

# **Anglo-Chinese Junior College**

JC2 Preliminary Examination Higher 2



A Methodist Institution (Founded 1886)

## CHEMISTRY

Paper 1 Multiple Choice

**9729/01** 9 September 2024 1 hour

Additional Materials: Multiple Choice Answer Sheet Data Booklet

### READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

#### Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

## Solutions

| 1 | D | 6  | В | 11 | С | 16 | Α | 21 | D | 26 | В |
|---|---|----|---|----|---|----|---|----|---|----|---|
| 2 | В | 7  | Α | 12 | С | 17 | D | 22 | С | 27 | В |
| 3 | В | 8  | D | 13 | D | 18 | D | 23 | В | 28 | В |
| 4 | С | 9  | Α | 14 | Α | 19 | С | 24 | С | 29 | В |
| 5 | D | 10 | В | 15 | D | 20 | Α | 25 | В | 30 | D |

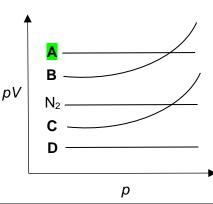
| 1 |                                            | The incomplete combustion of a gaseous hydrocarbon produced 80 cm <sup>3</sup> of carbon dioxide, 40 cm <sup>3</sup> of carbon monoxide and 160 cm <sup>3</sup> of water vapour. |  |  |  |  |  |  |
|---|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | Wha                                        | t volume of oxygen was used for combustion of the hydrocarbon?                                                                                                                   |  |  |  |  |  |  |
|   | Α                                          | <b>A</b> 40 cm <sup>3</sup>                                                                                                                                                      |  |  |  |  |  |  |
|   | В                                          | <b>B</b> 80 cm <sup>3</sup>                                                                                                                                                      |  |  |  |  |  |  |
|   | С                                          | 160 cm <sup>3</sup>                                                                                                                                                              |  |  |  |  |  |  |
|   | D                                          | 180 cm <sup>3</sup>                                                                                                                                                              |  |  |  |  |  |  |
|   | C <sub>x</sub> H <sub>y</sub>              | $v_1 + \frac{9}{2}O_2 \rightarrow 2CO_2 + CO + 4H_2O$                                                                                                                            |  |  |  |  |  |  |
|   | 40 80 40 160                               |                                                                                                                                                                                  |  |  |  |  |  |  |
|   | Comparing volume ratio of gases,           |                                                                                                                                                                                  |  |  |  |  |  |  |
|   | $40 \times \frac{9}{2} = 180 \text{ cm}^3$ |                                                                                                                                                                                  |  |  |  |  |  |  |
|   |                                            | 2                                                                                                                                                                                |  |  |  |  |  |  |

| 2 | <ul> <li>0.01 mol of an unknown ion G<sup>2+</sup> required 17.25 cm<sup>3</sup> of 0.23 mol dm<sup>-3</sup> acidified KMnO<sub>4</sub> to reach the end-point.</li> <li>What is the final oxidation state of element G?</li> </ul>                         |                                                                                                                                                                             |   |    |   |    |   |    |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|---|----|---|----|--|--|
|   | A                                                                                                                                                                                                                                                           | +3                                                                                                                                                                          | B | +4 | С | +5 | D | +6 |  |  |
|   | MnO <sub>4</sub> <sup>-</sup> + 8H <sup>+</sup> + 5e <sup>-</sup> → Mn <sup>2+</sup> + 4H <sub>2</sub> O<br>Amt of MnO <sub>4</sub> <sup>-</sup> = 0.01725 x 0.23<br>= 3.968 x 10 <sup>-3</sup> mol<br>Amt of e <sup>-</sup> = 3.968 x 10 <sup>-3</sup> x 5 |                                                                                                                                                                             |   |    |   |    |   |    |  |  |
|   |                                                                                                                                                                                                                                                             | $= 1.984 \times 10^{-2} \text{ mol}$ $1.984 \times 10^{-2} / 0.01 = 1.98 \approx 2$ $1 \text{ mol of } X^{2+} \text{ loses 2 mol of } e^-\text{, so final O.S of X is +4.}$ |   |    |   |    |   |    |  |  |

| 3 | Which ion will be deflected the most in an applied electric field?                                                       |  |  |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|   | <b>A</b> $^{79}\text{Br}^+$ <b>B</b> $^{81}\text{Br}^{2+}$ <b>C</b> $^{81}\text{Br}^+$ <b>D</b> $^{82}\text{Br}^{2+}$    |  |  |  |  |  |  |  |
|   | Angle of deflection is directly proportional to charge/mass ratio.                                                       |  |  |  |  |  |  |  |
|   | <sup>81</sup> Br <sup>2+</sup> has the largest charge/mass ratio, so it will be deflected the most in an electric field. |  |  |  |  |  |  |  |

| 4 |   | • 51 m           | leon num<br>ore neutro<br>omic num | ons thar<br>Iber of 8 | 19,<br>1 electrons<br>4, 85, 86, ol | r 87.            |                  |      |   |  |
|---|---|------------------|------------------------------------|-----------------------|-------------------------------------|------------------|------------------|------|---|--|
|   | Α | Po <sup>2+</sup> | В                                  | At <sup>3+</sup>      | C                                   | Rn <sup>4+</sup> | D                | Fr⁵+ |   |  |
|   |   |                  |                                    |                       | Po <sup>2+</sup>                    | At <sup>3+</sup> | Rn <sup>4+</sup> | Fr⁵+ | ] |  |
|   |   |                  |                                    | per of<br>tons        | 84                                  | 85               | 86               | 87   |   |  |
|   |   |                  |                                    | per of<br>trons       | 82                                  | 82               | 82               | 82   |   |  |
|   |   |                  |                                    | per of<br>rons        | 133                                 | 133              | 133              | 133  |   |  |
|   |   |                  |                                    | leon<br>nber          | 217                                 | 218              | 219              | 220  |   |  |
|   |   |                  |                                    |                       | 217                                 | 218              | 219              | 220  | ] |  |

| 5 | Whick                                                              | n spec       | ies contains two $\pi$ bonds?                      |  |  |  |  |
|---|--------------------------------------------------------------------|--------------|----------------------------------------------------|--|--|--|--|
|   |                                                                    | 1            | BF <sub>3</sub> NH <sub>3</sub>                    |  |  |  |  |
|   |                                                                    | 2            | CH <sub>2</sub> CHCH <sub>2</sub> CH <sub>3</sub>  |  |  |  |  |
|   |                                                                    | 3            | CH <sub>2</sub> CHCHO                              |  |  |  |  |
|   |                                                                    | 4            | HCO <sub>2</sub> CH <sub>2</sub> COCH <sub>3</sub> |  |  |  |  |
|   |                                                                    |              |                                                    |  |  |  |  |
|   | Α                                                                  | 1 and        | d 4 only                                           |  |  |  |  |
|   | В                                                                  | 2 an         | d 3 only                                           |  |  |  |  |
|   | С                                                                  | 2 and 4 only |                                                    |  |  |  |  |
|   | D                                                                  | 3 and 4 only |                                                    |  |  |  |  |
|   | 1 contains a dative bond between the boron atom and nitrogen atom. |              |                                                    |  |  |  |  |
|   | 2 contains only one $\pi$ bond in the alkene.                      |              |                                                    |  |  |  |  |


3 contains two  $\pi$  bonds, one in the alkene and one in the aldehyde. 4 contains two  $\pi$  bonds, one in ester and one in ketone.

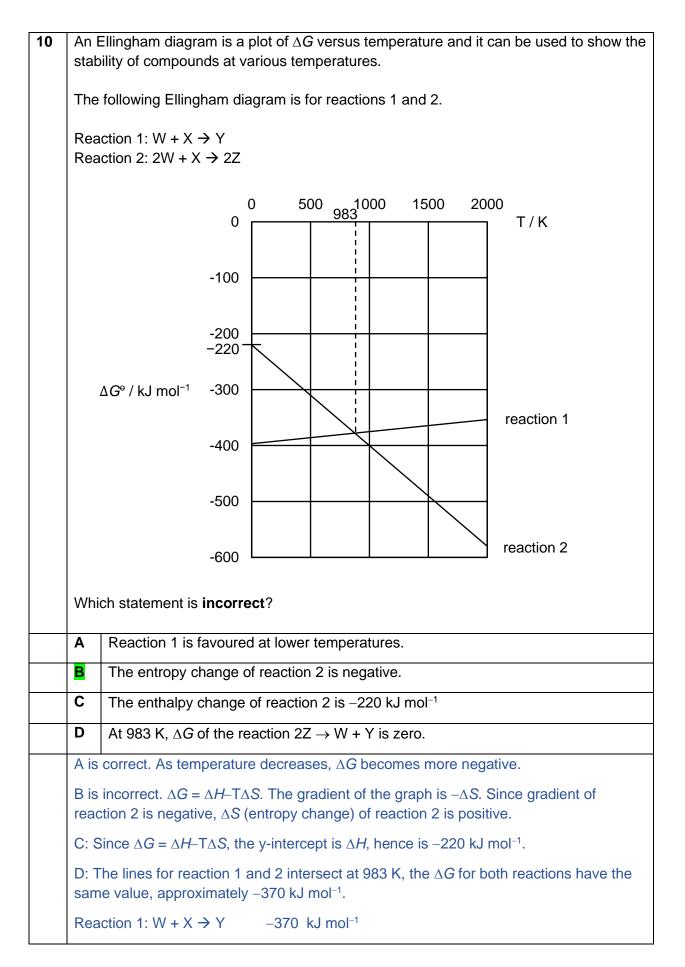
| 6 | Wha                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at is the strongest intermole | cular force in ethanal, eth | thanal, ethylamine and decan-1-ol? |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|------------------------------------|--|--|--|--|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ethanal                       | ethylamine                  | decan-1-ol                         |  |  |  |  |
|   | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hydrogen bonds                | hydrogen bonds              | induced dipoles                    |  |  |  |  |
|   | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | permanent dipoles             | hydrogen bonds              | induced dipoles                    |  |  |  |  |
|   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | permanent dipoles             | permanent dipoles           | hydrogen bonds                     |  |  |  |  |
|   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hydrogen bonds                | permanent dipoles           | hydrogen bonds                     |  |  |  |  |
|   | <ul> <li>Ethanal has permanent dipoles between its molecules as it is a polar molecule.</li> <li>Ethylamine has hydrogen bonding between its molecules due to the lone pair of electrons on oxygen and the hydrogen bonded to oxygen in its molecules.</li> <li>While there is hydrogen bonding between molecules of decan-1-ol, strongest intermolecular force in decan-1-ol is instantaneous dipole-induced dipoles due to the large electron cloud of the molecule.</li> </ul> |                               |                             |                                    |  |  |  |  |

**7** The volumes and pressures of equal masses of two gases,  $N_2$  and  $NH_3$ , are separately investigated, at constant temperature.

The results are plotted on a graph of pV against p. Both gases behave as ideal gases under the conditions chosen. The result for N<sub>2</sub> is given.

Which plot shows the result for NH<sub>3</sub>?



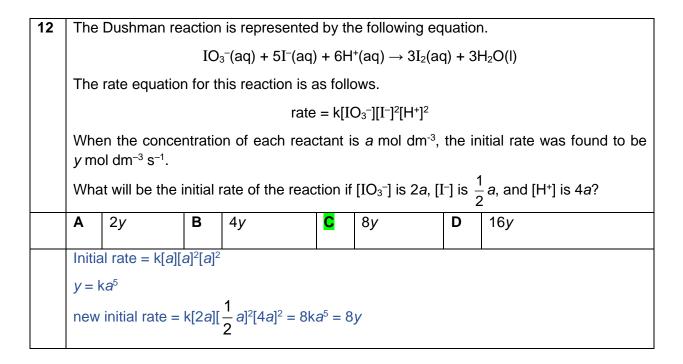

Since both gases behave ideally, the pV against p plot for NH<sub>3</sub> is also a constant.

 $NH_3$  has a lower molar mass than  $N_2$ . Since equal mass of gas is used, there are more  $NH_3$  and given pV = nRT, its pV value will be higher.

8 What can be added to a mixture of MgO and  $A_2O_3$  to separate them by filtration?

|                                                                                                                                                                    | 4      | weter                                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                    | 1      | water                                                                              |  |  |  |  |  |
|                                                                                                                                                                    | 2      | HC/(aq)                                                                            |  |  |  |  |  |
|                                                                                                                                                                    | 3      | NaOH(aq)                                                                           |  |  |  |  |  |
|                                                                                                                                                                    |        |                                                                                    |  |  |  |  |  |
| Α                                                                                                                                                                  | 1, 2 a | and 3                                                                              |  |  |  |  |  |
| В                                                                                                                                                                  | 1 and  | 1 and 2 only                                                                       |  |  |  |  |  |
| С                                                                                                                                                                  | 2 and  | 2 and 3 only                                                                       |  |  |  |  |  |
| D                                                                                                                                                                  | 3 onl  | у                                                                                  |  |  |  |  |  |
| MgC<br>filtrat                                                                                                                                                     |        | $M_2O_3$ are both insoluble in water, thus cannot be separated with water and then |  |  |  |  |  |
| Both $Al_2O_3$ and MgO are soluble in aqueous HCl as they react with HCl to give soluble products. Hence, they cannot be separated by HCl(aq) and then filtration. |        |                                                                                    |  |  |  |  |  |
| $Al_2O_3$ is soluble in aqueous NaOH to form NaAl(OH) <sub>4</sub> while MgO is insoluble. Hence, NaOH(aq) and then filtration can separate the two oxides.        |        |                                                                                    |  |  |  |  |  |

| 9                                                                                                                                                                                                                              | The following table shows the results of two experiments involving Group 17 halides, X <sup>-</sup> and Y <sup>-</sup> .                            |                                                                              |                                                |                           |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|---------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                              | experiment                                     | deduction                 |  |  |  |  |  |
|                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                              | halogen $Z_2$ added to $X^-$                   | X <sub>2</sub> formed     |  |  |  |  |  |
|                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                              | halogen Z <sub>2</sub> added to Y <sup>-</sup> | Y <sub>2</sub> not formed |  |  |  |  |  |
|                                                                                                                                                                                                                                | <ul> <li>Which row shows the halogens in decreasing order of oxidising strengths?</li> <li>A Y<sub>2</sub>, Z<sub>2</sub>, X<sub>2</sub></li> </ul> |                                                                              |                                                |                           |  |  |  |  |  |
|                                                                                                                                                                                                                                | В                                                                                                                                                   | $Y_2, X_2, Z_2$                                                              |                                                |                           |  |  |  |  |  |
|                                                                                                                                                                                                                                | C                                                                                                                                                   | X <sub>2</sub> , Z <sub>2</sub> , Y <sub>2</sub>                             |                                                |                           |  |  |  |  |  |
|                                                                                                                                                                                                                                | D                                                                                                                                                   | X <sub>2</sub> , Y <sub>2</sub> , Z <sub>2</sub>                             |                                                |                           |  |  |  |  |  |
|                                                                                                                                                                                                                                | Z <sub>2</sub> ca                                                                                                                                   | can oxidise $X^{-}$ . Thus, $Z_2$ is a stronger oxidising agent than $X_2$ . |                                                |                           |  |  |  |  |  |
| There is no visible reaction between $Z_2$ and $Y^-$ , $Z_2$ cannot oxidise $Y^-$ .<br>Hence $Y_2$ is a stronger oxidising agent than $Z_2$<br>Thus, the strongest oxidising agent is $Y_2$ , followed by $Z_2$ , then $X_2$ . |                                                                                                                                                     |                                                                              |                                                |                           |  |  |  |  |  |




Reaction 2:  $2W + X \rightarrow 2Z$  -370 kJ mol<sup>-1</sup>

The reaction: 2Z  $\rightarrow$  W + Y is Reaction 1 – Reaction 2

Hence,  $\Delta G$  of the reaction is -370 - (-370) = 0

| 11 | When an instant cold pack is used, a vigorous reaction occurs, and the temperature falls from 25 °C to 5 °C.<br>What are the correct signs of $\Delta G$ and $\Delta S$ for this reaction? |                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
|    |                                                                                                                                                                                            |                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|    |                                                                                                                                                                                            | $\Delta G$                                                                                                                                                                                       | ΔS |  |  |  |  |  |  |
|    | Α                                                                                                                                                                                          | +                                                                                                                                                                                                | +  |  |  |  |  |  |  |
|    | В                                                                                                                                                                                          | +                                                                                                                                                                                                | _  |  |  |  |  |  |  |
|    | <b>C</b> – +                                                                                                                                                                               |                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|    | D                                                                                                                                                                                          | _                                                                                                                                                                                                | _  |  |  |  |  |  |  |
|    | A spontaneous reaction occurred (indicated by the drop in temperature) so $\Delta G$ is negative.                                                                                          |                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|    |                                                                                                                                                                                            | The reaction is endothermic as the temperature fell. $\Delta S$ must be positive for negative $-T\Delta S$ term to outweigh the positive $\Delta H$ term so that overall $\Delta G$ is negative. |    |  |  |  |  |  |  |



| 13 |                                                 |                                                          | Q, 1.5 mc<br>librium. | ol of R and 0.2  | 2 mol of S  | were mixed in a 2.0 dm <sup>3</sup> flask and allowed to |  |  |  |  |
|----|-------------------------------------------------|----------------------------------------------------------|-----------------------|------------------|-------------|----------------------------------------------------------|--|--|--|--|
|    |                                                 | $4Q(g) + R(g) \rightleftharpoons S(g)$                   |                       |                  |             |                                                          |  |  |  |  |
|    | The equilibrium mixture contained 0.8 mol of S. |                                                          |                       |                  |             |                                                          |  |  |  |  |
|    | What                                            | What is the equilibrium concentration of Q in the flask? |                       |                  |             |                                                          |  |  |  |  |
|    | Α                                               | A 2.4 mol dm <sup>-3</sup>                               |                       |                  |             |                                                          |  |  |  |  |
|    | В                                               | 1.2 m                                                    | nol dm <sup>-3</sup>  |                  |             |                                                          |  |  |  |  |
|    | С                                               | 0.6 m                                                    | nol dm <sup>-3</sup>  |                  |             |                                                          |  |  |  |  |
|    | D                                               | 0.3 m                                                    | nol dm <sup>-3</sup>  |                  |             |                                                          |  |  |  |  |
|    |                                                 |                                                          | 4Q(g                  | ) + R(g) =       | ≓ S(g)      | 7                                                        |  |  |  |  |
|    | 1/                                              | mol                                                      | 3.0                   | 1.5              | 0.2         | _                                                        |  |  |  |  |
|    |                                                 |                                                          |                       |                  |             |                                                          |  |  |  |  |
|    | C / mol -2.4                                    |                                                          | -0.6 +0.6             |                  |             |                                                          |  |  |  |  |
|    | E                                               | / mol                                                    | 0.6                   | 0.9              | 0.8         | -                                                        |  |  |  |  |
|    |                                                 |                                                          |                       |                  |             |                                                          |  |  |  |  |
|    | eqn                                             | n conce                                                  | entration o           | of $Q = 0.6/2 =$ | 0.3 mol dr  | 1 <sup>-3</sup>                                          |  |  |  |  |
| 14 | Wa                                              | ter diss                                                 | ociates a             | ccording to th   | e equation  |                                                          |  |  |  |  |
| •• |                                                 |                                                          | oolatoo a             | -                |             | ′aq) + OH⁻(aq)                                           |  |  |  |  |
|    | The                                             | hH of                                                    | water at o            |                  |             | e shown below.                                           |  |  |  |  |
|    |                                                 | , pri or                                                 |                       | -                |             |                                                          |  |  |  |  |
|    |                                                 |                                                          |                       | temperat         |             | pH                                                       |  |  |  |  |
|    |                                                 |                                                          |                       | 298              |             | 7.0                                                      |  |  |  |  |
|    |                                                 | 333 6.5                                                  |                       |                  |             |                                                          |  |  |  |  |
|    | Wh                                              | ich stat                                                 | ements a              | re true?         |             |                                                          |  |  |  |  |
|    |                                                 | 1                                                        | The dise              | sociation of w   | ater is end | othermic.                                                |  |  |  |  |
|    |                                                 | 2                                                        | The p <i>K</i> ₂      | of water incr    | eases whe   | n temperature increases.                                 |  |  |  |  |
|    |                                                 | 3                                                        |                       |                  |             | en temperature increases.                                |  |  |  |  |

|   | 3      | Water becomes more acidic when temperature increases. |  |  |  |  |  |  |
|---|--------|-------------------------------------------------------|--|--|--|--|--|--|
|   |        |                                                       |  |  |  |  |  |  |
| A | 1 only | 1 only                                                |  |  |  |  |  |  |
| В | 1 and  | d 2 only                                              |  |  |  |  |  |  |
| С | 2 and  | 1 3 only                                              |  |  |  |  |  |  |
| D | 1, 2 a | and 3                                                 |  |  |  |  |  |  |
|   |        |                                                       |  |  |  |  |  |  |

Option 1: When temperature increases, pH deceases, thus [H<sup>+</sup>] increases. The POE shifts right when temperature increases to absorb the additional heat present favouring an endothermic process, thus the dissociation of water is endothermic.

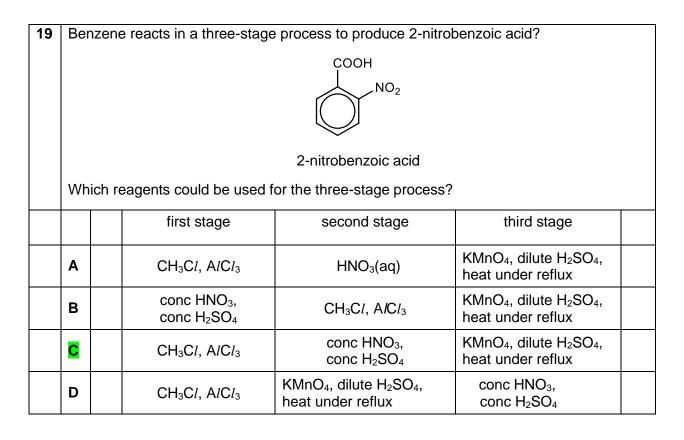
Option 2: Since POE shifts right,  $K_a$  value ( $K_a = \frac{[H^+][OH^-]}{[H_2O]}$ )increases. Thus,  $pK_a$ 

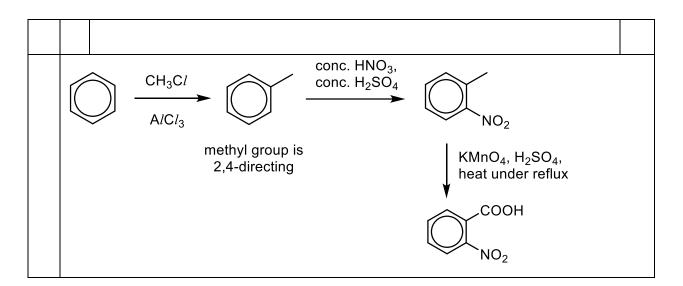
decreases.

Option 3: Water is always neutral as  $[H^+] = [OH^-]$ .

| 15 | Thet            | table below des  | cribes some    | Indica           | ators.                                    |               |                                         |  |  |
|----|-----------------|------------------|----------------|------------------|-------------------------------------------|---------------|-----------------------------------------|--|--|
|    |                 | indicator        | colour in acid |                  | colour in alkali                          | р <i>К</i> а  | range of pH for<br>colour change        |  |  |
|    | m               | ethyl orange     | red            |                  | yellow                                    | 3.7           | 3.2 - 4.4                               |  |  |
|    | t               | thymol blue      | yellow         | w blue           |                                           | 8.9 8.0 - 9.6 |                                         |  |  |
|    |                 | ator and the cor | · • •          | colour           | change?                                   | h row sho     | ws the most suitable                    |  |  |
|    |                 | indicator        | colour change  |                  |                                           |               |                                         |  |  |
|    | A methyl orange |                  |                | red to orange    |                                           |               |                                         |  |  |
|    | В               | methyl orange    | ;              | yellow to orange |                                           |               |                                         |  |  |
|    | С               | C thymol blue    |                |                  | yellow to green                           |               |                                         |  |  |
|    | D               | thymol blue      |                | blue             | to green                                  |               |                                         |  |  |
|    |                 |                  |                |                  | y base and weak ac<br>ed. Thymol blue wil |               | the equivalence poin<br>able indicator. |  |  |
|    |                 | Since NaOH is    | s in the coni  | cal fla          | sk, thymol blue will                      | turn from b   | olue to green.                          |  |  |

| 16 | Levo              | cabastine is an antihistamine used in the treatment of sore eyes.                           |  |  |  |  |  |  |
|----|-------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | F<br>N<br>N<br>HO |                                                                                             |  |  |  |  |  |  |
|    |                   | Levocabastine                                                                               |  |  |  |  |  |  |
|    | Whic              | h functional group is <b>not</b> present in Levocabastine?                                  |  |  |  |  |  |  |
|    | A                 | A alcohol                                                                                   |  |  |  |  |  |  |
|    | В                 | B amine                                                                                     |  |  |  |  |  |  |
|    | С                 | aryl halide                                                                                 |  |  |  |  |  |  |
|    | D                 | nitrile                                                                                     |  |  |  |  |  |  |
|    |                   | aryl halide<br>F<br>N<br>N<br>N<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO |  |  |  |  |  |  |


| 17 | 1,2-e       | poxycyclopentane can be converted to cyclopent-2-en-1-ol in a single reaction.                    |  |  |  |  |  |
|----|-------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Co catalyst |                                                                                                   |  |  |  |  |  |
|    |             | 1,2-epoxycyclopentane cyclopent-2-en-1-ol                                                         |  |  |  |  |  |
|    | Whic        | h statement about the reaction is correct?                                                        |  |  |  |  |  |
|    | Α           | 1,2-epoxycyclopentane rotates plane-polarised light.                                              |  |  |  |  |  |
|    | В           | B A reducing agent is used for this reaction.                                                     |  |  |  |  |  |
|    | С           | Cyclopent-2-en-1-ol is more volatile than the 1,2-epoxycyclopentane.                              |  |  |  |  |  |
|    | D           | An isomerisation reaction has occurred.                                                           |  |  |  |  |  |
|    |             | 2-epoxycyclopentane contains an internal plane of symmetry and does not rotate e-polarised light. |  |  |  |  |  |


B: The average oxidation number of carbon in both compounds remains the same so it is not reduction.

C: Cyclopent-2-en-1-ol contains hydrogen bonding between its molecules which are stronger than the permanent dipole – permanent dipole interactions between 1,2-epoxycyclopentane. Cyclopent-2-en-1-ol has a higher boiling point and is less volatile than 1,2-epoxycyclopentane.

D: The number of atoms in 1,2-epoxycyclopentane and cyclopent-2-en-1-ol are the same.

| 18 | Both b                                                                                  | penzene and propene react with bromine.                                                                                                                                                                                |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Which statement best explains the difference in the reactivity between these compounds? |                                                                                                                                                                                                                        |  |  |  |  |  |
|    | A                                                                                       | Benzene is a planar molecule which allows ease of attack by bromine whereas propene is a non-planar molecule.                                                                                                          |  |  |  |  |  |
|    | В                                                                                       | The carbocation intermediate produced in the reaction of benzene with bromine is stabilised by resonance.                                                                                                              |  |  |  |  |  |
|    | С                                                                                       | The sideway overlap of p orbitals in benzene means the C-C bonds alternate between long, single bonds and short, double bonds.                                                                                         |  |  |  |  |  |
|    | D                                                                                       | The delocalisation of electrons in benzene causes it to be more stable.                                                                                                                                                |  |  |  |  |  |
|    | requir                                                                                  | ifference in reactivity towards electrophiles stems from the stability of benzene, ing a strong electrophile with a full positive charge for reaction. This stability comes he delocalisation of electrons in benzene. |  |  |  |  |  |



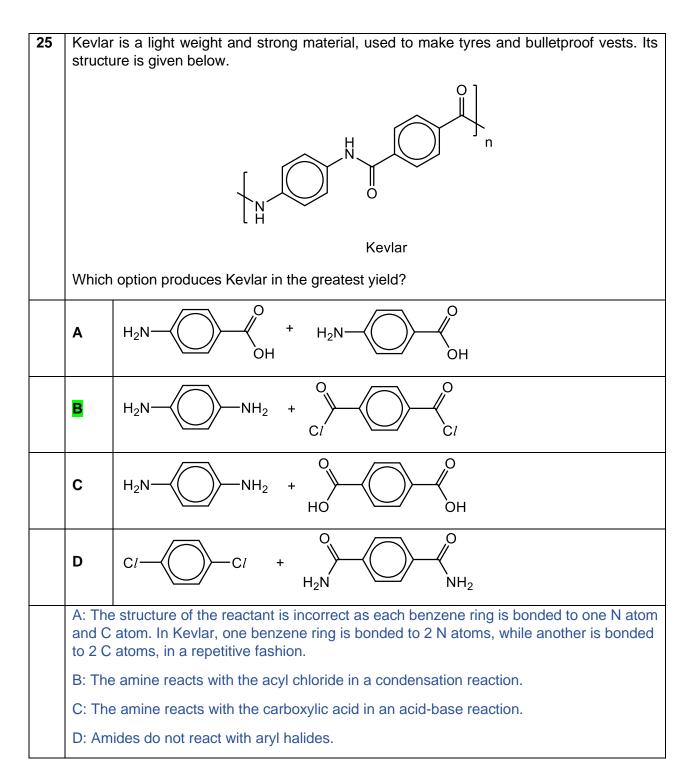


| 20 | Compound <b>X</b> is boiled with aqueous sodium hydroxide, cooled and then acidified with dilute nitric acid. Aqueous silver nitrate was subsequently added to the mixture.<br>It was observed that a precipitate, which formed when aqueous silver nitrate was added, dissolved upon the addition of aqueous ammonia to the mixture.<br>What could be the structure of <b>X</b> ? |                                                                                                                                                                                                                                                                           |   |      |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|--|--|--|--|
|    | A                                                                                                                                                                                                                                                                                                                                                                                  | CH <sub>2</sub> Cl                                                                                                                                                                                                                                                        | с | CH2I |  |  |  |  |
|    | В                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | D |      |  |  |  |  |
|    | halid<br>Only                                                                                                                                                                                                                                                                                                                                                                      | Only alkyl halides will undergo nucleophilic substitution with NaOH(aq) to liberate the halide ion, giving a positive test with AgNO <sub>3</sub> (aq).<br>Only AgCl will dissolve with the addition of NH <sub>3</sub> (aq), so the compound contains an alkyl chloride. |   |      |  |  |  |  |

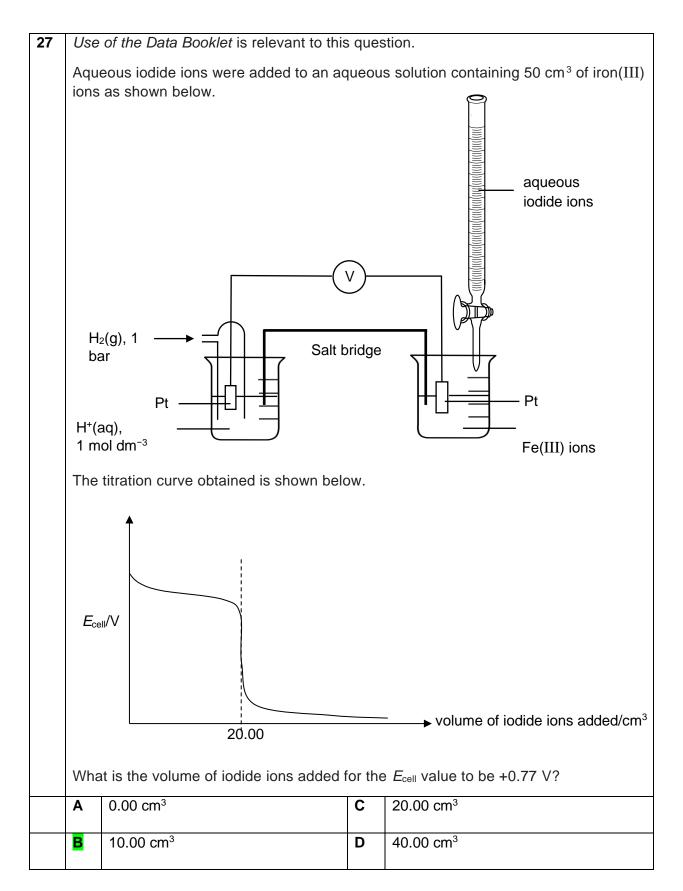
| 21 | The r | nechanism for the reaction between ethanal and hydrogen cyanide is given below.                |  |  |  |  |  |
|----|-------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    |       | step 1: CH <sub>3</sub> CHO + CN <sup>-</sup> $\rightarrow$ CH <sub>3</sub> CHOCN <sup>-</sup> |  |  |  |  |  |
|    |       | step 2: $CH_3CHOCN^-$ + HCN $\rightarrow$ CH <sub>3</sub> CH(OH)(CN) + CN <sup>-</sup>         |  |  |  |  |  |
|    | Whic  | h statement regarding the mechanism and the reaction is correct?                               |  |  |  |  |  |
|    | Α     | The negative charge is on the nitrogen atom in the intermediate.                               |  |  |  |  |  |
|    | В     | <b>B</b> There is one sp <sup>2</sup> hybridised carbon atom in the intermediate.              |  |  |  |  |  |
|    | С     | C The ethanal behaves as the nucleophile in step 1.                                            |  |  |  |  |  |
|    | D     | The mixture does not rotate plane-polarised light after the reaction.                          |  |  |  |  |  |

A: The negative charge is on the oxygen atom in the intermediate.

B: There is no sp<sup>2</sup> hybridised carbon atom in the intermediate.


C: Ethanal behaves as the electrophile in step 1.

D: As  $CN^-$  attacks both sides of the plane of the sp<sup>2</sup> carbon in ethanal, the resulting mixture will contain equal amounts of both enantiomers.


| 22 |                                                                                                                                                                  |          | organic compo<br>emical test. | und has the moled | cular formula $C_5H_{12}O$ . It was subjected to the | ; |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|-------------------|------------------------------------------------------|---|--|--|
|    |                                                                                                                                                                  |          | t                             | est               | observations                                         |   |  |  |
|    |                                                                                                                                                                  |          | alkaline aqueo                | ous iodine, warm  | yellow precipitate is seen                           |   |  |  |
|    |                                                                                                                                                                  |          | hot acidi                     | fied KMnO₄        | purple solution decolourises                         |   |  |  |
|    | Two students saw the tests and each made a comment.                                                                                                              |          |                               |                   |                                                      |   |  |  |
|    |                                                                                                                                                                  | stude    |                               | ompound is a sec  |                                                      |   |  |  |
|    |                                                                                                                                                                  | stude    | ent F The c                   | ompound is defini | tely pentan-2-ol.                                    |   |  |  |
|    | Whic                                                                                                                                                             | ch stude | nts are correct?              |                   |                                                      |   |  |  |
|    |                                                                                                                                                                  | S        | tudent E                      | student F         |                                                      |   |  |  |
|    | Α                                                                                                                                                                |          | √                             | $\checkmark$      | key                                                  | _ |  |  |
|    | В                                                                                                                                                                |          | X                             | $\checkmark$      | ✓ = correct                                          |   |  |  |
|    | C                                                                                                                                                                |          | √                             | X                 | X = not correct                                      |   |  |  |
|    | D                                                                                                                                                                |          | X                             | X                 |                                                      |   |  |  |
|    | There is no degree of unsaturation in the molecular formula $C_5H_{12}O$ . This means the compound does not contain a ketone nor alkene.                         |          |                               |                   |                                                      |   |  |  |
|    | The positive test with alkaline aqueous iodine means the compound has the structural $H$<br>R-C-OH                                                               |          |                               |                   |                                                      |   |  |  |
|    | form                                                                                                                                                             | ula      | ĊH <sub>3</sub>               |                   |                                                      |   |  |  |
|    | The positive test with hot acidified KMnO <sub>4</sub> indicates the compound can be oxidised and contains a primary or secondary alcohol. Student E is correct. |          |                               |                   |                                                      |   |  |  |
|    | Stud                                                                                                                                                             | ent F is | not correct as tl             | ne alcohol may be | 3-methylbutan-2-ol.                                  |   |  |  |

| 23 | Noradrenaline functions in the brain as a neurotransmitter. |                                                                                            |  |  |  |  |
|----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
|    |                                                             | HO<br>HO<br>HO                                                                             |  |  |  |  |
|    | noradrenaline                                               |                                                                                            |  |  |  |  |
|    |                                                             | noradrenaline                                                                              |  |  |  |  |
|    | How                                                         | moradrenatine<br>many moles of sodium hydroxide will react with one mole of noradrenaline? |  |  |  |  |
|    | How<br>A                                                    |                                                                                            |  |  |  |  |
|    |                                                             | many moles of sodium hydroxide will react with one mole of noradrenaline?                  |  |  |  |  |
|    | A                                                           | many moles of sodium hydroxide will react with one mole of noradrenaline?                  |  |  |  |  |

| 24 | Whic                                                                                                                                                                                               | h statement regarding ethanoic acid is true?                                                                                                        |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | Α                                                                                                                                                                                                  | A It reacts with hydrogen chloride to form ethanoyl chloride.                                                                                       |  |  |  |  |  |  |
|    | В                                                                                                                                                                                                  | <b>B</b> It can be reduced to ethanol with hydrogen gas in the presence of Pt.                                                                      |  |  |  |  |  |  |
|    | C                                                                                                                                                                                                  | <b>C</b> It does not form a yellow precipitate when warmed with alkaline aqueous iodine.                                                            |  |  |  |  |  |  |
|    | D                                                                                                                                                                                                  | It reacts with phenol in the presence of concentrated sulfuric acid to form phenyl ethanoate.                                                       |  |  |  |  |  |  |
|    | A: To                                                                                                                                                                                              | form CH <sub>3</sub> COCI, either SOCI <sub>2</sub> or PCI <sub>5</sub> must be used. HCl only reacts with alcohols.                                |  |  |  |  |  |  |
|    | B: Th                                                                                                                                                                                              | e unsaturated $\pi$ bonds in the carboxylic acid can be reduced to give primary alcohol.                                                            |  |  |  |  |  |  |
|    | C: Only alcohols with the structure $CH_3$ or carbonyl compounds with the structure $CH_3$ or carbonyl compounds with the structure $CH_3$ will give a positive test with alkaline aqueous iodine. |                                                                                                                                                     |  |  |  |  |  |  |
|    |                                                                                                                                                                                                    |                                                                                                                                                     |  |  |  |  |  |  |
|    |                                                                                                                                                                                                    |                                                                                                                                                     |  |  |  |  |  |  |
|    |                                                                                                                                                                                                    | form phenyl ethanoate, phenol needs to react with ethanoyl chloride, not ethanoic<br>Carboxylic acids only forms esters with alcohols, not phenols. |  |  |  |  |  |  |



| 26 | Ар                    | eptid                                                                                                                                                                                                                                                          | le chain isolated from a protein in the medicinal mushroom <i>Lingzhi</i> is shown below.                                    |  |  |  |  |  |  |
|----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    |                       | op                                                                                                                                                                                                                                                             |                                                                                                                              |  |  |  |  |  |  |
|    |                       |                                                                                                                                                                                                                                                                | ser-gly-arg-asn-leu-gly-val-lys-pro-ser                                                                                      |  |  |  |  |  |  |
|    |                       | The enzyme trypsin will only hydrolyse a polypeptide chain at a peptide bond where the carboxyl group has been donated by either lysine (lys) or arginine (arg).<br>Which fragments could be made when trypsin acts on the peptide chain from <i>Lingzhi</i> ? |                                                                                                                              |  |  |  |  |  |  |
|    | Wh                    |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    |                       | 1 ser-gly-arg                                                                                                                                                                                                                                                  |                                                                                                                              |  |  |  |  |  |  |
|    | 2 lys-pro-ser         |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    | 3 asn-leu-gly-val-lys |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    | 4 arg-asn-leu-gly-val |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    |                       |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    | A 1, 2, 3 and 4       |                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |  |  |  |
|    | B                     | B 1 and 3 only                                                                                                                                                                                                                                                 |                                                                                                                              |  |  |  |  |  |  |
|    | С                     | 2 ai                                                                                                                                                                                                                                                           | nd 4 only                                                                                                                    |  |  |  |  |  |  |
|    | D                     | 1 ai                                                                                                                                                                                                                                                           | nd 4 only                                                                                                                    |  |  |  |  |  |  |
|    |                       |                                                                                                                                                                                                                                                                | ention, the carboxyl group is on the right hand side of the amino acid. Hence, we cut on the right hand side of arg and lys. |  |  |  |  |  |  |
|    |                       |                                                                                                                                                                                                                                                                | ser-gly-arg-asn-leu-gly-val-lys-pro-ser                                                                                      |  |  |  |  |  |  |
|    | He                    | nce, (                                                                                                                                                                                                                                                         | only 1 and 3 can be obtained.                                                                                                |  |  |  |  |  |  |



At 0.0 cm<sup>3</sup>, the solution only contains Fe<sup>3+</sup> ions.

When  $I^-$  ions are added, it reduces the Fe<sup>3+</sup> to Fe<sup>2+</sup>. 2Fe<sup>3+</sup> + 2I<sup>-</sup>  $\rightarrow$  2Fe<sup>2+</sup> + I<sub>2</sub> This creates a half cell of Fe<sup>3+</sup>/Fe<sup>2+</sup> measured against H<sup>+</sup>/H<sub>2</sub> between 0 to 20 cm<sup>3</sup>, as there will be a mixture containing Fe<sup>3+</sup> and Fe<sup>2+</sup> in solution.

At 10.0 cm<sup>3</sup>, the [Fe<sup>3+</sup>] = [Fe<sup>2+</sup>], hence,  $E^{e}(Fe^{3+} / Fe^{2+})$  value for the half-cell is 0.77V. E<sub>cell</sub> = 0.77 - 0.00 = +0.77V.

At 20.0cm<sup>3</sup>, the mixture only contains  $I_2$  and Fe<sup>2+</sup>. After 20.0 cm<sup>3</sup>, the mixture contains  $I_2$ ,  $I^-$  and Fe<sup>2+</sup> and the half-cell measured against H<sup>+</sup>/H<sub>2</sub> will become  $I_2/I^-$ .

| Use of the Data Booklet is relevant to this question.                                                                          |                                                                                                                        |                                                                                                                                                                       |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                | By considering <i>E</i> <sup>®</sup> values, which aqueous species will oxidise Sn <sup>2+</sup> to Sn <sup>4+</sup> ? |                                                                                                                                                                       |  |  |  |  |  |  |
|                                                                                                                                | <mark>1</mark>                                                                                                         | H <sub>2</sub> O <sub>2</sub> , H <sup>+</sup>                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                | 2                                                                                                                      | I <sub>2</sub>                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                | 3                                                                                                                      | V <sup>3+</sup>                                                                                                                                                       |  |  |  |  |  |  |
|                                                                                                                                |                                                                                                                        |                                                                                                                                                                       |  |  |  |  |  |  |
| Α                                                                                                                              | 1, 2                                                                                                                   | and 3 only                                                                                                                                                            |  |  |  |  |  |  |
| B                                                                                                                              | 1 an                                                                                                                   | d 2 only                                                                                                                                                              |  |  |  |  |  |  |
| С                                                                                                                              | 2 an                                                                                                                   | d 3 only                                                                                                                                                              |  |  |  |  |  |  |
| D                                                                                                                              | 1 only                                                                                                                 |                                                                                                                                                                       |  |  |  |  |  |  |
| $Sn^{4+} + 2e^{-} \rightleftharpoons Sn^{2+}$ $E^{\circ} = +0.15V$                                                             |                                                                                                                        |                                                                                                                                                                       |  |  |  |  |  |  |
| Since Sn <sup>2+</sup> is oxidised, it is at the oxidation half-cell. The species to be reduced is at the reduction half-cell. |                                                                                                                        |                                                                                                                                                                       |  |  |  |  |  |  |
| Hend                                                                                                                           | ce, the                                                                                                                | $e E^{e}$ of the aqueous species > +0.15V for the reaction to be feasible.                                                                                            |  |  |  |  |  |  |
| E <sup>e</sup> (H                                                                                                              | 2 <b>0</b> 2,H                                                                                                         | $^{+}/H_{2}O) = +1.77V$ and $E^{e}(I_{2}/I^{-}) = +0.54V$ hence can oxidise $Sn^{2+}$ .                                                                               |  |  |  |  |  |  |
| E <sup>⊕</sup> (V                                                                                                              | <sup>3+</sup> /V <sup>2+</sup> )                                                                                       | ) = $-0.26V$ , hence cannot oxidise Sn <sup>2+</sup> .                                                                                                                |  |  |  |  |  |  |
|                                                                                                                                | By co<br>A<br>B<br>C<br>D<br>Sn <sup>4+</sup><br>Sinco<br>redu<br>Hence<br>E <sup>o</sup> (H                           | By consider<br>1<br>2<br>3<br>A 1, 2<br>B 1 an<br>C 2 an<br>D 1 on<br>$Sn^{4+} + 2e^{-1}$<br>Since $Sn^{2+}$<br>reduction I<br>Hence, the<br>$E^{\circ}(H_2O_2, H_1)$ |  |  |  |  |  |  |

| 29 | A complex of chromium with the general formula $CrCl_3 \bullet 6H_2O$ forms an aqueous solution.                                                |                                                    |     |                      |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----|----------------------|--|--|--|--|
|    | When 0.01 mol of an aqueous solution of this compound was treated with an excess of aqueous silver nitrate, 2.87 g of precipitate was obtained. |                                                    |     |                      |  |  |  |  |
|    | Wha                                                                                                                                             | at is the formula of the chromium comple           | ex? |                      |  |  |  |  |
|    | Α                                                                                                                                               | [Cr(H <sub>2</sub> O) <sub>6</sub> ] <sup>3+</sup> | С   | $[Cr(H_2O)_4Cl_2]^+$ |  |  |  |  |

| B                                                                                                     | $[Cr(H_2O)_5Cl]^{2+}$                      | D | [Cr(H <sub>2</sub> O) <sub>3</sub> C <i>l</i> <sub>3</sub> ] |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------|---|--------------------------------------------------------------|--|
| Amt                                                                                                   | of AgCl ppt = 2.87 ÷ 143.4<br>= 0.0200 mol | 1 |                                                              |  |
| Ratio of Cl <sup>-</sup> : CrC $I_3 \bullet 6H_2O = 0.02 \div 0.01$<br>= 2                            |                                            |   |                                                              |  |
| There are 2 anions $Cl^-$ that are not in the complex ion. Hence the complex only contains 1 $Cl^-$ . |                                            |   |                                                              |  |

| 30                                                                         | A student carried out 2 experiments on separate samples of aqueous CuSO <sub>4</sub> .                                                                                                                                |                                                                                      |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|                                                                            | Experiment 1                                                                                                                                                                                                          |                                                                                      |  |  |  |
|                                                                            | When aqueous potassium iodide was added to a sample of aqueous CuSO <sub>4</sub> , a white precipitate in a brown solution was formed.                                                                                |                                                                                      |  |  |  |
|                                                                            | Experiment 2                                                                                                                                                                                                          |                                                                                      |  |  |  |
|                                                                            | When aqueous ammonia is added to another sample aqueous of CuSO <sub>4</sub> , a pale blue precipitate is formed. The precipitate dissolves when an excess of aqueous ammonia is added, forming a deep blue solution. |                                                                                      |  |  |  |
|                                                                            | Whi                                                                                                                                                                                                                   | ch statement about experiments 1 and 2 is <b>incorrect</b> ?                         |  |  |  |
|                                                                            | Α                                                                                                                                                                                                                     | Ligand exchange occurred in Experiment 2.                                            |  |  |  |
|                                                                            | В                                                                                                                                                                                                                     | The pale blue precipitate is [Cu(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>4</sub> ]. |  |  |  |
|                                                                            | С                                                                                                                                                                                                                     | Reduction of copper(II) ions occurred in Experiment 1.                               |  |  |  |
|                                                                            | D                                                                                                                                                                                                                     | The complex ion in the deep blue solution has a tetrahedral shape.                   |  |  |  |
| Experiment 1:                                                              |                                                                                                                                                                                                                       | eriment 1:                                                                           |  |  |  |
|                                                                            | $2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$                                                                                                                                                                              |                                                                                      |  |  |  |
| Reduction of Cu <sup>2+</sup> to Cu <sup>+</sup> occurred in experiment 1. |                                                                                                                                                                                                                       | uction of Cu <sup>2+</sup> to Cu <sup>+</sup> occurred in experiment 1.              |  |  |  |
|                                                                            | The                                                                                                                                                                                                                   | white ppt is Cul                                                                     |  |  |  |
|                                                                            | Ligand exchange occurred in experiment 2                                                                                                                                                                              |                                                                                      |  |  |  |
|                                                                            | $[Cu(H_2O)_6]^{2+} + 2OH^- \Rightarrow [Cu(OH)_2(H_2O)_4] + 2H_2O$<br>The blue ppt is $[Cu(OH)_2(H_2O)_4]$                                                                                                            |                                                                                      |  |  |  |
|                                                                            |                                                                                                                                                                                                                       |                                                                                      |  |  |  |
|                                                                            | $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$                                                                                                                                      |                                                                                      |  |  |  |
|                                                                            | The deep blue solution is due to $[Cu(NH_3)_4(H_2O)_2]^{2+}$ . The ion has an octahedral shape as there are 6 ligands about the metal centre.                                                                         |                                                                                      |  |  |  |