = 2\left(\frac{1}{2}x^{2}\sin\frac{\pi}{3}\right) + 2(3x^{2}) + 2(hx) + 2(3hx)$$

$$= \frac{\sqrt{3}}{2}x^{2} + 6x^{2} + 8hx$$

$$= \frac{\sqrt{3}}{2}x^{2} + 6x^{2} + 8x\left(\frac{k}{3x^{2}} - \frac{\sqrt{3}}{4}x\right)$$

$$= \frac{\sqrt{3}}{2}x^{2} + 6x^{2} + \frac{8k}{3x} - 2\sqrt{3}x^{2}$$

$$= 6x^{2} - \frac{3\sqrt{3}}{2}x^{2} + \frac{8k}{3x} \text{ (shown)}$$

$$\therefore \frac{dA}{dx} = 12x - 3x\sqrt{3} - \frac{8k}{3x^{2}}$$
For stationary A ,
$$\frac{dA}{dx} = 12x - 3x\sqrt{3} - \frac{8k}{3x^{2}} = 0$$

$$12x - 3x\sqrt{3} - \frac{8k}{3x^{2}} = 0$$

$$9x^{3}\left(4 - \sqrt{3}\right) = 8k$$

$$x^{3} = \frac{8k}{9\left(4 - \sqrt{3}\right)}$$

$$\therefore x = \sqrt[3]{\frac{8k}{9\left(4 - \sqrt{3}\right)}}$$

$$\therefore x = \sqrt[3]{\frac{8k}{9\left(4 - \sqrt{3}\right)}}$$

$$\frac{d^{2}A}{dx^{2}} = 12 - 3\sqrt{3} + \frac{16k}{3x^{3}} > 0 \text{ since } x^{3} > 0, k > 0, 12 - 3\sqrt{3} > 0$$
Alternative
$$\frac{d^{2}A}{dx^{2}} = 12 - 3\sqrt{3} + \frac{16k}{3x^{3}} = 12 - 3\sqrt{3} + \frac{16k}{3} = 12 - 3\sqrt{3} + \frac{16k$$

$$\frac{d^2 A}{dx^2} = 12 - 3\sqrt{3} + \frac{16k}{3x^3} = 12 - 3\sqrt{3} + \frac{16k}{3} \left(\frac{9(4 - \sqrt{3})}{8k} \right)$$
$$= 12 - 3\sqrt{3} + 6(4 - \sqrt{3}) = 36 - 9\sqrt{3} > 0$$

$$\therefore A \text{ is a minimum when } x = \sqrt[3]{\frac{8k}{9(4-\sqrt{3})}}.$$

(ii) Given
$$k = 360, A = 300$$
, we have

$$300 = 6x^2 - \frac{3\sqrt{3}}{2}x^2 + \frac{8(360)}{3x}$$

$$600x = 12x^3 - 3\sqrt{3}x^3 + 1920$$

$$(12 - 3\sqrt{3})x^3 - 600x + 1920 = 0$$

From GC, since x > 0, x = 3.8442 or x = 6.8587

$$x = 3.8442, h = \frac{360}{3(3.8442)^2} - \frac{\sqrt{3}}{4}(3.8442) = 6.46.$$

$$x = 6.8587, h = \frac{360}{3(6.8587)^2} - \frac{\sqrt{3}}{4}(6.8587) = -0.419 \text{ (rej. } :: h > 0)$$

$$\therefore x = 3.84, h = 6.46$$

22(i) By Pythagoras Theorem,
$$AC = \sqrt{100^2 + h^2}$$

Time-taken to swim from A to $C = \frac{\sqrt{100^2 + h^2}}{V}$

$$CD = 300 - h$$

Time-taken to run from C to $D = \frac{300 - h}{4v}$

$$\therefore \text{ Time taken from } A \text{ to } D, \ t = \frac{\sqrt{100^2 + h^2}}{v} + \frac{300 - h}{4v} \text{ (shown)}$$

(ii)
$$\frac{dt}{dh} = \frac{h}{v\sqrt{100^2 + h^2}} - \frac{1}{4v}$$
$$\frac{dt}{dh} = 0, \quad \frac{h}{v\sqrt{100^2 + h^2}} - \frac{1}{4v} = 0$$
$$\sqrt{100^2 + h^2} = 4h$$
$$15h^2 = 100^2$$
$$h = \frac{100}{\sqrt{15}} \quad (h > 0)$$

h	$\left(\frac{100}{\sqrt{15}}\right)^{-}$	$\frac{100}{\sqrt{15}}$	$\left(\frac{100}{\sqrt{15}}\right)^{+}$
Sign of $\frac{dt}{dh}$	– ve	0	+ ve
Tangent			

Thus time taken is the shortest when $h = \frac{100}{\sqrt{15}}$.

23(i) Let centre of the sphere be P.

$$AC^2 = h^2 + R^2$$
 ----(1)

Since
$$\triangle APD \sim \triangle ACO$$
, $\frac{R}{a} = \frac{AC}{h-a}$

$$AC = \frac{Rh - Ra}{a} \quad ----(2)$$

From (1) and (2),

$$\left(\frac{Rh - Ra}{a}\right)^2 = h^2 + R^2$$

$$R^2h^2 - 2R^2ha + R^2a^2 = h^2a^2 + R^2a^2$$

$$R^2\left(h^2 - 2ha\right) = h^2a^2$$

$$\therefore R = \frac{ha}{\sqrt{\left(h^2 - 2ha\right)}}$$

Alternative

Let centre of the sphere be P.

$$AC^2 = h^2 + R^2$$
 ----(1)

$$AD = \sqrt{\left(AP^2 - PD^2\right)}$$
$$= \sqrt{\left(\left(h - a\right)^2 - a^2\right)}$$

$$=\sqrt{\left(h^2-2ha\right)}$$

Using congruent triangles PCO and PCD, CO = CD = R cm.

$$AC = AD + DC$$

$$=\sqrt{\left(h^2-2ha\right)+R}\quad ---(2)$$

Equating (1) and (2),

$$h^{2} + R^{2} = h^{2} - 2ha + 2R\sqrt{(h^{2} - 2ha)} + R^{2}$$

$$\therefore R = \frac{ha}{\sqrt{\left(h^2 - 2ha\right)}}$$

(ii) Volume of cone, V

$$=\frac{1}{3}\pi R^2 h$$

$$=\frac{1}{3}\pi\left(\frac{h^2a^2}{h^2-2ha}\right)h$$

$$= \frac{1}{3}\pi a^2 \left(\frac{h^2}{h - 2a}\right)$$

$$\frac{dV}{dh} = \frac{1}{3}\pi a^2 \left[\frac{2h(h-2a) - h^2}{(h-2a)^2} \right]$$
$$= \frac{1}{3}\pi a^2 \left[\frac{h^2 - 4ha}{(h-2a)^2} \right]$$
$$= \frac{1}{3}\pi a^2 \frac{h(h-4a)}{(h-2a)^2}$$

$$\frac{\mathrm{d}V}{\mathrm{d}h} = 0 \Rightarrow h = 4a \text{ or } h = 0 \text{ (reject } :: h > 0)$$

h	$(4a)^{-}$	4 <i>a</i>	$(4a)^{+}$
Sign of $\frac{dV}{dh}$	– ve	0	+ ve
Tangent	/		

Thus, V is minumum when h = 4a.

:. minimum
$$V = \frac{1}{3}\pi a^2 \cdot \frac{(4a)^2}{4a - 2a} = \frac{8}{3}\pi a^3 \text{ cm}^3$$

Using similar triangles, $\frac{27}{v} = \frac{x-8}{x}$ $y = \frac{27x}{x - 8}$

Let *h* be the hypotenuse (*PQ*). $PQ^2 = h^2 = x^2 + y^2$

$$PQ^2 = h^2 = x^2 + y^2$$

$$h^2 = x^2 + \left(\frac{27x}{x-8}\right)^2$$
 (1)

$$PQ = \sqrt{x^2 + \left(\frac{27x}{x - 8}\right)^2}$$

Differentiate eqn (1) implicitly wrt
$$x$$
,

$$2h\frac{dh}{dx} = 2x + 2\left(\frac{27x}{x - 8}\right)\left[\frac{(x - 8)27 - 27x}{(x - 8)^2}\right]$$
$$= 2x - 2\left[\frac{27x(216)}{(x - 8)^3}\right]$$

At stationary points, $\frac{dh}{dx} = 0$

$$0 = x - \left[\frac{5832x}{(x-8)^3} \right]$$

$$x(x-8)^3 - 5832x = 0$$

$$x[(x-8)^3 - 5832] = 0$$

$$(x-8)^3 = 5832 \text{ (shown)} \quad \text{or} \quad x = 0 \text{ (rejected)}$$

l won't have negative gradient in this case.

Thus x_1 satisfies the equation $(x-8)^3 - 5832 = 0$ and

$$x_1 = \sqrt[3]{5832} + 8 = 26$$
$$y = \frac{27(26)}{26 - 8} = 39$$

x	26	26	26+
$\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{x - \left(\frac{5832x}{\left(x - 8\right)^3}\right)}{h}, (h > 0)$	- ve	0	+ve
Tangent			/

Therefore, hypotenuse PQ is minimum when x = 26 units

Area of triangle required = $\frac{1}{2}$ (39)(26) = 507 unit²

25(i) Observe that the arc length of the sector in Diagram 1 is also the circumference of the circle in Diagram 2.

Thus we have $a\theta = 2\pi r$, i.e., $r = \frac{a\theta}{2\pi}$.

(ii) $V = \frac{1}{3} \times \text{base area} \times \text{height}$ $= \frac{1}{3} \left(\pi r^2 \right) \sqrt{a^2 - r^2}$ $= \frac{1}{3} \left[\pi \left(\frac{a\theta}{2\pi} \right)^2 \right] \sqrt{a^2 - \left(\frac{a\theta}{2\pi} \right)^2}$ $= \frac{a^2 \theta^2}{12\pi} \sqrt{\left(\frac{a}{2\pi} \right)^2 \left(4\pi^2 - \theta^2 \right)}$ $= \frac{a^3 \theta^2}{24\pi^2} \sqrt{\left(4\pi^2 - \theta^2 \right)}.$ $V^2 = \frac{a^6 \theta^4}{576\pi^4} \left(4\pi^2 - \theta^2 \right)$

Alternative

Observe that the area of the sector is the curved surface area of the cone.

$$\pi r a = \frac{1}{2} a^2 \theta$$
$$r = \frac{a\theta}{2\pi}$$

(iii) When a = 2, we have $V^2 = \frac{1}{9\pi^4} (4\pi^2 \theta^4 - \theta^6)$

Sub a = 2 in at the first instance. It is easier to work with numbers.

Differentiating $V^2 = \frac{1}{9\pi^4} (4\pi^2 \theta^4 - \theta^6)$ w.r.t. θ

$$2V \frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{9\pi^4} \left(16\pi^2 \theta^3 - 6\theta^5 \right)$$
$$= \frac{2\theta^3}{9\pi^4} \left(8\pi^2 - 3\theta^2 \right)$$

When $\frac{dV}{d\theta} = 0$, $\theta^3 (8\pi^2 - 3\theta^2) = 0$, i.e., we have

$$\theta = 0$$
 (N.A.) or $\theta = \pm \sqrt{\frac{8\pi^2}{3}}$ (reject –ve).

Thus, $\theta = \sqrt{\frac{8\pi^2}{3}}$ and max $V = \frac{8\pi^2}{3} \left(\frac{1}{3\pi^2}\right) \sqrt{\left(4\pi^2 - \frac{8\pi^2}{3}\right)}$. $= \frac{8}{9} \sqrt{\frac{4\pi^2}{3}}$ $= \frac{16\pi\sqrt{3}}{27} \text{ cm}^3$ $\frac{\mathrm{d}L}{\mathrm{d}x} = \left(\frac{1}{2}\right) \left(a^2 + x^2\right)^{-\frac{1}{2}} \left(2x\right) + \left(\frac{1}{2}\right) \left(b^2 + (m-x)^2\right)^{-\frac{1}{2}} \left(2(m-x)\right) \left(-1\right)$

Note: $\frac{a(b+a)}{ma} = \frac{b(b+a)}{mb}$

Observe that there is a common term " $x^2(m-x)^2$ " in both LHS and RHS

26(i)
$$L = \sqrt{a^2 + x^2} + \sqrt{b^2 + (m - x)^2}$$

(ii)
$$\frac{dL}{dx} = \frac{x}{\sqrt{a^2 + x^2}} - \frac{m - x}{\sqrt{b^2 + (m - x)^2}}$$

When
$$\frac{dL}{dx} = 0$$
,

$$\frac{x}{\sqrt{a^2 + x^2}} = \frac{m - x}{\sqrt{b^2 + (m - x)^2}}$$

$$x\sqrt{b^2 + (m-x)^2} = (m-x)\sqrt{a^2 + x^2}$$

$$x^{2}(b^{2}+(m-x)^{2})=(m-x)^{2}(a^{2}+x^{2})$$

$$x^{2}b^{2} + x^{2}(m-x)^{2} = (m-x)^{2}a^{2} + x^{2}(m-x)^{2}$$

$$x^2b^2 = \left(m - x\right)^2 a^2$$

$$xb = \pm a(m-x)$$

$$xb = ma - xa$$
 or $-ma + xa$

$$x = \frac{ma}{a+b}$$
 or $\frac{ma}{a-b}$ (rejected as $0 < x < m$)

Thus $x = \frac{ma}{a+b}$ is the only value that gives a stationary value of L.

(iii)
$$\tan \theta_i = \frac{a}{\left(\frac{ma}{b+a}\right)} = \frac{b+a}{m}$$

$$\tan \theta_r = \frac{b}{\left(m - \frac{ma}{1 - a}\right)} = \frac{b}{\left(\frac{mb}{1 - a}\right)} = \frac{b + a}{m}$$

Since θ_i and θ_r are acute and $\tan \theta_i = \tan \theta_r \Rightarrow \theta_i = \theta_r$.

(iv) For the fire at *B* when $a = 1, b = 2, m = 5, x = \frac{5 \times 1}{1+2} = \frac{5}{3}$

$$\because \tan \theta_i = \frac{a}{x} = \frac{3}{5} \implies \text{largest } \theta_i = \tan^{-1} \left(\frac{3}{5} \right)$$

For the other end of the fire, m = 6 (since the length of the fire is 1), $x = \frac{6 \times 1}{1 + 2} = 2$

$$\because \tan \theta_i = \frac{a}{x} = \frac{1}{2} \implies \text{smallest } \theta_i = \tan^{-1} \left(\frac{1}{2} \right)$$

∴ range of θ_i values : $\tan^{-1} \left(\frac{1}{2} \right) \le \theta_i \le \tan^{-1} \left(\frac{3}{5} \right)$