Solutions (Sequencs and Series)

1(a)	First term	=1, common difference = d	
	S_5, S_{10}, S_{20}	form a GP .	
	$\Rightarrow \frac{S_{10}}{S_5} = \frac{S_2}{S_1}$	<u>20</u> 10	
	$\Rightarrow \left(\frac{10}{2}\left(2+\right)\right)$	$9d\Big)\Big)^2 = \frac{5}{2}(2+4d) \cdot \frac{20}{2}(2+19)$	d)
	$\Rightarrow (2+9d)$	$)^{2} = (2+4d).(2+19d)$	
	$\Rightarrow 5d^2 - 10$	d = 0	
	$\Rightarrow d = 2$	or $d = 0$ (rejected as AP is i	ncreasing)
	25		
	$\left \frac{2S_n}{S_n - 100} \right\rangle$	>1	
	$2n^2$		
	$\frac{2n}{(n+1)^2-1}$	$\frac{1}{00} > 1$	
	$2n^2 - (n+1)$	$(1)^{2} + 100$	
	$\frac{(n+1)^2}{(n+1)^2}$	$\frac{1}{-100} > 0$	
	$n^2 - 2n + 9$	⁹⁹ > 0	
	$\overline{(n+1)^2-1}$	$\frac{1}{00} > 0$	
	Since $n^2 - 1$	2n+99 > 0 as discriminant <	< 0 and coefficient of n^2 is +ve.
	$(n+1)^2 - 10^2$	00 > 0	
	(n+1+10)	(n+1-10) > 0	
	(<i>n</i> +11)(<i>n</i> -	-9)>0	
	<i>n</i> > 9		
	\therefore least <i>n</i> is	s 10.	
(b)			
	nth	Outstanding amt owed at	Outstanding amt owed at the end of the <i>n</i> th
	month	the start of the month (in hundreds)	month (in hundreds)
	1	34	34
	2	(34)2	(34)2
	3	$(34)2^2$	34(2) ² -70
	4	$2(34(2)^2-70)$	$34(2)^3 - 70(2) - 70$
	5	$2(34(2)^3 - 70(2) - 70)$	$34(2)^4 - 70(2)^2 - 70(2) - 70$
	n		$34(2)^{n-1} - 70(2)^{n-3} - \dots - 70(2) - 70$
1			

Total amount of money owed at the end of *n*th month

 $= 100(34(2)^{n-1} - 70(2)^{n-3} - \dots - 70(2) - 70)$ = $100\left(34(2)^{n-1} - \frac{70((2)^{n-2} - 1)}{2 - 1}\right)$ = $100\left(70 - 2^{n-1}\right)$ To be free from debt, $70 - 2^{n-1} \le 0$ $\Rightarrow 2^n \ge 140$ $\Rightarrow n \ge \frac{\ln 140}{\ln 2} = 7.129$ Least n = 8Earliest month to be free from debt = Jan 2014

Length of film in the 1^{st} layer = 42π 2(i) Length of film in the 2^{nd} layer = $(42 + 2x)\pi$ Length of film in the 3^{rd} layer = $(42 + 4x)\pi$ Length of film in the n^{th} layer = $[42 + 2x(n-1)]\pi = 124\pi$ 2x(n-1) = 82 \therefore x(n-1) = 41 (shown) $S_n = 16766\pi$ mm, $a = 42\pi$ mm, $l = 124\pi$ mm 2(ii) Using $S_n = \frac{n}{2}(a+l)$ $n = \frac{2S_n}{a+l} = \frac{2(16766\pi)}{42\pi + 124\pi} = 202$ Using (i), x(n-1) = 41, $x = \frac{41}{n-1} = 0.20398$ x = 0.204 (to 3 s.f.) The sum of the first 10 terms = k (the sum of the first 5 terms) **2(iii)** $\frac{a(1-r^{10})}{1-r} = k \times \frac{a(1-r^5)}{1-r}$ $1 - r^{10} = k(1 - r^5)$ $(1-r^5)(1+r^5) = k(1-r^5)$

	Since $r \neq 1, \ 1 - r^5 \neq 0$
	Therefore, $k = 1 + r^5$ (shown)
2(iv)	Since $k = 33$ and $a = 50$,
	$1 + r^5 = 33$
	$r^5 = 32$
	r = 2
	Suppose the roll of film is cut into <i>n</i> pieces.
	The sum of the first <i>n</i> terms \leq total length of the film
	$\frac{50(2^n-1)}{2-1} \le 52580$
	$2^n - 1 \le 1051.6$
	$2^n \le 1052.6$
	$n\ln 2 \le \ln 1052.6$
	$n \le 10.03974$
	\Rightarrow the largest possible value of <i>n</i> is 10.
	Hence the largest number of pieces is 10 pieces.

$$= \left(\ln a + (n-1)\ln r\right) - \left(-\ln a + (n-1)\ln\left(\frac{1}{r}\right)\right)$$

= $2\ln a + 2(n-1)\ln r$
 $T_n - T_{n-1} = 2\ln a + 2(n-1)\ln r - 2\ln a - 2(n-2)\ln r$
= $2\ln r$, a constant
Hence the new sequence is an arithmetic progression
Alternative:
 $T_n = \ln\left(\frac{U_n}{V_n}\right) = \ln(U_n) - \ln(V_n) = \ln(U_n) - \left[-\ln(U_n)\right] = 2\ln(U_n)$
 $T_n - T_{n-1} = 2\ln(U_n) - 2\ln(U_{n-1}) = 2\left[\ln\left(\frac{ar^{n-1}}{ar^{n-2}}\right)\right] = 2\ln r = \text{constant}$

4
(i)
Total volume: 850 m³
Volumes (in m³) filled: 4, 4.5, 5, 5.5, 6,
Assume that the container is completely filled at the *n*th pumping action.
For the AP above,
$$S_n = \frac{n}{2} [2(4) + (n-1)(0.5)] \ge 850$$

$$n^2 + 15n - 3400 \ge 0 \quad ---- (*)$$
Considering $n^2 + 15n - 3400 \ge 0$,
we have $n = \frac{-15 \pm \sqrt{15^2 - 4(1)(-3400)}}{2(1)}$,
i.e., $n \approx 51.2899$ or $n \approx -66.2899$ (or use G.C.)
Hence from (*),
 $(n - 51.2899)(n + 66.2899) \ge 0$
 $\Rightarrow n \le -66.2899$ (NA, since $n > 0$) or $n \ge 51.2899$ \therefore at the 52^{th} pumping action, the container would be completely filled, with some liquid overflowing.
$$S_{52} = \frac{52}{2} [2(4) + 51(0.5)]$$
 $= 871$
 \therefore volume of liquid that overflows = $(871 - 850)$ m³ = 21 m³
Alternative
 $S_n = \frac{n}{2} [2(4) + (n-1)(0.5)] \ge 850$
Using G.C.,

n	$\frac{n}{2}[2(4)+($	1
51	841.5	
53	901	
∴ volume o =(871–85	of liquid that 0) m ³	overflows
$= 21 \text{m}^3$,	
(ii) For machin $S_{50} = \frac{50}{2} [2$	the A , (4) + 49(0.5)]
= 812.5		
Volumes (i	n m ³) filled	by <i>B</i> : 5, $5\left(\frac{5}{6}\right)$, $5\left(\frac{5}{6}\right)^2$,
For the GP $5\left(1-\right)$	above, $\left(\frac{5}{6}\right)^{10}$	
$S_{10} = \frac{1}{1}$	$\frac{-\frac{5}{6}}{\frac{41}{6}} \approx 25.154$	8 m^3
623 ∴ total vol	9 ~ 25.154 ume filled at	Eter 10 th pumping action by B
=(812.5+3)	25.1548) m ³ 8 m ³	
$\approx 838 \text{ m}^3$	5 111	
(b)		
(For the GI	P above, sind	$r = \frac{5}{6} < 1$, sum to infinity exists.)
Sum to infi	$\operatorname{inity} = \frac{5}{\left(1 - \frac{5}{6}\right)}$	
	- 50	
Volume of $=(850-81)$	container to $(2.5) \text{ m}^3 = 3$	be filled by machine B 7.5 m ³
Since the the than 37.5 n	neoretical m n ³ ,	aximum volume that <i>B</i> alone can fill is only 30 m^3 , which is less
the contain	er would ne	ver be completely filled.

Alternative:

Since the container can only be filled to a theoretical maximum total volume of $812.5 + 30 = 842.5 \text{ m}^3$, which is less than 850 m³, the container would never be completely filled.

5 (a)	Note that the progression of A is 1,3,5,7,9,11, (consists of all positive odd numbers)
(i)	<i>n</i> th term of G , $T_n = \frac{a}{2} (3^n - 1) - \frac{a}{2} (3^{n-1} - 1)$
	$= \frac{a}{2} \left(3^n - 3^{n-1} \right) = \frac{a}{2} \left(3^{n-1} \right) \left(3 - 1 \right) = a \left(3^{n-1} \right)$
	3^{n-1} is odd for all $n \ge 1$.
	Hence, for $a(3^{n-1})$ to be a term in A , then $a = 2m-1$, $m \in Z^+$.
	That is, <i>a</i> may be any positive odd integer.
(ii)	Let the new progression be $\mathbf{H}: 2^{t_1}, 2^{t_2}, 2^{t_3}, 2^{t_4}, \dots$
	Let d be the common difference of A . (n+1)th term of H
	Consider, $\frac{(n+1)$ in term of H }{(n) th term of H
	$H = 2^{t_{n+1}}$
	$=\frac{H_{n+1}}{H}=\frac{2^{t_{n+1}}}{2^{t_n}}=2^{t_{n+1}-t_n}=2^d=2^2=4$, which is a constant.
	Hence H is a geometric progression.
(b)(i)	Value of the machine after 5 years
	$= 70000(0.9)^5$
	= \$41334.30.
(ii)	Maximum revenue that could possibly be generated by the machine
(11)	14000 \$200000
	$=\frac{1}{1-(0.93)}=\$200000.$
	Consider at the nth year of operation,
	Total revenue + prevailing value – cost of new machine ≥ 40000
	$\frac{14000(1 - (0.93)^n)}{1000} + 70000(0.9)^n - 70000 \ge 40000$
	1-(0.93)
	$20(1 - (0.93)^n) + 7(0.9)^n - 7 \ge 4$
	$20(0.93)^n - 7(0.9)^n \le 9$
	From G.C., $\underline{n} = \underline{a_n}$
	6 9.2197
	7 8.6859
	$\therefore n \ge 7$
	Hence, the number of years the machine is in operation is 7.

6 (3) Let the AP be a, q+d, ..., a+4d

$$\frac{5}{2}(2a+4d) = 105 = 75a+10d = 105$$

 $0+2d = 21 - (1)$
 $\frac{a+2d}{a} = \frac{a+3d}{a+2d} - (2)$
Subt (1) into (2):
 $\frac{21-2d+2d}{21-2d} = \frac{21-2d+3d}{21-2d+2d}$
 $a1^{2} = (21-2d)(21+d)$
 $-2d^{2} + 21(-d) + 21^{2} = 21^{2}$
 $d(-2d-21) = 0$
 $d(-2d-21) = 1$
 $d(-2d-21) =$

7(i)(a)	Total amount paid = $600 + 650 + 700 +$			
	a = 600	, d = 50		
	$S_n = \frac{n}{2}$	[2(600)+(n-1)50]		
	=n(600)	0+25n-25)		
	$=25n^{2}$ -	+575 <i>n</i> (Shown)		
	Total pa	and after nth payment = $\$(25n^2 +$	575 <i>n</i>)	
(i)(b)	To com Amoun	plete fully repay her study loan, t paid $\geq 30000 + 2500$		
	$25n^2 + 5$	$575n - 32500 \ge 0$		
	From G	C, $n \le -49.345$ or $n \ge 26.345$		
	It will ta	ake Emma 27 payments to fully	repay her study loan.	
(ii)(a)	Mth	Amount owed at start of the month	Amount owed at end of the month	
	Lan	20000	111011111 200000	
	Jan	30000 - x	30000 - x	
1	(n=1)			

r	1		1	1
	Feb (n=2)	30000 - 2x	30000(1.01) - 2x(1.01)	
	Mar	30000(1.01) - 2x(1.01) - x	$30000(1.01^2) - 2x(1.01^2)$	
	(n=3)		-x(1.01)	
	Apr	$30000(1.01^2) - 2x(1.01^2)$	$30000(1.01^3) - 2x(1.01^3)$	
		-x(1.01)	$-x(1.01^2)$	
		- <i>x</i>	-x(1.01)	
	n	$30000(1.01^{n-2}) - 2x(1.01^{n-2})$		
		$-x(1.01^{n-3})$		
		$-x(1.01^{n-4})$		
		-x		
	Amount	t owed after 4 payments		-
	= 30000	$D(1.01^2) - 2x(1.01^2) - x(1.01) - x$	x	
(ii)(b)	After n th	^h payments, amount owed		
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - (1.01)^n$	$^{-3}x - (1.01)^{n-4}x - \dots - x$	
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - x [(1.01)^{n-2}]$	$1)^{n-3} + (1.01)^{n-4} + (1.01)^{n-5} + \dots$	$.+(1.01)^{0}$
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - x\left[\frac{1.01}{1.0}\right]$	$\left[\frac{n^{-2}-1}{(1-1)}\right]$	
	= 30000	$0(1.01)^{n-2} - 2x(1.01)^{n-2} - 100x(1.01)^{n-2}$	$.01^{n-2}-1$)	
	Alterna After n ^{ti}	tive ^h payments, amount owed		
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - (1.01)^{n}$	$x^{-3} x - (1.01)^{n-4} x - \dots - (1.01)^{1} x$	z - x
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - [(1.01)^{n-2}]$	$\int_{0}^{n-3} x + (1.01)^{n-4} x + \dots + (1.01)^{1}$	x] - x
	= 30000	$0(1.01)^{n-2} - 2x(1.01)^{n-2} - x\left[\frac{1.01}{2}\right]$	$\frac{1(1.01^{n-3}-1)}{1.01-1} - x$	
	= 30000	$D(1.01)^{n-2} - 2x(1.01)^{n-2} - 101x(1)^{n-2}$	$.01^{n-3}-1)-x$	
(ii)(c)	For Em	ma to clear the debt, the amount	that she owed after nth payme	ents ≤ 0
	When <i>n</i>	a = 32,		

	$30000(1.01)^{n-2} - 2x(1.01)^{n-2} - 100x(1.01^{n-2} - 1) \le 0$
	$30000(1.01)^{32-2} - 2x(1.01)^{32-2} - 100x(1.01^{32-2} - 1) \le 0$
	$30000(1.01)^{30} - 2x(1.01)^{30} - 100x(1.01^{30} - 1) \le 0$
	$30000(1.01)^{30}$
	$\sum x \ge \frac{1}{2(1.01)^{30} + 100(1.01^{30} - 1)}$
	<i>x</i> ≥1078.837557
	Least value of x is \$1078.84
(iii)	Under plan A, total amount repaid
	=30000+2500=32500
	Under plan B, total amount repaid
	$=1078.84 \times 32 = 34522.88$
	Therefore, it is cheaper for Emma to take up Plan A

$$3\sum_{r=1}^{n} r^{2} = n^{3} + 3n^{2} + 3n - \frac{3}{2}n - \frac{3}{2}n^{2} - n$$
$$\sum_{r=1}^{n} r^{2} = \frac{1}{6} \left(2n^{3} + 3n^{2} + n \right)$$
$$= \frac{n}{6} (n+1)(2n+1) = \frac{n}{6} \left(2n^{2} + 3n + 1 \right)$$

Question 8(iii)

$$\sum_{r=5}^{N} (r+2)^2 = \sum_{r=7}^{N+2} r^2$$

= $\sum_{r=1}^{N+2} r^2 - \sum_{r=1}^{6} r^2$
= $\frac{N+2}{6} ((N+2)+1)(2(N+2)+1) - \frac{6}{6}(6+1)(2(6)+1)$
= $\frac{1}{6} (N+2)(N+3)(2N+5) - 91$

Alternatively

$$\sum_{r=5}^{N} (r+2)^{2} = \sum_{r=5}^{N} (r^{2}+4r+4)$$

$$= \sum_{r=5}^{N} r^{2} + \sum_{r=5}^{N} (4r+4)$$

$$= \sum_{r=1}^{N} r^{2} - \sum_{r=1}^{4} r^{2} + \sum_{r=5}^{N} (4r+4)$$

$$= \frac{N}{6} (N+1)(2N+1) - \frac{4}{6} (5)(9) + \frac{N-4}{2} (24+4N+4)$$

$$= \frac{N}{6} (N+1)(2N+1) - 30 + (N-4)(14+2N)$$

$$= \frac{N}{6} (2N^{2}+3N+1) - 30 + 14N + 2N^{2} - 56$$

$$= \frac{N^{3}}{3} + \frac{5}{3} N^{2} + \frac{37}{6} N - 86$$

9(a)
$$f(r-1) - f(r) = \frac{1}{(r-1)^2} - \frac{1}{r^2}, r \neq 1$$
$$\frac{1}{(r-1)^2} - \frac{1}{r^2} = \frac{r^2 - r^2 + 2r - 1}{r^2 (r-1)^2} = \frac{2r - 1}{r^2 (r-1)^2}$$

$$\begin{array}{|c|c|c|c|c|} \hline (i) & \frac{3}{2^2(1)^2} + \frac{5}{3^2(2)^2} + \frac{7}{4^2(3)^2} + \dots = \sum_{r=2}^{\infty} \frac{2r-1}{r^2(r-1)^2} \\ & \sum_{r=2}^n f(r-1) - f(r) = \frac{1}{1^2} - \frac{1}{2^2} \\ & + \frac{1}{2^2} - \frac{1}{3^2} \\ & + \frac{1}{3^2} - \frac{1}{4^2} \\ & + \dots \\ & + \frac{1}{(n-2)^2} - \frac{1}{(n-1)^2} \\ & + \frac{1}{(n-1)^2} - \frac{1}{n^2} \\ & = 1 - \frac{1}{n^2} \\ \hline \\ \hline (ii) & \sum_{r=2}^{\infty} \frac{2r-1}{r^2(r-1)^2} = 1 \text{ as } n \to \infty \\ \hline \\ \hline (iii) & \text{Since } \frac{2r-1}{r^2(r+1)^2} < \frac{2r-1}{r^2(r-1)^2} \\ & \sum_{r=2}^n \frac{2r-1}{r^2(r+1)^2} < \frac{2r-1}{r^2(r-1)^2} = 1 - \frac{1}{n^2} < 1 \quad (\text{since } 0 < \frac{1}{n^2} < 1) \\ & \sum_{r=2}^n \frac{2r-1}{r^2(r+1)^2} < 1 \end{array}$$

$$\begin{array}{ll} \mathbf{10} & v_n - v_{n+1} \\ \mathbf{(a)} & = \frac{(n+3)}{n(n+1)(n+2)(n+3)} - \frac{(n+4)}{(n+1)(n+2)(n+3)(n+4)} \\ & = \frac{1}{n(n+1)(n+2)} - \frac{1}{(n+1)(n+2)(n+3)} \\ & = \frac{(n+3) - n}{n(n+1)(n+2)(n+3)} = \frac{3}{n(n+1)(n+2)(n+3)} = 3u_n, \text{ So } k = 3. \end{array}$$

$$\begin{array}{ll} \mathbf{(a)} & \sum_{n=1}^N u_n = \frac{1}{3} \sum_{n=1}^N (v_n - v_{n+1}) = \frac{1}{3} (v_1 - v_2 \\ & + v_2 - v_3 \end{array}$$

$$+ v_3 - v_4 + ... + v_N - v_{N+1}) = \frac{1}{3} (v_1 - v_{N+1}) \sum_{n=1}^N u_n = \frac{1}{3} ((1+3)u_1 - (N+4)u_{N+1}) = \frac{1}{3} \left(\frac{4}{(1)(2)(3)(4)} - \frac{(N+4)}{(N+1)(N+2)(N+3)(N+4)} \right) = \frac{1}{3} \left(\frac{1}{(1)(2)(3)} - \frac{1}{(N+1)(N+2)(N+3)} \right) = \frac{1}{3} \left(\frac{1}{(1)(2)(3)} - \frac{N!}{(N+3)!} \right)$$

11

$$u_{r-1} - u_{r+1} = \frac{1}{(r-1)^3} - \frac{1}{(r+1)^3} = \frac{(r+1)^3 - (r-1)^3}{[(r-1)(r+1)]^3}$$

$$= \frac{(r^3 + 3r^2 + 3r + 1) - (r^3 - 3r^2 + 3r - 1)}{(r^2 - 1)^3}$$

$$= \frac{6r^2 + 2}{(r^2 - 1)^3} \text{ (shown)}$$

	$\sum_{r=2}^{n} \frac{3r^2 + 1}{\left(r^2 - 1\right)^3} = \frac{1}{2} \sum_{r=2}^{n} \frac{6r^2 + 2}{\left(r^2 - 1\right)^3}$
	$=\frac{1}{2}\sum_{r=2}^{n} \left[u_{r-1} - u_{r+1}\right]$
	$=\frac{1}{2}\begin{bmatrix} +u_{1} & -u_{3} \\ +u_{2} & -u_{4} \\ +u_{3} & -u_{5} \\ \vdots & \vdots \\ +u_{n-3} & -u_{n-1} \\ +u_{n-2} & -u_{n} \\ +u_{n-1} & -u_{n+1} \end{bmatrix}$
	$=\frac{1}{2}[u_1+u_2-u_n-u_{n+1}]$
	$=\frac{1}{2}\left[1+\frac{1}{8}-\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right]=\frac{1}{2}\left[\frac{9}{8}-\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right]$
	$\sum_{r=3}^{n} \frac{3(r-1)^{2}+1}{\left[(r-1)^{2}-1\right]^{3}}$
	$=\sum_{s=2}^{n-1} \frac{3s^2 + 1}{\left(s^2 - 1\right)^3}$ Subt. $r - 1 = s$. When $r = 3$, $s = 2$. When $r = n$, $s = n - 1$
	$=\frac{1}{2}\left[\frac{9}{8} - \frac{1}{(n-1)^3} - \frac{1}{n^3}\right]$
	As $n \to \infty$, $\frac{1}{n^3} \to 0$ and $\frac{1}{(n-1)^3} \to 0$.
	$\sum_{r=3}^{\infty} \frac{3(r-1)^2 + 1}{\left[(r-1)^2 - 1\right]^3} = \frac{1}{2} \left[\frac{9}{8} - 0 - 0\right] = \frac{9}{16}$
12	$\frac{1}{r(r-2)} = \frac{1}{2} \left(-\frac{1}{r} + \frac{1}{r-2} \right)$
	$=\frac{1}{2}\left(\frac{1}{r-2}-\frac{1}{r}\right).$
	$A = -\frac{1}{2}, B = \frac{1}{2}.$

$\sum_{r=3}^{n} \frac{1}{r(r-2)} = \frac{1}{2} \sum_{r=3}^{n} \left(\frac{1}{r-2} - \frac{1}{r} \right)$
$=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\ldots+\left(\frac{1}{n-4}-\frac{1}{n-2}\right)+\left(\frac{1}{n-3}-\frac{1}{n-1}\right)+\left(\frac{1}{n-2}-\frac{1}{n}\right)\right]$
$=\frac{1}{2}\left(\frac{3}{2}-\frac{1}{n-1}-\frac{1}{n}\right).$
as $n \to \infty$, $\frac{1}{n-1} - \frac{1}{n} \to 0$. Hence $\frac{1}{2} \left(\frac{3}{2} - \frac{1}{n-1} - \frac{1}{n} \right) \to \frac{3}{4}$.
Therefore $\sum_{r=3}^{\infty} \frac{1}{r(r-2)} = \frac{3}{4}.$
$\frac{1}{3\times 5} + \frac{1}{4\times 6} + \frac{1}{5\times 7} + \dots = \sum_{r=5}^{\infty} \frac{1}{r(r-2)}$
$=\sum_{r=3}^{\infty}\frac{1}{r(r-2)}-\frac{1}{3(1)}-\frac{1}{4(2)}$
$=\frac{3}{4}-\frac{1}{3(1)}-\frac{1}{4(2)}$
$=\frac{7}{24}.$

13(a)	Given $S_n = n^2 - 2n$.
	$S_n - S_{n-1} = n^2 - 2n - ((n-1)^2 - 2(n-1))$
	$= n^{2} - 2n - (n-1)^{2} + 2n - 2$
	=2n-3
	Since the progression is AP,
	common difference, $d = T_n - T_{n-1}$
	=2n-3-(2(n-1)-3)
	= 2.
	OR
	$d = T_2 - T_1$
	=1-(-1)
	= 2
(b)(i)	Let d be the distance driven for every turn.
	$n=1, d=k\theta$

$n=2, d=\left(\frac{8}{10}\right)k\theta$ or $0.8k\theta$
$n=3, d=\left(\frac{8}{10}\right)^2 k\theta$ or $0.64k\theta$
Total distance driven into the wall after <i>n</i> turns
$= k\theta + \left(\frac{8}{10}\right)k\theta + \left(\frac{8}{10}\right)^2 k\theta + \dots + \left(\frac{8}{10}\right)^{n-1} k\theta$
$= k\theta \left(1 + \left(\frac{8}{10}\right) + \left(\frac{8}{10}\right)^2 + \dots + \left(\frac{8}{10}\right)^{n-1}\right)$
$=k\theta\left(\frac{1-\left(\frac{8}{10}\right)^n}{1-\left(\frac{8}{10}\right)}\right)$
$=5k\theta\left(1-\left(\frac{4}{5}\right)^n\right)$
$a = 5, b = \frac{4}{5}$
Distance driven in the long run
$=\lim_{n\to\infty}5k\theta\left(1-\left(\frac{4}{5}\right)^n\right)$
$=5k\theta$
Given $k = 2$, minimum length of the metal screw is 10θ unit.

14
(a) GP :
$$a = a, r = \frac{b}{a}$$

The sum to infinity of the remaining terms, $S_{\infty} = \frac{ar^{n}}{1-r}$
 $S_{n} = 2S_{\infty}$
 $\frac{a(1-r^{n})}{1-r} = \frac{2ar^{n}}{1-r}$
 $1-r^{n} = 2r^{n}$
 $3r^{n} = 1$
 $r^{n} = \frac{1}{3}$
 $\left(\frac{b}{a}\right)^{n} = \frac{1}{3}$
 $3b^{n} = a^{n}$

(b) (i) $S_{10} = 105 + 10u_5$ $\frac{10}{2} [2a + 9d] = 105 + 10[a + 4d]$ 10a + 45d = 105 + 10a + 40d d = 21(ii) $u_{25} \le 542$ $a + 24(21) \le 542$ and a + 25(21) > 542 $a \le 38$ $\therefore 17 < a \le 38$

$$\frac{15}{4n^2 - 1} = \frac{1}{(2n - 1)(2n + 1)} = \frac{1}{2(2n - 1)} + \frac{1}{-2(2n + 1)} = \frac{1}{2} \left[\frac{1}{2n - 1} - \frac{1}{2n + 1} \right] \\
S_N = \sum_{n=1}^{N} a_n = \sum_{n=1}^{N} \left(2^{1 - n} - 2^{2 - n} + \frac{2}{4n^2 - 1} \right) \\
= \sum_{n=1}^{N} \left(2^{1 - n} - 2^{2 - n} + \frac{1}{2r - 1} - \frac{1}{2r + 1} \right) \\
2^{-1} - 2^0 + \frac{1}{1} - \frac{1}{3} \\
+ 2^{-2} - 2^{-1} + \frac{1}{3} - \frac{1}{5} \\
= \frac{1}{4n^2 - 1} + \frac{2^{-3} - 2^{-2} + \frac{1}{5} - \frac{1}{7} \\
+ \frac{1}{2N - 2} - 2^{1 - N} + \frac{1}{2N - 3} - \frac{1}{2N - 1} \\
+ 2^{1 - N} - 2^{2^{-N}} + \frac{1}{2N - 1} - \frac{1}{2N + 1} \\
= 2^{1 - N} - 2^1 + 1 - \frac{1}{2N + 1} = 2^{1 - N} - 1 - \frac{1}{2N + 1} \\
\lim_{N \to \infty} S_N = 0 - 1 - 0 = -1 \text{ since } 2^{1 - N} \to 0, \frac{1}{2N + 1} \to 0 \text{ as } N \to \infty$$

16	Given $S_n = \frac{1}{a} [1 - (a - 1)^n],$
	$T_n = S_n - S_{n-1}, n \ge 2$
	$=\frac{1}{a} \Big[1 - (a-1)^n \Big] - \frac{1}{a} \Big[1 - (a-1)^{n-1} \Big]$
	$= -\frac{1}{a}(a-1)^{n} + \frac{1}{a}(a-1)^{n-1}$
	$=\frac{1}{a}(a-1)^{n-1}(-a+1+1)$
	$=\frac{1}{a}(a-1)^{n-1}(2-a)$
	$T_n = \frac{1}{a}(a-1)^{n-1}(2-a), n \in \mathbb{Z}^+$
	$\frac{T_n}{T_{n-1}} = \frac{\frac{1}{a}(a-1)^{n-1}(2-a)}{\frac{1}{a}(a-1)^{n-2}(2-a)} = (a-1) = \text{constant} \text{(Shown)}$
	(i) the total number of terms in the first <i>n</i> brackets $-1+3+5+\dots(1+(n-1)^2)$
	$=1+3+5+\cdots(1+(n-1)2)$ =1+3+5+\cdots(2n-1)
	$=\frac{n}{2}(1+(2n-1))=n^{2}$
	(ii) number of terms in the 11^{th} bracket = $1 + (11-1)2 = 21$ terms
	(middle term will be the 11^{th} term) Number of term from 1^{st} bracket to 10^{th} bracket = $10^2 = 100$
	$T_{111} = \frac{1}{a} (a-1)^{110} (2-a)$
	(iii) For the sum to infinity of the series to exist, $ a-1 < 1$
	0 < a < 2
	Method 1:
	when $a = \frac{39}{20}$ (i.e. $ a-1 < 1$),
	sum to infinity of the series $=\frac{1}{a}[1-0]=\frac{1}{a}$
	For the sum of all the terms in the first n brackets to be within 0.1% of the sum to infinity of the series,
	$\left S_{n^2} - S_{\infty}\right < 0.1\% S_{\infty}$

$$\begin{aligned} \left| \frac{1}{a} \left[1 - (a-1)^{n^2} \right] - \frac{1}{a} \right| < 0.1\% \frac{1}{a} \\ \frac{1}{a} \left[-(a-1)^{n^2} \right] < 0.001 \frac{1}{a} \\ (a-1)^{n^2} < 0.001 \Rightarrow (\frac{19}{20})^{n^2} < 0.001 \\ \text{Using GC, } n > 11.605 \\ \text{At least 12 brackets.} \end{aligned} \right. \\ \text{Method 2:} \\ (\text{iii) when } a = \frac{39}{20}, \quad \text{first term} = \frac{2-a}{a} = \frac{1}{39}, \quad r = (a-1) = \frac{19}{20} \\ \text{sum to infinity of the series} = \frac{\frac{1}{39}}{1 - \frac{19}{20}} = \frac{20}{39} \\ \text{the sum of all the terms in the first n brackets} \\ = \text{the sum of all the terms in the GP} \\ = \frac{1}{a} \left[1 - (a-1)^{n^2} \right] = \frac{20}{39} - \frac{20}{39} (\frac{19}{20})^{n^2} \\ \text{For the sum of all the terms in the first n brackets to be within 0.1\% of the sum to infinity of the series, \\ \left| \frac{20}{39} - \frac{20}{39} (\frac{19}{20})^{n^2} - \frac{20}{39} \right| < 0.1\% \frac{20}{39} \\ \left| -\frac{20}{39} (\frac{19}{20})^{n^2} \right| < 0.001 \times \frac{20}{39} \\ \left| \frac{19}{20} \right|^{n^2} < 0.001 \\ \text{Using GC, } n > 11.605 \\ \text{At least 12 brackets.} \end{aligned}$$

17(i)	common ratio = $\frac{a+4d}{a+8d} = \frac{a+d}{a+4d}$
	$(a+4d)^2 - (a+d)(a+8d)$
	(u + 4u) = (u + u)(u + 6u) $a^{2} + 8ad + 16d^{2} = a^{2} + 0ad + 8d^{2}$
	$a^{2} + 8aa + 16a^{2} = a^{2} + 9aa + 8a^{2}$ $8d^{2} - ad = 0$
	d(8d-a) = 0
	Since $d \neq 0$, $a = 8d$.
	common ratio, $r = \frac{a+d}{a+4d} = \frac{9d}{12d} = \frac{3}{4}$
	Since $ r = \frac{3}{4} < 1$, the geometric series is convergent.
	Sum to infinity = $\frac{a+8d}{1-\frac{3}{4}} = \frac{2a}{\frac{1}{4}} = 8a$
(ii)	$S_n < \frac{4}{5}S_\infty$
	$\frac{2a\left(1-r^{n}\right)}{1-r} < \frac{4}{5} \cdot \frac{2a}{1-r}$
	Since $a > 0, 1 - r > 0, 1 - \left(\frac{3}{4}\right)^n < \frac{4}{5}.$
	$\left(\frac{3}{4}\right)^n > \frac{1}{5}$
	$n < \frac{\ln(0.2)}{\ln(0.75)} = 5.595$
	Largest value of <i>n</i> is 5.
18	(i) common ratio $r = 4 - 3r$
10	If series has a finite sum
	$ r < 1 \Longrightarrow 4 - 3x < 1$
	-1 < 4 - 3x < 1
	-5 < -3x < -5
	$1 < x < \frac{3}{3}$
	(ii) From GC, minimum no of terms is 7

19	$\sum_{n=0}^{N} u_n = \sum_{n=0}^{N} \left(e^{-n} - e^{-n-1} + \frac{1}{n+2} - \frac{1}{n+1} \right)$
	$=e^{-0}-e^{-1}+\frac{1}{2}-\frac{1}{1}$
	$+e^{-1}-e^{-2}+\frac{1}{3}-\frac{1}{2}$
	$+e^{-2}-e^{-3}+\frac{1}{4}-\frac{1}{3}$
	+
	$+e^{-N}-e^{-N-1}+\frac{1}{N+2}-\frac{1}{N+1}=\frac{1}{N+2}-e^{-N-1}$
	$e^{N+1} = 1 + (N+1) + \frac{(N+1)^2}{2!} + \dots > N+2$
	$e^{-N-1} = \frac{1}{e^{N+1}} < \frac{1}{N+2} \Longrightarrow \frac{1}{N+2} - e^{-N-1} > 0$
	Hence $\sum_{n=0}^{N} u_n > 0$
	Alternatively, sketch the graph of $y = \frac{1}{x+2} - e^{-x-1}$ for $x \ge 0$. The graph shows that $y > 0$
	and hence $\sum_{n=0}^{N} u_n > 0$ for $N > 0$

20(a)
$$P = \frac{n}{2} [2a + (n-1)d]$$

(2n+1)th term = 1st term of last n terms = a + (2nd)
$$Q = \frac{n}{2} \{2[a+2nd] + (n-1)d\}$$

$$Q - P = \frac{n}{2} [2a + 4nd + (n-1)d] - \frac{n}{2} [2a + (n-1)d] = 2n^2d$$

ALTERNATIVE:

	$S_n = \frac{n}{2} \left[2a + (n-1)d \right] = P$
	$S_{2n} = \frac{2n}{2} \Big[2a + (2n-1)d \Big]$
	$S_{3n} = \frac{3n}{2} \left[2a + (3n-1)d \right]$
	$Q - P = S_{3n} - S_{2n} - S_n$
	$= 3an + \frac{3n}{2}(3n-1)d - \frac{2n}{2}[2a+(2n-1)d] - \frac{n}{2}[2a+(n-1)d]$
	$=2n^2d$
(b)	When $n = 1$: Fund has $(1.035)(2500) - 150$
	$n = 2$: $\Im(1.035)[(1.035)2500-150] - 150$ = $(1.035)^2 2500 - (1.035)150 - 150$
	at <i>n</i> th year: $(1.035)^n 2500 - (1.035)^{n-1} 150 - (1.035)^{n-2} 150 \dots -150$
	$=(1.035)^{n}2500 - (150)[1+(1.035)+(1.035)^{2}++(1.035)^{n-1}]$
	$= (1.035)^n 2500 - 150 \left(\frac{1.035^n - 1}{0.035} \right)$
	$(1.035)^n 2500 - \frac{150}{0.035} (1.035)^n + \frac{30000}{7}$
	$(1.035)^n \left[2500 - \frac{30000}{7} \right] + \frac{30000}{7}$
	$= -\frac{12500}{7} (1.035)^n + \frac{30000}{7}$
	$\frac{30000}{7} - \frac{12500}{7} \left(1.035\right)^n \ge 0$
	$(1.035)^n \le \frac{30000}{12500}$
	$n \le 25.44$
	n = 25 years
	Last year is 2035.
A1.	
211	

21i

$$\frac{1}{r(r+1)(r+2)} = \frac{1}{2} \left\{ \frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} \right\}$$

$$P = \frac{1}{2}, \ Q = -\frac{1}{2}$$
Sum of the series $= \sum_{r=4}^{n} \frac{1}{2} \left\{ \frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} \right\}$

 $n > 6.23 \Rightarrow n = 7$ The ball must bounce at least 7 times for it to travel more than 24 m. (iii)

$$n \to \infty, \quad \left(\frac{3}{4}\right)^n \to 0, \quad S_\infty = 28$$

Since sum to infinity is 28, the ball will not travel more than 28m.

023			Suggested Sol	utions
(i)		n Le	ength of <i>n</i> th square	
	1	2		
	2	(2	$\frac{1}{2}$) 2 - 2 ³ / ₂	
		(2	$z = z^2$	
	3	(2	$\left(2^{\frac{2}{2}}\right)2 = 2^{\frac{4}{2}}$	
	:	:		
	•	•	11	
	n	2	2	
	The length	of the <i>n</i> th square	is $2^{\frac{n+1}{2}}$ mm.	
(ii)	$2^{\frac{n+1}{2}} < 210$			
	$n+1$ $\ln(2)$	210)		
	$\frac{-1}{2} < \frac{1}{\ln 2}$	$\overline{12}$		
	<i>n</i> < 14.4	28		
	Hence max	imum number o	f square is 14.	
(iii)	From part (i), length of the	n^{th} square is $2^{\frac{n+1}{2}}$.	
	Therefore,	area of the n^{th} so	uare $= \left(2^{\frac{n+1}{2}}\right)^2 = 2^{n+1}$.	
	,			
	Area of the	1^{st} square $= 2^2$		
		1		
	Area of the	4 th square – Are	ea of the 3 rd square	
	$=2^{5}-2^{4}$			
	$=2^{4}(2-1)$			
	$= 2^4$			
	m / 1 1 1	1	$2 - 2^2 + 2^4 - 20$	
	I otal shade	ea area in Figure	$2 = 2^{-} + 2^{-} = 20$	
(IV)	п	Area	Protruding area	
	1	of $n^{}$ square	of n^{-1} square	_
	1	2-	2-	

Q23			Suggested Solut	ions
	2	2^{3}	$2^3 - 2^2 = 2^2(2 - 1) = 2^2$	He will only shade up to the 28 th
	3	2^{4}	$2^4 - 2^3 = 2^3(2 - 1) = 2^3$	square if he draws 30 squares.
	4	2^{5}	2 ⁴	
	:	:	•	
	•	•	•	
	7	2^{8}	27	
	:	:	:	
	•	•	•	
	28	2^{29}	2^{28}	
	Total shade	ed area = $2^2 + 2^4$	$+2^7 + + 2^{28}$	
		$=4+\frac{2^{4}}{(}$	$\frac{(2^{3(9)}-1)}{2^3-1}$	
		= 306,78	$33,380 \text{ mm}^2$	
		= 307 m	² (3 s.f.).	

24ai	$r = \frac{a+d}{a+3d} = \frac{a+3d}{a+8d}$
	$\Rightarrow (a+d)(a+8d) = (a+3d)^2$
	$\Rightarrow a^2 + 9ad + 8d^2 = a^2 + 6ad + 9d^2$
	$\Rightarrow d^2 - 3ad = 0 \Rightarrow d(d - 3a) = 0$
	$\Rightarrow d = 0$ (rej.) or $d = 3a$ (shown)
	Alternatively, let b be the first term of the geometric series. Then $d = \frac{b - br}{5} = \frac{br - br^2}{2}$ $\Rightarrow 2b - 2br = 5br - 5br^2$

$$\Rightarrow 5r^{2} - 7r + 2 = 0 \Rightarrow (5r - 2)(r - 1) = 0$$

$$\Rightarrow r = \frac{2}{5} \text{ or } r = 1 \text{ (rej because otherwise } d = 0)$$

Hence

$$d = \frac{b - b\left(\frac{2}{5}\right)}{5} = -\frac{3}{25}b = -\frac{3}{25}(a + 8d)$$

25d = -3a - 24d
d = 3a (shown)

aii	$r = \frac{a+d}{a+3a} = \frac{4a}{a+3a} = \frac{4a}{a} = \frac{2}{a}$
	$r - \frac{1}{a+3d} - \frac{1}{a+9a} - \frac{1}{10a} - \frac{1}{5}$
	Since $\left \frac{2}{5}\right < 1$, the geometric series is convergent.
	Sum to infinity = $\frac{a+8d}{1-r}$
	$=\frac{a+24a}{1-\frac{2}{5}}$
	$=\frac{5}{3}(25a)$
	$=\frac{125}{2}a$
bi	The distance the mountaineer climbs for each hour follows an arithmetic progression with
	first term 300 metres and common difference (- 10) metres.
	Total distance travelled after <i>n</i> hours $\leq x$
	$\frac{n}{2} [2(300) + (n-1)(-10)] \le x$
	$\frac{n}{2}(600 - 10n + 10) \le x$
	$\frac{n}{2}(610-10n) \le x$
	$n(305-5n) \le x$
	$-5n^2 + 305n \le x \text{ (shown)}$
	p = -5, q = 305
bii	If $x = 2500$, then
	$-5n^2 + 305n \le 2500$
	$-5n^2 + 305n - 2500 \le 0$
	$n \le 9.757$ or $n \ge 51.24$
	Hence $n = 9$.
25 (a)	$f(r+1) - f(r) = \frac{r+1}{2^{r+1}} - \frac{r}{2^r}$
	$=\frac{r+1-2r}{2^{r+1}}$

9758 H2 Mathematics 2023 Sequence & Series

 $=\frac{1-r}{2^{r+1}}$

	$\sum_{n=1}^{n} 1-r$
	$\sum_{r=1}^{\infty} \frac{1}{2^{r+1}} = \sum_{r=1}^{\infty} \left[f(r+1) - f(r) \right]$
	$\begin{bmatrix} f(2) - f(1) \end{bmatrix}$
	+f(3)-f(2)
	+f(4)-f(3)
	+f(n-1)-f(n-2)
	+f(n) - f(n-1)
	+ f(n+1) + f(n)
	$\begin{bmatrix} +1(n+1) - 1(n) \end{bmatrix}$
	= f(n+1) - f(1)
	$=\frac{n+1}{2^{n+1}}-\frac{1}{2}$
1.(*)	
D(1)	$a_n = \frac{2^n n^x}{2^n}$
	ⁿ 3 ⁿ
	$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{2^n n^x}{3^n}}$
	$\left(2\pi\sqrt{3}\right)$
	$=\lim_{n\to\infty}\left \frac{2\sqrt[n]{n^*}}{3}\right $
	$=\frac{2}{3}\lim_{n\to\infty}\left(\sqrt[n]{n^x}\right)$
	$-\frac{2}{2}$ (1) since $\lim_{x \to \infty} \left(\frac{n}{\sqrt{n^x}} \right) - 1$
	$-\frac{1}{3}$ (1) since $\lim_{n\to\infty} (\sqrt{n}) - 1$
	$=\frac{2}{-1}$
	3
	Since $\lim \sqrt{a} = \frac{2}{2} < 1$ by the Cauchy Test, the series converges for all real values of r
	Since $\lim_{n \to \infty} \sqrt{a_n} = \frac{1}{3}$ (1, by the Cauchy Test, the series converges for an real values of x
b(ii)	$\sum_{r=1}^{\infty} \frac{2^{r} r}{2^{r}} = 0 + 1 \left(\frac{2}{2}\right)^{2} + 2 \left(\frac{2}{2}\right)^{2} + 3 \left(\frac{2}{2}\right)^{3} + 4 \left(\frac{2}{2}\right)^{4} + \dots$
	$\begin{bmatrix} r=0 & 3 & (3) & (3) & (3) \\ 2 & (2) & (2)^2 & (2)^3 \end{bmatrix}$
	$=\frac{2}{3}\left[1+2\left(\frac{2}{3}\right)+3\left(\frac{2}{3}\right)+4\left(\frac{2}{3}\right)+\ldots\right]$
	$-\frac{2}{2}\left(1-\frac{2}{2}\right)^{-2}$ since $1+2\left(\frac{2}{2}\right)+3\left(\frac{2}{2}\right)^{2}+4\left(\frac{2}{2}\right)^{3}+-\left(1-\frac{2}{2}\right)^{-2}$ with $y=\frac{2}{2}$
	$\begin{bmatrix} -3 & -3 \\ -3 & -3 \end{bmatrix} = \begin{bmatrix} -3$
	= 6

26	4	$a_{50} = 99a_1$
	(i)	$a_1 + 49d = 99a_1$
		$a_1 = \frac{1}{2} (0.15) = 0.075$ (Shown)
	4 (ii)	$\sum_{n=1}^{50} a_n = \frac{50}{2} (0.075 + 99 \times 0.075) = 187.5$
	4	$b_k < a_{25}$
	(iii)	$(99 \times 0.075)(0.98)^{k-1} < (0.075) + 24(0.15)$
		k > 35.8
	4	least $k = 36$ Consider
	(iv)	$b_1(1-0.98^h) = 0.00$ b_1
		$1-0.98 > 0.99 \frac{1}{1-0.98}$
		$0.98^h < 0.01$
		h > 227.9
		least $h = 228$
	4 (v)	$\sum_{m=0}^{\infty} b_{1+3m}$
		$= b_1 + b_4 + b_7 + \dots$
		$=\frac{99 \times 0.075}{1000000000000000000000000000000000000$
		$1 - (-0.98)^3$
		= 3.82 (3s.f.)

$$\begin{array}{rcl}
28 & f(r) - f(r+1) = \frac{1}{r} - \frac{1}{r+1} = \frac{1}{r(r+1)} \\
& \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} \dots + \frac{1}{2n(2n+1)} = \sum_{r=1}^{2n} \frac{1}{r(r+1)} = \sum_{r=1}^{2n} [f(r) - f(r+1)] \\
& = \begin{bmatrix} f(1) - f(2) \\
+ & f(2) - f(3) \\
+ & f(2n-1) \\
+ & f(2n-1) \\
+ & f(2n-1) \\
= 1 - \frac{1}{2n+1} \\
& \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} \dots (2n)^{4n} \text{ term} = \sum_{r=1}^{2n} \frac{1}{(r+1)^2} \\
& \text{Consider } \frac{1}{(r+1)^2} = \frac{1}{(r+1)(r+1)} < \frac{1}{r(r+1)} \\
& \Rightarrow \sum_{r=1}^{2n} \frac{1}{(r+1)^2} < \sum_{r=1}^{2n} \frac{1}{r(r+1)} \\
& \Rightarrow \sum_{r=1}^{2n} \frac{1}{(r+1)^2} < 1 - \frac{1}{2n+1} \\
& \text{Since } \frac{1}{2n+1} > 0, & \sum_{r=1}^{2n} \frac{1}{(r+1)^2} < 1 \text{ (shown)}
\end{array}$$

29 (i)	$2\ 500\ 000\ 000 = 1000\ 000(2)^{n-1}$
	$2^{n-1} = 2500$
	$n-1 = \frac{\ln 2500}{\ln 2500} = 11.2877$
	$\ln 2$
	n = 12.2877
	His net worth will first exceed 2.5 billion when $n = 13$
	The year $1993 + (13 - 1)(1) = 2005$ or $1993 + 13 - 1 = 2005$
29 (ii)	$1000(1.5^{15}-1)$
	$100\ 000 + 1000 + 1000(1.5) + 1000(1.5^2) + \dots(15\ \text{terms}) = 100\ 000 + \frac{15-1}{15-1} =$
	\$ 973 787.7808 = \$ 973 788

OR $400 = 40 + (n-1)(20) \Rightarrow n = 19$ AP sequence : 20, 40, 60, 19 terms Number of complete squares in region *R* for $0 \le x \le 400$ is $\frac{19}{2} [2(20) + 18(20)] = 3800$ Region *R* is symmetrical about the line x = 400. Total number of squares in region $R = 3800 \times 2 = 7600$

32 (i)	Let $\frac{4r-1}{2} = \frac{Ar}{2} - \frac{B(r+2)}{2} = \frac{(9A-B)r-2B}{2}$
	3^{r+2} 3^r 3^{r+2} 3^{r+2}
	Comparing constants: $B = 0.5$
	Comparing coefficients of r: $4 = 9A - 0.5 \Rightarrow A = 0.5$
	$\therefore \frac{4r-1}{3^{r+2}} = \frac{1}{2} \left[\frac{r}{3^r} - \frac{r+2}{3^{r+2}} \right]$
(ii)	$\sum_{r=1}^{n} \frac{4r-1}{3^{r+2}} = \frac{1}{2} \sum_{r=1}^{n} \left[\frac{r}{3^{r}} - \frac{r+2}{3^{r+2}} \right].$
	$=\frac{1}{2}\left\lfloor\frac{1}{3}-\frac{3}{\beta^3}\right\rfloor$
	$+\frac{2}{3^2}/\frac{4}{3^4}$
	$+\frac{3}{3^3}/\frac{3}{3^5}$
	$+\frac{n-2}{2^{h-2}}-\frac{n}{2^{n}}$
	$+\frac{n-1}{2^{n-1}}/\frac{n+1}{2^{n+1}}$
	$+\frac{n}{3^n}-\frac{n+2}{3^{n+2}}$
	$=\frac{1}{2}\left(\frac{5}{9}-\frac{n+1}{2^{n+1}}-\frac{n+2}{2^{n+2}}\right)$
	2(9 5 5) (or equivalent)
(iii)	Series converges as $\lim_{n \to \infty} \frac{n+1}{3^{n+1}} = \lim_{n \to \infty} \frac{n+2}{3^{n+2}} = 0$. $\sum_{r=1}^{\infty} \frac{4r-1}{3^{r+2}} = \frac{5}{18}$.

(iv)

$$\sum_{r=1}^{\infty} \frac{1}{3^{r+2}} = \frac{1}{3^3} + \frac{1}{3^4} + \dots = \frac{\frac{1}{27}}{1 - \frac{1}{3}} = \frac{1}{18}.$$
Hence,

$$\sum_{r=1}^{\infty} \frac{4r - 1}{3^{r+2}} = \sum_{r=1}^{\infty} \left(\frac{4r}{3^{r+2}} - \frac{1}{3^{r+2}}\right)$$

$$\sum_{r=1}^{\infty} \frac{4r - 1}{3^{r+2}} = \sum_{r=1}^{\infty} \frac{4r}{3^{r+2}} - \sum_{r=1}^{\infty} \frac{1}{3^{r+2}}$$
From part (iii) and the sum just found,

$$\frac{5}{18} = \sum_{r=1}^{\infty} \frac{4r}{3^{r+2}} - \frac{1}{18}$$

$$\sum_{r=1}^{\infty} \frac{4r}{3^{r+2}} = \frac{5}{18} + \frac{1}{18} = \frac{1}{3}$$

$$\sum_{r=1}^{\infty} \frac{4r}{3^{r+2}} = \frac{1}{3}$$

$$\frac{4}{9} \sum_{r=1}^{\infty} \frac{r}{3^{r}} = \frac{1}{3}$$

$$\therefore \sum_{r=1}^{\infty} \frac{r}{3^{r}} = \frac{1}{3} \times \frac{9}{4} = \frac{3}{4}$$

33 (i)	S_{15} of $B = \frac{15}{2} (2(2.4) + 14d)$
	= 36 + 105d
(ii)	$S_{15} \text{ of } A = \frac{2.4((1.2)^{15} - 1)}{1.2 - 1}$
	=172.88
	>170
	Yes, Adam can achieve his target.
(iii)	U_{15} of A > U_{15} of B
	U_{15} of A – U_{15} of B > 0
	$2.4(1.2)^{14} - (2.4 + 14d) > 0$
	d < 2.02957
	$\max d = 2.02(2 \mathrm{dp})$
	$2.4(1.2)^{14} - (2.4 + 14(2.02)) = 0.134$ (shown)
(iv)	New S_{13} of $A = \frac{2.4\left(\left(1 + \frac{r}{100}\right)^{13} - 1\right)}{\left(1 + \frac{r}{100}\right) - 1} = 170$

34(i)	
$J_{+(1)}$	

Hour	Start of hour	End of hour
1	1	1 + 3 = 4
2	4	4 + 12 = 16
3	16	16 + 48 = 64
4		

 $4(4)^{n-1} > 200\ 000$

 $(4)^{n-1} > 50000$

n-1 > 7.80482

n > 8.80842

Number of complete hours = 9

Alternative Solution

 $\overline{4(4)}^{n-1} > 200\,000$

· · ·	
п	Total
8	65536 < 200 000
9	262144 > 200 000
10	11048576 > 200 000

Number of complete hours = 9

)			
Day	Start of day	End of day	
1	200000 - x	1.02(20000-x)	
2		1.02[1.02(20000-x)]	
	1.02(20000 - x)	- <i>x</i>]	
	- <i>x</i>	$=1.02^{2}(200000)$	
		$-1.02x - 1.02^2 x$	
3			
At the = 1.02	e end of day <i>n</i> , the num $2^n (200000) - (1.02x +$	hber comments $1.02^{2}x + + 1.02^{n}x$) (*	^{\$})
=1.02	$2^{n}(200000) - x\left(\frac{1.02(100000)}{1000000}\right)$	$\frac{1.02^n-1)}{0.02} \Bigg)$	
=1.02	$2^{n}(200000) - 51x(1.02)$	$(n^{n}-1)$	
) 1.02^{30}	$(200000) - 51x(1.02^3)$	$(0^{-1}) < 0$	
$r > \frac{1}{r}$	$x > \frac{1.02^{30} (200\ 000)}{100}$		
X -	$51(1.02^{30}-1)$		
$x \ge 87$	755 (to nearest integer)	1	
Day 1	: no. of comments rem	noved =15000	
Day 2	: no. of comments rem	noved $= 15000(0.9)$	
Day 3	: no. of comments rem	noved = $15000(0.9)^2$	
As n-	$\rightarrow \infty$, no. of comment	s removed	
	$=\frac{15000}{1-0.9}=1500$	000	
Softw 150 00	are Y is unable to remo 00 comments.	ove all the comments beca	use eventually it is only able to remove
	$\begin{array}{c c} \hline Day \\ \hline Day \\ 1 \\ \hline 2 \\ \hline 3 \\ \hline 3 \\ \hline 4 \\ \hline 1 \\ 2 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 4 \\ \hline 1 \\ 2 \\ \hline 3 \\ \hline 5 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 5 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 5 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 1 \\ \hline 2 \hline$	Day Start of day 1 200000-x 2 1.02(200000-x) -x 3 At the end of day <i>n</i> , the num =1.02 ⁿ (20000) - (1.02x + =1.02 ⁿ (200000) - x $\left(\frac{1.02(1)}{0}\right)$ =1.02 ⁿ (200000) - x $\left(\frac{1.02(1)}{0}\right)$ 1.02 ³⁰ (200 000) - 51x (1.02 ³) $x > \frac{1.02^{30} (200 000)}{51(1.02^{30} - 1)}$ $x \ge 8755$ (to nearest integer) Day 1: no. of comments rem Day 2: no. of comments rem Day 3: no. of comments rem As $n \to \infty$, no. of comments $= \frac{15000}{1-0.9} = 150$ (150 000 comments)	$\frac{Day}{1} = \frac{Start of day}{1} = \frac{End of day}{1} = \frac{1.02(20000 - x)}{1.02(20000 - x)} = \frac{1.02(20000 - x)}{1.02(20000 - x)} = \frac{1.02(20000 - x)}{1.02(200000 - x)} = \frac{1.02(200000)}{1.02(200000)} = \frac{1.02(200000)}{1.02x - 1.02^2 x} = \frac{1.02^n}{200000} = \frac{1.02(1.02^n - 1)}{0.02} = \frac{1.02^n}{200000} = \frac{1.02(1.02^n - 1)}{0.02} = \frac{1.02^n}{200000} = \frac{1.02^{30}}{1.02^{30}} = \frac{1.02^{30}}{200000} = \frac{1.02^{30}}{1.02^{30}} = 1.02$

35(i)	Let b be the first term of the arithmetic progression.
	a = b + d $-(1)$
	$ar^2 = b + 2d -(2)$
	$ar^7 = b + 4d - (3)$
	From equations (1), (2) and (3),
	$ar^2 - a = \frac{ar^7 - ar^2}{2} (= d)$
	$2r^2 - 2 = r^7 - r^2$
	$r^7 - 3r^2 + 2 = 0$
(ii)	Using GC,
	r = 1 or $r = 0.93725$ or $r = -0.77986$ (5 d.p.)
	(rejected since d is non-zero)
	Since $ r < 1$, sum to infinity of geometric progression exists.
(iii)	The first even-numbered term of the A.P. is $a = 12$.
	$d = ar^{2} - a = 12(0.93725^{2} - 1) = 12(-0.12156) = -1.4587$
	$\left E-S_{\infty}\right <1000$
	$\left \frac{n}{2}\left[2a + (n-1)(2d)\right] - \frac{a}{1-r}\right < 1000$
	$\left \frac{n}{2}\left[2(12) + (n-1)(-2.9174)\right] - \frac{12}{1 - 0.93725}\right < 1000$
	$\left \frac{n}{2}\left[24 + (n-1)(-2.9174)\right] - 191.23\right < 1000$
	Using GC,
	When $n = 28$, LHS = 958 < 1000
	When $n = 29$, LHS = 1028 > 1000
	Hence largest value of $n = 28$.

36a Let the length of the first screwdriver be *b*, and the common ratio be *r*. $b+br+br^{2} = 3(br^{12}+br^{13}+br^{14}+br^{15}+br^{16})$ $1+r+r^{2}-3r^{12}-3r^{13}-3r^{14}-3r^{15}-3r^{16} = 0$ Using the GC, r = 0.882854 (6 s.f.) since 0 < r < 1. There are 9 odd numbered screwdrivers, with common ratio of lengths being r^{2} .

	Total length = $\frac{b(1-(r^2)^9)}{1-r^2} = 120$
	$\frac{b(1-r^{18})}{1-r^2} = 120$
	Using the GC, $b = 29.6122$ (6 s.f.)
	The total length is $\frac{b(1-r^{17})}{1-r} = 222.38 \text{ cm} \text{ (to 2 d.p.)}$
36 (b)(i)	$\cos\left(u_{n+1}-u_{n}\right)=\cos u_{n+1}\cos u_{n}+\sin u_{n+1}\sin u_{n}$
	$=\frac{1}{2}\cos^2 u_n - \frac{\sqrt{3}}{2}\sin u_n \cos u_n$
	$+\frac{1}{2}\sin^2 u_n + \frac{\sqrt{3}}{2}\sin u_n \cos u_n$
	$=\frac{1}{2}$
	$\therefore u_{n+1} - u_n = \cos^{-1} \frac{1}{2} = \frac{\pi}{3} \text{ (since the difference is less than } \pi\text{)}$
	is a constant independent of <i>n</i> .
	Hence $\{u_n\}$ is an arithmetic progression. The common difference is $\frac{\pi}{3}$.
	Alternatively
	$\cos u_{n+1} = \frac{1}{2}\cos u_n - \frac{\sqrt{3}}{2}\sin u_n$
	$= \cos u_n \cos \frac{\pi}{3} - \sin u_n \sin \frac{\pi}{3}$
	$=\cos\left(u_n+\frac{\pi}{3}\right)$
	$\therefore u_{n+1} = u_n + \frac{\pi}{3}$ since the difference is less than π .
	$u_{n+1} - u_n$ is a constant, therefore $\{u_n\}$ is an arithmetic progression.
	The common difference is $\frac{\pi}{3}$.
b(ii)	The total angle rotated over <i>n</i> twists is $\frac{n}{2}\left(2\left(\frac{2\pi}{3}\right)+(n-1)\frac{\pi}{3}\right)$.

	$\frac{n}{2}\left(\frac{4\pi}{3} + (n-1)\frac{\pi}{3}\right) \ge 25 \times (2\pi)$		
	$\frac{2n\pi}{3} + \frac{\pi}{6}n(n-1) - 50\pi \ge 0$		
	$4n + n(n-1) - 300 \ge 0$		
	$n^2 + 3n - 300 \ge 0$		
	Using the GC,		
	$n = n^2 + 3n - 300$		
	15 -30		
	16 4		
	17 40		
	The minimum number of buttons presses required is 16.		
b(iii)	Total angle rotated after 21 button presses is		
	$\frac{21}{2}\left(2\left(\frac{2\pi}{3}\right)+(20)\frac{\pi}{3}\right)$		
	$=14\pi + 70\pi$		
	$=84\pi$		
	$84\pi k = 144$, where k is a positive real constant.		
	The first button press rotates the screw by $\frac{2\pi}{3}$.		
	$d_1 = ku_1 = \frac{144}{84\pi} \left(\frac{2\pi}{3}\right) = \frac{8}{7}$		
	The first button press drills the screw in by $\frac{8}{7}$ mm (1.14mm).		
37 (a)	1^{st} row: number of matches = 3		
	2^{nd} row: number of matches = 6		
	3^{rd} row: number of matches = 9		
	n^{th} row: number of matches = $3 + (n-1)(3) = 3n$		
	1 row: total number of matches $= 3$		
	2 rows: total number of matches = $3 + 6$		
	3 rows: total number of matches $= 3 + 6 + 9$		
	<i>n</i> rows: total number of matches		
	$=\frac{n}{2}(3+3n) = \frac{n}{2}[2(3)+(n-1)(3)]$		
	$\overline{3n(n+1)}$ OR $\overline{3n(n+1)}$		
	$=\frac{1}{2}$ (shown) $=\frac{1}{2}$ (shown)		

	$\frac{3n(n+1)}{2} \le 2000$
	2 Using GC,
	When $n = 36$, $\frac{3n(n+1)}{2} = 1998 < 2000$
	When $n = 37$, $\frac{3n(n+1)}{2} = 2109 > 2000$
	Maximum number of complete rows $=$ 36.
(b)	Let $r = \frac{b}{a}$
	$\frac{a}{1-r} = a + 2b$
	$\frac{1}{1-r} = 1 + 2r$
	$1 = 1 + r - 2r^2$
	$2r^2 - r = 0$
	r(2r-1) = 0
	$r = 0$ (rejected $\frac{b}{a} \neq 0$) or $r = \frac{1}{2}$
	\therefore common ratio = $\frac{1}{2}$
	$G_n = \frac{a\left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}}$
	$G_n = 2a\left(1 - \left(\frac{1}{2}\right)^n\right)$
	$\sum_{n=1}^{N} G_n = 2a \sum_{n=1}^{N} \left(1 - \left(\frac{1}{2}\right)^n \right)$
	$=2a\left[N-\sum_{n=1}^{N}\left(\frac{1}{2}\right)^{n}\right]$
	$=2a\left[N-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{N}\right)}{1-\frac{1}{2}}\right]$

	$=2a\left(N-\left(1-\left(\frac{1}{2}\right)^{N}\right)\right)$
	$=2aN-2a\left(1-\left(\frac{1}{2}\right)^{N}\right)$
	$=2aN-G_N$
38(i)	$\frac{1}{(r-2)!} - \frac{1}{r!} = \frac{r(r-1)-1}{r!} = \frac{r^2 - r - 1}{r!}$
	$\sum_{r=1}^{n} \frac{r^2 - r - 1}{r!} = \sum_{r=2}^{n} \left(\frac{1}{(r-2)!} - \frac{1}{r!} \right) + \frac{1 - 1 - 1}{1!}$
	$=\left(\frac{1}{0!}-\frac{1}{2!}\right)$
	$+\frac{1}{1!}-\frac{1}{3!}$
	$+\frac{1}{2!}-\frac{1}{4!}$
	+ + $\frac{1}{(\nu-4)!} - \frac{1}{(\nu-2)!}$
	$+\frac{1}{(n-3)!} - \frac{1}{(n-1)!}$
	$+\frac{1}{(n-2)!}-\frac{1}{n!}$ -1
	$=1+1-\frac{1}{(n-1)!}-\frac{1}{n!}-1$
	$=1-\frac{1}{(n-1)!}-\frac{1}{n!}$
(ii)	As $n \to \infty$, $-\frac{1}{(n-1)!} \to 0$ and $-\frac{1}{n!} \to 0$
	$\therefore \sum_{r=1}^{n} \frac{r^2 - r - 1}{r!} \to 1, \text{ a finite value}$
	$\therefore \sum_{r=1}^{\infty} \frac{r^2 - r - 1}{r!} \text{ converges}$
	sum to infinity = $\sum_{r=1}^{\infty} \frac{r^2 - r - 1}{r!} = 1$

$$\begin{array}{|c|c|c|c|c|} \hline (\text{iii}) & \sum_{r=1}^{n} \frac{r-2}{(r-1)!} = \sum_{r=1}^{n} \frac{r^2 - 2r}{r!} = \sum_{r=1}^{n} \frac{r^2 - r - r}{r!} \\ & < \sum_{r=1}^{n} \frac{r^2 - r - 1}{r!} \left(\because \frac{r}{r!} > \frac{1}{r!} \text{ for } r > 1 \right) \\ & = 1 - \frac{1}{(n-1)!} - \frac{1}{n!} < 1 \end{array}$$

$$(\text{iv}) & \sum_{r=4}^{n} \frac{r^2 - 5r + 5}{(r-2)!} \\ \text{Replace } r \text{ with } r + 2. \\ \sum_{r=4}^{n} \frac{r^2 - 5r + 5}{(r-2)!} = \sum_{r+2=4}^{r+2=n} \frac{(r+2)^2 - 5(r+2) + 5}{(r+2-2)!} \\ & = \sum_{r=4}^{n-2} \frac{r^2 - r - 1}{r!} \\ & = \sum_{r=4}^{n-2} \frac{r^2 - r - 1}{r!} - \frac{1^2 - 1 - 1}{1!} \\ & = 1 - \frac{1}{(n-2)!} - \frac{1}{(n-2)!} + 1 \\ & = 2 - \frac{1}{(n-3)!} - \frac{1}{(n-2)!}. \end{array}$$

39	(a)(i)
	After one month, if she pays x at the beginning of the month, she will owe the
	bank
	$(50000 - x) \times (1.001)$
	Hence $(50000 - x) \times (1.001) = 50000 \implies x = 49.95$
	Abbie needs to pay \$49.95 (to the nearest cent) a month.
	(a)(ii)
	One month after graduating, she owes
	$(50000-k)\times(1.00375).$
	<i>n</i> mon
	ths after graduating, she will owe
	$1.00375^{\circ}(50000-k)-1.00375^{\circ}k-\ldots-1.00375k$
	$=1.00375^{n} (50000) - k (1.00375^{n} + 1.00375^{n-1} + \ldots + 1.00375)$
	$=1.00375^{n} (50000) - k \left[\frac{1.00375 (1.00375^{n} - 1)}{1.00375 - 1} \right]$
	$=1.00375^{n} (50000) - \frac{803}{3} k (1.00375^{n} - 1) $ (shown).
	(a)(iii)
	Sub $n = 120$, and $k = 500$:
	$1.00375^{120}(50000) - \frac{803}{3}(500)(1.00375^{120} - 1) = 2467.11 > 0.$
	No, she cannot. A monthly payment of \$500 is not enough.
	When $n = 120$,
	$1.00375^{120} (50000) - \frac{803}{3} k (1.00375^{120} - 1) = 0$
	\Rightarrow k = 516.26 (nearest cent)
	She needs to pay \$516.26 per month.
	(b)(i)
	Oustanding amount upon graduation
	$=1.001^{50}(50000)$
	= 51831.86
	Using Abbie's formula, but with a starting outstanding amount of \$51831.86,
	$1.00375^{120} (51831.86) - \frac{803}{3} k (1.00375^{120} - 1) = 0$
	\Rightarrow k = 535.17 (nearest cent)
	He needs to pay \$535.17 per month.

(b)(ii)
$120 \times 535.17 - 50000 = 14220.43$ (to 2 d.p.)
He paid \$14220.43 in interest altogether.

40	GP: $a = 10000, r = 1.07$
	$U_{15} = 10000 (1.07)^{14}$
	$U_{15} = 25785.34 \approx 25785$
(i)	First three terms of G.P.: $a + 6d$, $a + 2d$, a
	$\Rightarrow \frac{a+2d}{a+2d} = \frac{a}{a+2d}$
	a+6d $a+2d$
	$a^2 + 4ad + 4d^2 = a^2 + 6ad$
	$4d^2 = 2ad$
	$d \neq 0 \Longrightarrow d = \frac{a}{2}$
(ii)	Given $a + 6d = 3000$, where $d = \frac{a}{2}$ from (i)
	$a + 3a = 3000 \Longrightarrow a = \frac{3000}{4} = 750$
	Total calories loss $S_n = \frac{n}{2} [2(750) + (n-1)(375)]$
	$=\frac{375n}{2}(3+n)$
	G.P. $U_1 = 3000, r = \frac{a}{a+2\left(\frac{a}{2}\right)} = \frac{1}{2}$
	$3000\left(1-\left(\frac{1}{2}\right)^n\right) \qquad \qquad$
	Total calories gain $S_n = \frac{1}{1-\frac{1}{2}} = 6000 \left(1-\left(\frac{1}{2}\right)\right)$
	$\frac{375n}{2}(3+n) - 6000 \left(1 - \left(\frac{1}{2}\right)^n\right) \ge 200000$
	$\left \frac{3n}{16}(3+n) - 6\left(1 - \left(\frac{1}{2}\right)^n\right) \ge 200\right $
	From GC, $n \ge 31.68$ (or 32)
	Least number of weeks $= 32$.

41	$u_n = S_n - S_{n-1}$		
(i)	= n(2n+7) - (n-1)(2n+5)		
	$=2n^{2}+7n-(2n^{2}+3n-5)$		
	=4n+5		
	$u_1 = 4(1) + 5 = 9$		
	$S_1 = 1 \left[2\left(1\right) + 7 \right] = 9$		
	$u_1 = S_1$		
	$u_n - u_{n-1}$		
	=(4n+5)-(4(n-1)+5)		
	=4n+5-(4n+1)		
	=4		
(**)	Since $u_n - u_{n-1} = 4$ (constant), the sequence is AP.		
(11)	$\sum_{n=1}^{N} \frac{1}{\sqrt{u_{n+1}} + \sqrt{u_n}}$		
	$\frac{N}{N} = \left(\sqrt{u_{n+1}} - \sqrt{u_n}\right)$		
	$=\sum_{n=1}^{\infty} \frac{(\sqrt{u_{n+1}} + \sqrt{u_n})}{(\sqrt{u_{n+1}} + \sqrt{u_n})(\sqrt{u_{n+1}} - \sqrt{u_n})}$		
	$= \sum_{n=1}^{N} \frac{\left(\sqrt{u_{n+1}} - \sqrt{u_n}\right)}{\left(\sqrt{u_{n+1}} - \sqrt{u_n}\right)}$		
	$\sum_{n=1}^{\infty} u_{n+1} - u_n$		
	$= \frac{1}{4} \sum_{n=1}^{N} \left(\sqrt{u_{n+1}} - \sqrt{u_n} \right)$		
	$=\frac{1}{4}\left\{\left(\sqrt{u_2}-\sqrt{u_1}\right)+\right.$		
	$\left(\sqrt{\mu_{3}}-\sqrt{\mu_{2}}\right)+$		
	$\left(\sqrt{u_{N_{n}}}-\sqrt{u_{N-1}}\right)+$		
	$\left(\sqrt{u_{N+1}} - \sqrt{u_N}\right)$		
	$=\frac{1}{4}\left(\sqrt{u_{N+1}}-\sqrt{u_1}\right)$		
	$=\frac{1}{1}\left(\sqrt{4N+9}-3\right)$		
	$\left[-\frac{1}{4}(v+v+y-3)\right]$		

(iii)	$\frac{1}{\sqrt{53} + \sqrt{49}} + \frac{1}{\sqrt{57} + \sqrt{53}} + \dots + \frac{1}{\sqrt{361} + \sqrt{357}}$		
	$= \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}$		
	$\sqrt{4(11)+9} + \sqrt{4(11)+5} + \sqrt{4(12)+9} + \sqrt{4(12)+5} + \sqrt{4(88)+9} + \sqrt{4(88)+5}$		
	$=\sum_{n=1}^{88} \frac{1}{\sqrt{u_{n+1}} + \sqrt{u_n}} - \sum_{n=1}^{10} \frac{1}{\sqrt{u_{n+1}} + \sqrt{u_n}}$ $= \frac{1}{4} \left(\sqrt{4(88) + 9} - 3 \right) - \frac{1}{4} \left(\sqrt{4(10) + 9} - 3 \right)$		
	= 4 - 1		
	=3		

43. CJC/2022/1/11

A new coating is applied to TX tennis balls to improve its elasticity. To examine its effect, a TX tennis ball is dropped vertically from a fixed height H cm onto the floor. The height reached after each bounce decreased by 5 cm from the height reached by the previous bounce.

Find, in terms of H and n,

- (i) the height reached by the tennis ball after the (n-1)th bounce, [1]
- (ii) the total distance travelled by the tennis ball just before it rebounds off the floor for the *n*th bounce. [5]
- (iii) State an assumption used in your calculation for part (ii).

The time interval between any successive bounces is also measured. Given that the time interval between the first and second bounce is 1.2 seconds, and the time interval between subsequent consecutive bounces is 0.75 times of the time interval of the previous bounce, find

- (iv) the least integer m such that it takes less than 0.02 seconds between the mth and (m + 1)th bounce, [3]
- (v) total time taken before the tennis ball comes to a stop given that it takes 2 seconds for the tennis ball to first hit the ground.

[1]

[2]

Height reached after the (n-1)th bounce = H - (n-1)(5)

(ii)

Total distance travelled by the ball just before it rebounds off the floor for the *n*th time = H + 2(H-5) + 2(H-2(5)) + 2(H-3(5)) + ... + 2(H-(n-1)(5))= H + 2H + 2H + ... + 2H - 2[5 + (5+5) + (5+5+5) + ... + (n-1)(5)]= $H + 2(n-1)H - 2[\frac{n-1}{2}(5+(n-1)5)]$ = H + 2(n-1)H - 5n(n-1)

OR

Total distance travelled by the ball just before it rebounds off the floor for the *n*th time = H + 2(H-5) + 2(H-2(5)) + 2(H-3(5)) + ... + 2(H-(n-1)(5)) = H + 2H + 2H + ... + 2H - 2[5 + (5+5) + (5+5+5) + ... + (n-1)(5)] $= H + 2(n-1)H - 2[\frac{n-1}{2}(2[5] + ([n-1]-1)5)]$ = H + 2(n-1)H - (n-1)(10 + 5n - 10) = H + 2(n-1)H - (n-1)(5n) = H + 2(n-1)H - 5n(n-1)

(iii)

State an assumption made in the calculation above.

- The ball only travels vertically

- Upon hitting the floor, the tennis ball rebounds instantly

(iv) Time taken between 1st and 2nd bounce = 1.2 Time taken between 2nd and 3rd bounce = 1.2(0.75) Time taken between 3rd and 4th bounce = $1.2(0.75)^2$... Time taken between mth and (m+1)th bounce = $1.2(0.75)^{m-1}$ $1.2(0.75)^{m-1} < 0.02$ $(0.75)^{m-1} < \frac{0.02}{1.2}$

$m-1 > \frac{\ln\left(\frac{0.02}{1.2}\right)}{\ln(0.75)}$				
m - 1 > 14.232				
<i>m</i> >15.232				
Least $m = 16$				
Alternative Method (using GC table)				
$1.2(0.75)^{m-1} < 0.02$				
NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3 NY1 Plot2 NY2 NY3 NY4 NY5 NY6 NY7 NY8	NDRMAL FLOAT AUTO REAL RADIAN MP X Y1 Image: Constraint of the state			
Least $m = 16$				
(v)				
total time taken before the tennis balls comes to a stop $=$ $\frac{1.2}{1-0.75} + 2$ = 6.8s				

44. EJC/2022/2/3

The sum S_n of the first *n* terms of a sequence u_1, u_2, u_3, \dots is given by

$$S_n = \ln\left(\frac{\mathrm{e}^n}{3^{n^2}}\right).$$

(a)Show that $u_n = 1 + (1 - 2n) \ln 3$.[2](b)Hence, show that the sequence is an arithmetric progression.[2](c)Find the sum of the first ten odd-numbered terms.[2]

- (d) A geometric sequence e^{u_1} , e^{u_2} , e^{u_3} , ... has a common ratio, *r*. Find the value of *r*. [2]
- (e) Find the least value of *n* for which the sum of the first *n* terms of this geometric sequence is within 10^{-8} of its sum to infinity. [3]

EJC Prelim 9758/2022/02/Q3

3(a)
$$S_n = \ln\left(\frac{e^n}{3^{n^2}}\right)$$

 $u_n = S_n - S_{n-1}$
 $= \ln\left(\frac{e^n}{3^{n^2}}\right) - \ln\left(\frac{e^{n-1}}{3^{(n-1)^2}}\right)$
 $= \ln\left(\frac{9^{n^2}}{3^{n^2}} \times \frac{3^{(n-1)^2}}{e^{n-1}}\right)$
 $= \ln\left(\frac{3^{-2n+1}}{e^{-1}}\right)$
 $= 1 + (1 - 2n) \ln 3$ (Shown)
(b) $u_n - u_{n-1} = [1 + (1 - 2n) \ln 3] - [1 + (1 - 2(n-1)) \ln 3]$
 $= -2\ln 3$ which is a constant independent of n
Hence, the sequence is an arithmetic progression.
(c) First term = 1 - ln 3
Common difference = -4 ln 3
Sum of the first ten odd-numbered terms
 $= \frac{10}{2} [2(1 - \ln 3) + 9(-4 \ln 3)]$
 $= 10 - 190 \ln 3$
(d) Method 1 - use $r = \frac{T_n}{T_{n-1}}$
 $r = \frac{e^{u_n - u_{n-1}}}{e^{u_{n-1}}}$
 $= e^{-2\ln 3}$ (from (b))
 $= 3^{-2}$
 $= \frac{1}{9}$
Method 2
 $r = \frac{e^{1-3\ln 3}}{e^{1 - \ln 3}} = e^{-2\ln 3} = \frac{1}{9}$
(e) We want $|S_n - S_n| \le 10^{-8}$.

