6. Maclaurin Series

1 SAJC/2015Promo/4

Given that the first three non-zero terms of the series expansion of $(1-x)^{\frac{1}{3}}$ are equal to the first three non-zero terms of the series expansion of $\frac{3+ax}{3+bx}$, where *a* and *b* are constants, find the values of *a* and *b*. [4]

2 **RI/2009Prelim/I/2**

Given that $y^2 + e^x + 3y = 5$, y > 0,

(i) show that
$$2\left(\frac{dy}{dx}\right)^2 + (2y+3)\frac{d^2y}{dx^2} + e^x = 0$$
, [2]

(ii) find the first three terms of the Maclaurin's series for y. [3]

3 RI/2014Promo/7

It is given that

$$y = \frac{\ln(1+2x)}{1+x}$$

(i) Show that
$$(1+x)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + \frac{4}{(1+2x)^2} = 0$$
. [3]

- (ii) Find the Maclaurin's series for y, up to and including the term in x^3 . [3]
- (iii) Verify that the same result is obtained if the standard series expansions for $\ln(1+2x)$ and $(1+x)^{-1}$ are used. [3]

4 YJC/2015Promo/6

It is given that $f(x) = \frac{1}{\sqrt{9-x^2}}$.

(i) Find the expansion of f(x) in ascending powers of x, up to and including the term in x^4 . Find the range of values of x for which the expansion is valid. [4]

(ii) By letting $x = \frac{1}{2}$, find an approximation for $\sqrt{35}$, leaving your answer as a fraction in its lowest terms. [2]

5 DHS/2015Promo/11

- (i) Express $f(x) = \frac{5x}{(1+2x)(1+x^2)}$ as $\frac{A}{1+2x} + \frac{Bx+C}{1+x^2}$. [2]
- (ii) Hence obtain the series expansion of f(x) up to and including the term in x^3 . [3]
- (iii) Using your result in part (ii), find an approximate value for $\int_{0}^{1} \frac{x}{(1+2x)(1+x^{2})} dx.$ Give your answer in its lowest fraction. [2]
- (iv) Use your calculator to evaluate $\int_{0}^{1} \frac{x}{(1+2x)(1+x^2)} dx$. Justify whether your answer in part (iii) is an appropriate approximation. [2]

6 **RI/2015Promo/8**

- (a) (i) Expand $f(x) = \frac{2}{2-x} \frac{1}{(1+x)^2}$ as a series in ascending powers of x up to and including the term in x^2 . [3]
 - (ii) State the equation of the tangent to the curve y = f(x) at the origin. [1]

(b) Using the standard series given in the List of Formulae (MF26) or otherwise, show that the first three non-zero terms in the Maclaurin series for $e^{\sqrt{1+x}}$ can be expressed as $e(1 + px + qx^3 + ...)$ where p and q are constants to be determined. [6]

7 **TPJC/2009Prelim/I/7**

It is given that $\tan^{-1} y = \ln(1+x)$.

- (i) Prove that $(1+x)\frac{dy}{dx} = 1 + y^2$. [1]
- (ii) By successively differentiating this result three times, find the Maclaurin's series for $\tan(\ln(1+x))$, up to and including the term in x^4 . [6]
- (iii) Show on a sketch the shape of the graph of y = tan(ln(1+x)) for small x, indicating clearly the relationship of the graph to that of y = x. [2]

8 NYJC/2015Promo/9 (Part)

(a) Expand $\frac{8}{(2-x)^2}$ in ascending powers of x up to and including the term in x^2 , stating

the range of values of x for which the expansion is valid.

[4]

(**b**) Given that $y = \cot\left(2x + \frac{\pi}{4}\right)$, show that $\frac{dy}{dx} = -2\left(1 + y^2\right)$. [2]

By further differentiation, find the Maclaurin series for y, up to and including the term in x^3 . [5]

Hence show that $\tan\left(2x + \frac{\pi}{4}\right) \approx a + bx + cx^2$ where *a*, *b* and *c* are constants to be determined. [4]

9 NJC/2015Promo/3

Given that x and y are related by $(4-x^2)\frac{dy}{dx} = x^2 - 3$, where -2 < x < 2,

and that y = 2 when x = 0,

- (i) find y in terms of x,
- (ii) by differentiating further, or otherwise, find the first three non-zero terms of the Maclaurin's series for *y*. [3]

10 SAJC/2009Prelim/I/3

Given that $y = e^{3\tan^{-1}x}$, show that

$$\left(1+x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x}=3y\,.$$

By repeated differentiation of this result, find the Maclaurin's expansion for y, up to and including the term in x^3 . [5]

Hence, deduce the Maclaurin's expansion for $e^{2x+3\tan^{-1}x}$, up to and including the term in x^2 . [2]

11 RVHS/2015Prelim/I/8

Given that $y = \sin^{-1}[\ln(x+1)]$, show that

$$\cos y \frac{dy}{dx} = \frac{1}{x+1}$$
 and $\cos y \frac{d^2 y}{dx^2} - \sin y \left(\frac{dy}{dx}\right)^2 = -\frac{1}{(x+1)^2}$. [2]

- (i) By further differentiation, find the Maclaurin series for y, up to and including the term in x^3 . [3]
- (ii) Find the set of values of x for which the value of y is within ± 0.1 of the value found by its Maclaurin series. [3]
- (iii) Deduce the series expansion for $\frac{1}{(x+1)\sqrt{1-(\ln(x+1))^2}}$ up to and including the

term in
$$x^2$$
. [2]

[3]

12 DHS/2009Prelim/II/3(a)

It is given that $\frac{dy}{dx} = \frac{e^{\tan^{-1}x}}{1+x^2}$, where $\tan^{-1}x$ denotes the principal value.

(i) Find an expression for y in terms of x given that y = 1 when x = 0. [2]

(ii) Show that
$$(1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0.$$
 [2]

(iii) By further differentiation of the result in (ii), find the Maclaurin series for y up to and including the term in x^3 . [4]

(iv) State the series expansion for
$$\frac{e^{\tan^{-1}x}}{1+x^2}$$
 up to and including the term in x^2 . [1]

13 RVHS/2015Promo/4

Given that $y = e^x \sin^2 x + 1$, show that $\frac{dy}{dx} = e^x \sin 2x + y + a$ and

 $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = 2e^x \cos 2x + b$, where *a* and *b* are constants to be determined. [3]

(i) Hence find the Maclaurin series for y, up to and including the term in x^2 . [2]

(ii) Write down the first three terms in the series expansion for $(1-x)^{-1}$. Deduce the Maclaurin series of $\frac{e^{-2x} \sin^2 2x + 1}{1-x}$ up to and including the term in x^2 . [3]

14 JJC/2015Prelim/I/4

Two ground spotlights *P* and *Q* are shining at the top of a tower *TT*' of height *h* m. *P* is due west and *Q* is due south of the tower. The angle *TPT*' is $\frac{\pi}{6}$ radians and the angle (π)

Hence, by using the standard results in MF26, show that $PQ^2 \approx 4h^2(1-x+2x^2)$.[3]

15 ACJC/2015Promo/3

The diagram above shows triangle *ABC* which has fixed points *A* and *C* and a variable point *B* such that AB = kBC, where *k* is a constant such that 0 < k < 1. The angles *BAC* and *BCA*, measured in radians, are *x* and *y* respectively.

(i) Show that $\sin y = k \sin x$.

(ii) By successively differentiating the equation in part (i), show that

$$\cos y \frac{d^2 y}{dx^2} - \sin y \left(\frac{dy}{dx}\right)^2 = -k \sin x \,. \tag{1}$$

Hence find the Maclaurin series for y, up to and including the term x^3 . [3]

16 IJC/2015Promo/6

In the triangle *ABC*, *AC* = 1, angle $BAC = \frac{2}{3}\pi$ radians and angle $ACB = \theta$ radians (see diagram).

(i) Show that
$$BC = \frac{\sqrt{3}}{\sqrt{3}\cos\theta - \sin\theta}$$
. [3]

(ii) Given that θ is a sufficiently small angle, show that $BC \approx 1 + \frac{\theta}{\sqrt{3}} + p\theta^2$, where *p* is a constant to be determined. [4]

17 IJC/2015Promo/10

- (i) Given that $y = e^{\sin^{-1}3x}$, show that $(1 9x^2)\frac{d^2y}{dx^2} 9x\frac{dy}{dx} = 9y$. [3]
- (ii) By further differentiation of the result in part (i), find the Maclaurin series for y in ascending powers of x, up to and including the term in x^3 . [4]
- (iii) Hence find an approximate value of $e^{-\frac{\pi}{2}}$, giving your answer as a fraction in its simplest form. [2]

18 MI/I/2015Promo/10

- (a) Given that $f(x) = sin\left(2x + \frac{\pi}{4}\right)$, find the exact values of f(0), f'(0) and f''(0). Hence, write down the first three non-zero terms in the Maclaurin series for f(x). [5]
- (**b**) In the triangle *ABC*, *AB* = 2, *BC* = 4 and angle *ABC* = θ radians. Given that θ is a sufficiently small angle, show that $AC \approx (4+8\theta^2)^{\frac{1}{2}} \approx a+b\theta^2$, where *a* and *b* are constants to be determined. [5]

19 SRJC/2009Prelim/I/11

- (i) Given that $y = \ln\left(\frac{\cos x}{e-x}\right)$, show that $\frac{dy}{dx} = -\tan x + \frac{1}{(e-x)}$. By further differentiation of this result, or otherwise, find the Maclaurin's series of y up to and including the term in x^3 . [6]
- (ii) Deduce the Maclaurin's series for the equation $y = \ln\left(\frac{\cos(ex)}{1+x}\right)$ up to and including the term in x^3 . [2]

20 TJC/2014Promo/8

Given that $y = (1 - \sin x)^{\frac{1}{2}}$, show that $2y \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + y^2 - 1 = 0$. [2]

By further differentiation, find the Maclaurin's series of y in ascending powers of x up to and including the term in x^3 . [4]

Deduce the Maclaurin's series of $\cos x$ up to and including the term in x^2 . [3]

21 PJC/2015Promo/10

(iii) Given that $y = \tan(3e^x - 3)$, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^x \left(1 + y^2\right).$$
[2]

Hence find the Maclaurin's series for y, up to and including the term in x^2 . [4]

(ii) Use the standard results given in the List of Formulae (MF26) to find the first two non-zero terms of $(1 + ax)^{10} \sin bx$, where *a* and *b* are constants. [2]

The first two non-zero terms in the Maclaurin series for y are equal to the first two non-zero terms in the series expansion of $(1 + ax)^{10} \sin bx$, find the values of a and b. [2]

22 VJC/2015Promo/8 (modified)

- (a) (i) Find the derivative of $\sqrt{1-x^2}$. [2]
 - (ii) Hence, find $\sin^{-1} x \, dx$.

(**b**) (**i**) Given that
$$y^3 + y = 2x^2 - x$$
, show that $6y\left(\frac{dy}{dx}\right)^2 + \frac{d^2y}{dx^2}(3y^2 + 1) = 4$. [2]

(ii) Find the series expansion of y, up to and including the term in x^2 . [3]

The diagram below shows the graph of *C*, given by $y^3 + y = 2x^2 - x$ for $x \ge 0$ and the line x = 0.6.

(iii) Find an approximation for the area of the shaded region. How can the approximation be made better? [2]

23 MI/2020Promo/PU2/P1/Q6

- (a) Using standard series from the List of Formulae (MF26), expand $e^{3x} \ln(1+ax)$ as far as the term in x^3 , where *a* is a non-zero constant. Given that there is no term in x^2 , determine the coefficient of x^3 . [5]
- (b) Find the expansion of $\frac{1+3x}{\sqrt{9-x^2}}$ in ascending powers of x, up to and including the

term in x^3 . State the set of values of x for which the expansion is valid. [4]

<u>Answers</u>

1.
$$b = -1$$
, $a = -2$
2. (ii) $y = 1 - \frac{1}{5}x - \frac{27}{250}x^2 + ...$
3. (ii) $y = 2x - 4x^2 + \frac{20}{3}x^3 + ...$
4. (i) $\frac{1}{3} \left(1 + \frac{x^2}{18} + \frac{x^4}{216} + ... \right)$, $-3 < x < 3$ (ii) $\frac{20736}{3505}$

[3]

5. (i)
$$f(x) = -\frac{2}{1+2x} + \frac{x+2}{1+x^2}$$
 (ii) $f(x) = 5x - 10x^2 + 15x^3 + ...$ (iii) $\frac{7}{12}$ (iv) 0.164
6. (a) (i) $\frac{5x}{2} - \frac{11}{4}x^2 + ...$ (ii) $y = \frac{5x}{2}$ (b) $e\left(1 + \frac{1}{2}x + \frac{1}{48}x^3 + ...\right)$
7. (ii) $x - \frac{1}{2}x^2 + \frac{2}{3}x^3 - \frac{3}{4}x^4 + ...$
8. (a) $2 + 2x + \frac{3}{2}x^2 + ...$, $-2 < x < 2$ (b) $y = 1 - 4x + 8x^2 + ...$
9. (i) $y = -x + \frac{1}{4}\ln\left(\frac{2+x}{2-x}\right) + 2$ (ii) $2 - \frac{3}{4}x + \frac{1}{48}x^3 + ...$
10. $1 + 3x + \frac{9}{2}x^2 + \frac{7}{2}x^3 + ...$, $1 + 5x + \frac{25}{2}x^2 + ...$
11. (i) $y = x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + ...$ (ii) $\{x \in \mathbb{R}: -0.521 < x < 0.783\}$ (iii) $1 - x + \frac{3}{2}x^2 + ...$
12. (i) $y = e^{\tan^{-1}x}$. (iii) $1 + x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + ...$ (iv) $1 + x - \frac{1}{2}x^2 + ...$
13. $a = -1, b = 1$ (i) $y = 1 + x^3 + ...$ (ii) $1 + x + x^2 + ...$, $1 + x + 5x^2 + ...$
15. (ii) $y = kx + \frac{k(k^2 - 1)}{6}x^3 + ...$
16. (ii) $1 + \frac{0}{\sqrt{3}} + \frac{5}{6}\theta^2$
17. (ii) $y = 1 + 3x + \frac{9}{2}x^2 + 9x^3 + ...$ (iii) $\frac{1}{6}$
18. (a) $f(0) = \frac{\sqrt{2}}{2}, f'(0) = \sqrt{2}, f'(0) = -2\sqrt{2}, f(x) = \frac{\sqrt{2}}{2} + \sqrt{2}x - \sqrt{2}x^2 + ...$ (b) $2 + 2\theta^2$
19. (i) $-1 + \frac{1}{e}x + \frac{1}{2}(\frac{1}{e^2} - 1)x^2 + \frac{1}{3e^3}x^3 + ...$; $\cos x = 1 - \frac{1}{2}x^2 + ...$
20. $(1 - \sin x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{48}x^3 + ...; \cos x = 1 - \frac{1}{2}x^2 + ...$
21. (i) $y = 3x + \frac{3}{2}x^2 + ...$ (ii) $bx + 10abx^2 + ..., a = \frac{1}{20}$ and $b = 3$
22. (a) $(i) -\frac{x}{\sqrt{1-x^2}}$ (a) (ii) $x\sin^{-1}x + \sqrt{1-x^2} + C$ (b) (ii) $-x + 2x^2 + ...$ (b) (iii) 0.0473
23. (a) $ax + \left(3a - \frac{a^2}{2}\right)x^2 + \left(\frac{a^3}{3} - \frac{3a^2}{2} + \frac{9a}{2}\right)x^3 + ...; 45,$
(b) $\frac{1}{3} + x + \frac{1}{54}x^2 + \frac{1}{18}x^3 + ...; -3 < x < 3$