EUNOIA JUNIOR COLLEGE

General Certificate of Education Advanced Level Higher 2

PHYSICS

SUGGESTED SOLUTIONS

October/November 2014

9646

Pa Multip	aper 1 Ile Choice			
	Question	Key	Question	Key
	1	С	21	D
	2	Α	22	С
	3	Α	23	В
	4	D	24	D
	5	D	25	Α
	6	С	26	D
	7	С	27	D
	8	D	28	В
	9	С	29	Α
	10	D	30	D
	11	В	31	D
	12	В	32	С
	13	В	33	D
	14	С	34	В
	15	Α	35	D
	16	В	36	С
	17	Α	37	Α
	18	С	38	D
	19	Α	39	Α
	20	D	40	С

Notes

Q4: need to solve simultaneous equations, one equation with unknown time and 0.25 of distance, d, from start to ground, the other equation with required time and d

Q9: calculate power output of the train first

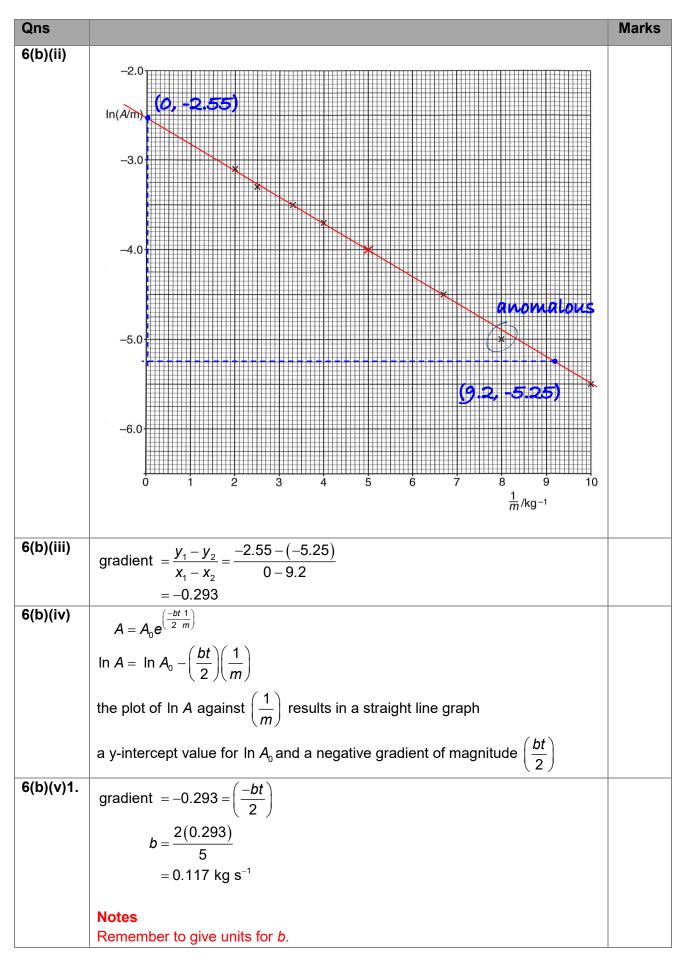
Q22: distance between 2 nodes, i.e. 2 minimum points on voltage graph is half a wavelength, not one wavelength

Q25: directions of field at all 4 points are the same even though their magnitude is different Q28: current is given by charge x frequency, $ef = e\omega/2\pi$

Paper 2 Structured Questions

Qns		Marks
1(a)(i)	magnitude = 60.0 N	B1
	angle = 90°	B1
1(a)(ii)	vector sum of forces = 0 along horizontal considering magnitudes:	
	horizontally: $Y \cos \theta = 200 \cos(30^\circ) = 100\sqrt{3} \text{ N}$ vertically: $Y \sin \theta + 200 \sin(30^\circ) = 60.0$	M1
	$Y \sin \theta = -40.0 \text{ N}$	
	$x = \arcsin(-40.0 / (20\sqrt{79})) \qquad \theta = 347^{\circ}$ magnitude of $Y = \sqrt{40^2 + (100\sqrt{3})^2} \qquad \theta = -13^{\circ}$	
	magnitude of Y = $\sqrt{40^2 + (100\sqrt{3})^2}$ = $20\sqrt{79} = 178 \text{ N}$ Y	A1
	$\tan \theta = \frac{Y \sin \theta}{Y \cos \theta} = \frac{-40}{100\sqrt{3}}$ $\theta = -13^{\circ} \text{ or } 347^{\circ}$	A1
	Notes Do not miss out the negative signs in your working and answer.	

Qns		Marks
1(b)	[magnitude] as long as magnitude of X is above zero [direction] and X remains directed at 30° anticlockwise to the horizontal,	
	there will be a horizontal component of force $X \cos \theta$ acting on S to the right	B1
	since vector sum of forces on S must be zero for S to be in equilibrium,	
	Y must provide a horizontal component force acting on S to the left	B1
	Y is along same direction as rope B, so must be at an angle to the left and cannot be parallel to weight of S	A0
	Notes Cannot just describe general conditions for equilibrium rather than target it towards the context of this question, i.e. must focus on forces acting on object S.	
2	(out of syllabus)	
3(a)	current decreases as resistance of R and total circuit resistance increases	M1
	drop in p.d. across internal resistance decreases $(V_{int resistance} = Ir)$	M1
	terminal p.d. increases as it is the difference between electromotive force and n d. dran agrees internal resistance $(V_{res}, a, m, f_{res}, I_{res})$	A1
	p.d. drop across internal resistance $(V_{\text{terminal}} = e.m.f Ir)$	
	Notes Remember that the terminal potential difference is <i>not</i> the potential difference across the internal resistance.	
	Also do not simply quote the potential divider formula without explaining in detail.	

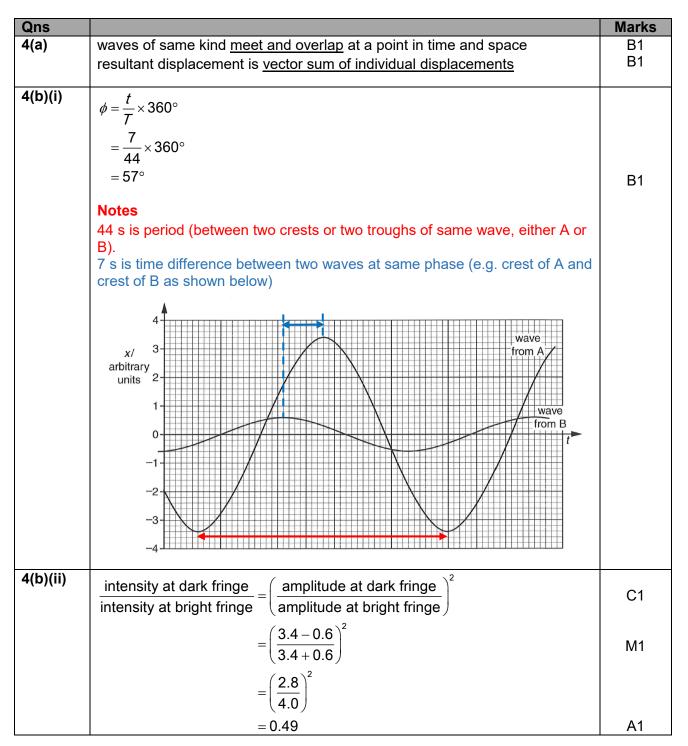

Qns		Marks
3(b)(i)	current in circuit $I = \frac{e.m.f}{R_{total}}$	
	$=\frac{5}{0.25+4+3.5}=\frac{5}{7.75}$ (= 0.645 A)	C1
	$V_{\text{terminal}} = e.m.f Ir$	C1
	$= 5 - \frac{5}{7.75} (0.25)$ = 4.84 V	A1
	or	
	by potential divider rule:	
	$\frac{V_{\text{internal}}}{\text{e.m.f.}} = \frac{r_{\text{internal}}}{R_{\text{total}}}$	C1
	$V_{\text{internal}} = (e.m.f.) \frac{r_{\text{internal}}}{R_{\text{total}}}$ $= 5 \frac{0.25}{0.25 + 4 + 3.5} = 0.161 \text{ V}$	C1
	$V_{\text{terminal}} = (\text{e.m.f.}) - V_{\text{internal}}$ $= 5 - 5 \frac{0.25}{0.25 + 4 + 3.5}$	
	0.25 + 4 + 3.5 = 4.84 V	A1
3(b)(ii)	same current passing through efficiency = $\frac{P_{\text{external}}}{P_{\text{total}}} \times 100\%$	
	$=\frac{IV_{\text{terminal}}}{I(\text{e.m.f.})} \times 100\%$	
	$=\frac{4.84}{5}\times100\%=96.8\%$	
3(c)(i)	PJ is balanced length so $V_{PL} = (e.m.f.)_{C} = 1.2 \text{ V}$	A1
3(c)(ii)	$V_{PQ} = iR_{PQ}$ by potential divider rule: = (0.645)(3.5) OR $\frac{V_{PQ}}{e.m.f.} = \frac{R_{PQ}}{R_{total}}$ = 2.26 V $V_{PQ} = 5\left(\frac{3.5}{0.25 + 4 + 3.5}\right) = 2.26 V$	
	by potential divider rule:	
	$\frac{l}{L_{PQ}} = \frac{(e.m.f.)_{C}}{V_{PQ}}$	
	$l = (1) \frac{1.2}{2.26}$ = 0.531 m	

9646/H2 PHYSICS 2014

Qns		Marks
3(c)(iii)	p.d. across PJ increases and is larger than the p.d. across cell C	
	a net p.d. is exerted opposite to the polarity of cell C and results in a current flow	
	Notes Do not just mention that p.d. across PJ changes without linking to current flow.	
4(a)(i)	[flux linkage] the magnetic flux linkage is the product of magnetic flux density normal to the cross sectional area and varies sinusoidally when the coil spins around PQ	
	[Faraday's Law] sides of coil that are parallel to PQ cut the magnetic flux lines when rotating , therefore produce sinusoidal induced e.m.f. that is directly proportional to the rate of change of magnetic flux linkage	
	[min e.m.f.] when the cross sectional area is normal to the flux lines, there is minimum rate of change of magnetic flux linkage so magnitude of induced e.m.f. is zero	
	[max e.m.f.] when the cross sectional area is parallel to the flux lines, there is maximum rate of the coils cutting flux lines so magnitude of induced e.m.f. is maximal	
	Notes Note that the maximum e.m.f. is where the rate of change of flux linkage is greatest, not when the flux linkage is greatest.	
4(a)(ii)1.	peak-to-peak voltage: 6.8 cm	
	maximum induced e.m.f. = $\frac{6.8}{2}(0.050) = 0.17$ V	
4(a)(ii)2.	length of trace representing 2 complete oscillations: 10 cm	
	frequency: $\frac{1}{T} = \frac{1}{\frac{10}{2} (8.0 \times 10^{-3})} = 25 \text{ Hz}$	
4(b)	$E_0 = (N\Phi)\omega = (NBA)\omega = (NBA)(2\pi f)$	M1
	$B = \frac{E_0}{NA(2\pi f)} =$	
	$=\frac{0.17}{(120)(1.3\times10^{-3})(2\pi(25))}$	M1
		A1
5(a)	= 0.0605 T work done per unit mass in bringing small test mass from infinity to that point	B1
-()		

Qns		Marks
5(b)(i)	using point $(2 \times 10^8, -6.4 \times 10^8)$	
	$\phi = -\frac{GM}{r}$ $M = \frac{-r\phi}{G}$ $= \frac{-(2 \times 10^8)(-6.4 \times 10^8)}{6.67 \times 10^{-11}}$ $= 1.92 \times 10^{27} \text{ kg}$ Notes	
5(b)(ii)	Do not miss out negative sign.	
	$GPE = m_{moon} \phi = m_{moon} \left(-\frac{GM}{r_{moon}} \right)$	
	$KE = \frac{1}{2}m_{\mathrm{moon}}v^{2} = \frac{1}{2}m_{\mathrm{moon}}\left(r_{\mathrm{moon}}\omega\right)^{2} = \frac{1}{2}m_{\mathrm{moon}}r_{\mathrm{moon}}^{2}\left(\frac{2\pi}{T}\right)^{2}$	
	E _{total} = GPE + KE	
	$= m_{\text{moon}} \left(-\frac{GM}{r_{\text{moon}}} \right) + \frac{1}{2} m_{\text{moon}} r^2_{\text{moon}} \left(\frac{2\pi}{T} \right)^2$	
	$= m_{\text{moon}} \left[\left(-\frac{GM}{r_{\text{moon}}} \right) + \frac{1}{2} r_{\text{moon}}^2 \left(\frac{2\pi}{T} \right)^2 \right]$	
	$ = (8.93 \times 10^{22}) \left[\left(-\frac{(6.67 \times 10^{-11})(1.92 \times 10^{27})}{4.22 \times 10^8} \right) + \frac{1}{2} (4.22 \times 10^8)^2 \left(\frac{2\pi}{1.53 \times 10^5} \right)^2 \right] $ = -1.37 × 10 ³¹ J	
5(c)	initial distance from S can be regarded as infinity where potential is zero	
	$KE = q \Delta V$	
	$\frac{1}{2}mv^{2} = e(V_{\text{final}} - V_{\text{initial}})$ $v = \sqrt{\frac{2e(V_{\text{final}} - V_{\text{initial}})}{m_{p}}}$	
	$\approx \sqrt{\frac{2(1.6 \times 10^{-19})(1.02 \times 10^{6} - 0)}{1.67 \times 10^{-27}}}$ = 1.40 × 10 ⁷ m s ⁻¹	
	Notes Cannot use kinematics equations to solve as those are only for constant acceleration (with constant force).	

Qns					Mark
5(d)			h graphs approache trength decreases		
	while the gradient o field strength is tow	f the electric potent ards lower potentia	gravitational potenti ial graph is negative I, so gravitational po tric potential graph	. the direction of the tential graph shows	
	Notes Remember to state	and explain for bo	th the similarity and	difference.	
6(a)	the rate of change of	the rate of change of A decreases with time (A decreases at a decreasing rate)			
	the rate at which the resistive forces dec	•••	em loses energy as	work done against	
	Notes				
	The gradient of graph is used to infer that rate of change of A decreases with time, not to explain it. Need to give physical significance and not use the gradient of the graph to explain this.				
6(b)(i)					
6(b)(i)	<i>m</i> / kg	$\frac{1}{m}$ / kg ⁻¹	A / 10⁻² m	ln (<i>A</i> / m)	


Qns		Marks
6(b)(v)2.	$\ln A_0 = -0.255$	
	$A_0 = e^{-0.255}$	
	= 0.775 m	
6(c)	$\mathbf{A} = \mathbf{A}_0 \mathbf{e}^{\left(\frac{-bt}{2} \frac{1}{m}\right)}$	
	$\frac{A}{A_0} = e^{\left(\frac{-bt}{2}\frac{1}{m}\right)}$	
	$\frac{1}{A_0} = e^{-\frac{1}{2} \frac{1}{M_0}}$	
	$\ln\left(\frac{A}{A_{0}}\right) = \ln(0.5)$	
	$=-\left(\frac{bt}{2}\right)\left(\frac{1}{m}\right)$	
	(2)(m)	
	$t = \frac{-2m(\ln(0.5))}{h}$	
	D D D D D D D D D D D D D D D D D D D	
	$=\frac{-2(0.500)(\ln(0.5))}{0.117}$	
	0.117 = 5.92 s	
	= 5.92 S	
	Notes	
	Remember to convert 500 g to 0.5 kg.	
6(d)	$T_{1/2}$ increases as <i>m</i> increases	
	a larger mass, so greater initial total* energy of the system for the same initial amplitude, but lower maximum speed during oscillations	
	(*Note: max amplitude A_0 is kept constant, so initial elastic potential energy is kept constant. So in terms of thinking, it is easier to think about same Elastic	
	PE, so for the same KE, higher <i>m</i> means lower $v_{\text{max}} \frac{1}{2}kx_{\text{max}}^2 = \frac{1}{2}kA_0^2 = \frac{1}{2}mv_{\text{max}}^2$.	
	However, for the same "height" the GPE is greater so initial <i>total</i> energy is bigger.)	
	lower maximum speed so less maximum drag force between the disc and the fluid. the rate of energy loss as work done against resistive force is less so the time taken for the amplitude to decrease by a factor of 2 is longer	

7 Measurement of Variables Measure intensity in transmission geometry Measure thickness of material Analysis Suggestion of equation in the form of $I = I_0 e^{-kt}$ In $I = \ln I_0 - kt$ Plot of $\ln I$ against t shdould yield a straight line with y-intercept $\ln I_0$ and gradient $-k$ Safety Possible details may include • Clean surfaces of microscope slides • minimise air gap between microscope slides • measure total thickness of slides at multiple positions for average • Keep distance between light source and intensity meter constant • Measure initial intensity without microscope slides • Measure of ambient intensity without light source and without slides • Measure initial intensity without microscope slides • Ensure initial intensity without microscope slides • Ensure initial intensity does not overload light meter • Ensure that light meter can still be read when with maximum possible thickness of slides • Dark environment

Paper 3 Longer Structured Questions

Qns		Marks
1(a)(i)	does not change/remains constant	B1
1(a)(ii)	increases from <u>zero</u>	B1
	accelerates at a constant rate of 9.81 m s ⁻²	B1
4 / b)/:)		
1(b)(i)	decreases	B1
	Notes	
	Air resistance will affect horizontal velocity as it is a force that acts against	
	velocity in horizontal direction also, hence decreasing horizontal velocity.	
1(b)(ii)	increases from <u>zero</u>	B1
	accelerates at a decreasing rate from 9.81 m s ⁻²	B1
	until it reaches terminal velocity	B1
1(c)	initial path similar to path without air resistance, i.e. horizontal	
()	path parabolic and always below path without air resistance	
	Notes	
	Remember that in your sketch, the very initial part of the path should be	
	horizontal as initial velocity is horizontal.	
2(a)(i)	angle <u>subtended at centre of a circle</u> by an arc	B1
()()	whose arc length is equal to the radius of circle	B1
2(a)(ii)	related to natural frequency of simple harmonic motion by $\omega = 2\pi f$	B1
0/b)/i)	total an annu of an bana	
2(b)(i)	total energy of sphere = max PE of sphere	M1
	= mgh	1011
	$= (0.120)(9.81)(0.40 \times 10^{-2})$	M1
	$= 4.7 \times 10^{-3} \text{ J}$	A0
2(b)(ii)	total energy of sphere = max PE of sphere	C1
	total energy of sphere = $\frac{1}{2} m\omega^2 x_0^2$	M1
	$4.7 \times 10^{-3} = \frac{1}{2} (0.120)(2\pi f)^2 (8.0 \times 10^{-2})^2$ f = 0.557 Hz	M1 A1
	Notes	
	Do not be confused, amplitude is 8.0 cm, not 0.40 cm.	

Qns					Marks	
3(a)			energy of a system		B1	
		the <u>thermal en</u> e	ergy supplied to the	system and <u>work done on th</u>		
	<u>system</u>				B1	
3(b)(i)	pV = nRT					
	ρV					
	$n = \frac{pV}{RT}$					
	(2.4×	10 ⁵)(5.0×10 ⁻⁴	4)		M1	
	$=\frac{1}{2}$	$(10^5)(5.0 \times 10^{-4})(8.31)(290)$	_/			
	= 0.050				A1	
3(b)(ii)1.	work done f					
	$= P \Delta V$					
)[(14.4 – 5.0) ×	[:] 10 ⁻⁴]		M1	
	= 230 J				A1	
3(b)(ii)2.	0 J				B1	
3(b)(iii)					One	
					mark for	
	abanga		beeting eventied	increase in internel	each	
	change	work done	heating supplied	increase in internal	row	
	$X \rightarrow Y$	on gas / J – 230	to gas / J +570	energy / J + 340	B1	
	$ \begin{array}{c} X \rightarrow 1 \\ Y \rightarrow Z \end{array} $	+540	0	+ 540	B1	
	$Z \rightarrow X$	0	- 880	- 880	B1	
	Notes					
	Please wato	ch out for the si	igns.			

Qns		Marks
5(a)	substitute $\phi = hf_0 = \frac{hc}{\lambda_0}$	B1
	$E_{MAX} = hf - \phi$	
	$=\frac{hc}{\lambda}-\frac{hc}{\lambda}$	
	$=hc\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)$	
	Notes	
	To prove something, need to start with stated equation $E_{MAX} = hf - \phi$ and	
	manipulate until you get the resulting equation you want to prove (instead of working backwards).	
5(b)(i)	at $E_{MAX} = 0, \ \frac{1}{\lambda} = \frac{1}{\lambda_0}$	
	from x-intercept of graph, $\frac{1}{\lambda_0} = 2.30 \times 10^6 \text{ m}^{-1}$	M1
	$\lambda_0 = 435 \text{ nm}$	A1
	Notes	
	Need to extend graph to get x-intercept.	
5(b)(ii)	gradient of graph = hc	M1
	$\frac{(3.10 - 1.00) \times 10^{-19}}{(3.85 - 2.80) \times 10^{6}} = h \left(3.0 \times 10^{8} \right)$	M1
		1011
	$h_0 = 6.7 \times 10^{-34} \text{ J s}$	A1
5(c)	parallel line to the right of existing line	B1
	1	l

Qns		Marks
6(a)(i)	region of space in which a	B1
	force acts on a body	B1
6(a)(ii)	may be gravitational force acting	B1
e(u)(ii)	on the mass of the charged particle	B1
	may be magnetic force due to a magnetic flux density	B1
	acting on a <u>moving</u> charge that is <u>not moving parallel</u> to the magnetic flux	B1
	Notes	
	Remember to consider both the alternative fields (gravitational and magnetic)	
	and not just one of them.	
	Remember to state that the magnetic force acts on moving charge.	
6(b)(i)	the two regions are conductors	
	electric charges inside conductors redistributed onto surface	B1
	electric charges at electrostatic equilibrium do not move	
	so field strength is zero	
	Notes	
	Cannot just say no field inside spheres without giving reason.	
6(b)(ii)1.	4.0 cm	B1
	2.0 cm	B1
6(b)(ii)2.	graph always positive so <u>direction of electric field</u> due to both spheres is <u>same</u>	M1
	the spheres have charges of <u>opposite signs</u>	A1
6(b)(iii)1.	change in electric potential ΔV = area under graph	C1
	$\approx (1.2 \times 10^5) (5.0 \times 10^{-2})$	M1
	= 6000 V	
	change in electric potential energy = $q \Delta V$	C1
	≈ (3×1.60×10 ⁻¹⁹)(6000)	M1
	$= 2.88 \times 10^{-15} \text{ V}$	A1
	Notes	
	Li nucleus has 3 protons so the charge is 3e.	
	Have to use area under graph, no other method possible.	
6(b)(iii)2.	$F_{_{E}} = ma$	
	$q\dot{E} = ma$	
	$(3 \times 1.60 \times 10^{-19})(3.0 \times 10^{5}) = (7 \times 1.66 \times 10^{-27})a$	M1
	$a = 1.24 \times 10^{-13} \text{ m s}^{-1}$	A1
	Notes	
	Li nucleus has 7 nucleons so the mass is 3 <i>u</i> .	

Qns		Marks
6(b)(iii)3.	magnitude of the acceleration decreases from a maximum at $x = 4.0$ cm	B1
	to a minimum at $x = 18.5$ cm magnitude of the acceleration then increases to a maximum at $x = 28.0$ cm	B1 B1
	Notes Acceleration is minimum but not 0 at 18.0 cm. Electric field is not 0 so there is a force and hence acceleration at that point.	

Qns		Marks
7(a)(i)	ratio of the potential difference across the wire to the current flowing through	B1
	the wire	
		D 4
7(a)(ii)	resistance per unit length of a conductor	B1
	having <u>unit cross-sectional area</u>	B1
7(b)(i)	V = IR	C1
(- / (/	$6.0 = 1.2(0.10 + R_{coil})$	M1
	$R_{coil} = 4.9 \ \Omega$	A0
7(b)(ii)	$R_{coil} = \frac{\rho L}{A}$	
	$L = \frac{R_{coil}A}{A}$	
	ρ	
	$R_{coll} = \frac{\rho L}{A}$ $L = \frac{R_{coll}A}{\rho}$ $\frac{(4.9)\left(\pi \times \frac{0.60 \times 10^{-3}}{2}\right)^{2}}{1.7 \times 10^{-8}}$ $= 81.5 \text{ m}$ here 64 = 81.5	
	$(4.9)(\pi \times \underline{})$	
	1.7×10^{-8}	M1
	= 81.5 m	A1
	81.5	
	number of turns = $\frac{61.5}{\text{circumference}}$	
		M1
	$=\frac{81.5}{\pi(22.0\times10^{-2})}$	
		Δ 1
	= 118	A1
7(c)		
. (•)		
	$B = 0.72 (4\pi \times 10^{-7}) \left \frac{110 \times 1.2}{22.0 \times 10^{-2}} \right $	M1
	$B = 0.72 \left(4\pi \times 10^{-7} \right) \left(\frac{\frac{118 \times 1.2}{22.0 \times 10^{-2}}}{2} \right)$	
	= 1.2 mT	A0
7(d)(i)	gain in $E_{\kappa} = loss$ in E_{ρ}	B1
. (,(,		
	$\frac{1}{2}mv^2 - 0 = e\Delta V$	
	Z	
	$mv = \sqrt{2e\Delta Vm}$	M1
	$=\sqrt{2(1.60\times10^{-19})(250)(9.11\times10^{-31})}$	1411
	$= 8.54 \times 10^{-24}$ Ns	
		A1
7(d)(ii)	magnetic force provides centripetal force	B1
	$Bqv = \frac{mv^2}{r}$	
	$r = \frac{mv}{Bq}$	
	$=\frac{8.54\times10^{-24}}{(1.2\times10^{-3})(1.60\times10^{-19})}$	M1
	$(1.2 \times 10^{-3})(1.60 \times 10^{-19})$	
	= 0.0445 m	A1

Qns		Marks
7(e)	component of velocity <u>perpendicular</u> to magnetic field causes causes <u>magnetic force to act perpendicular</u> to this component hence electron moves in <u>circular motion</u> with axis parallel to magnetic field component of velocity <u>parallel</u> to magnetic field <u>does not experience force</u> hence this component is constant resultant path is <u>helical</u>	B1 B1 B1 B1
	Notes Do not confuse helical with spiral.	
	spiral	
	helical	

Qns		Marks
8(a)(i)	spontaneous and random emission of particles or electromagnetic radiation	B1
	from <u>unstable nucleus</u>	B1
	Notes	
	Need to say <i>unstable</i> nucleus. (Topic not tested for 2020 graduating batch.)	
	(Topic for tested for 2020 graduating batch.)	
8(a)(ii)	each nucleus have an equal probability of decaying per unit time	B1
8(a)(iii)	rate of decay independent of external conditions such as temperature	B1
0(1)(1)	$\lambda = \frac{0.693}{T_{\frac{1}{2}}}$.
8(b)(i)	$\lambda = \frac{0.693}{2}$	C1
	$T_{\frac{1}{2}}$	
	0.693	
	$=\frac{0.093}{86.4\times365\times24\times60\times60}$	M1
	$=2.54 \times 10^{-10} \text{ s}^{-1}$	
	=2.54×10 S	A1
8(b)(ii)	power	
- (- / ()	number of decays per unit time, activity $A = \frac{1}{\text{energy released in 1 decay}}$	
	2400	
	$=\frac{2.100}{(5.48\times10^{6})(1.60\times10^{-19})}$	
		M1
	$=2.74\times10^{15} \text{ s}^{-1}$	A1
	number of nuclei $N = \frac{A}{\lambda}$	
	$=\frac{2.74\times10^{15}}{2.54\times10^{-10}}$	
		M1
	=1.08×10 ²⁵	A1
	A/	
	$mass = \frac{N}{N_A}(m_r)$	
	$=\frac{1.08\times10^{25}}{6.02\times10^{23}}(0.238)$	M1
	0.02/10	A1
	=4.27 kg	
	Notes	
	The activity is not the number of nucleus in the sample. Remember to	
	calculate the number of nuclei by dividing activity by decay constant.	
	Do not forget the Avogadro constant when calculating mass.	
8(c)(i)		B1
	efficiency = $\frac{160}{2400} \times 100\% = 6.7\%$	

Qns		Marks
8(c)(ii)	power released after 3.2 years = $2400e^{-\frac{0.693}{86.4}(3.2)}$	M1
	electrical power generated = efficiency	
	$=\frac{6.7}{100}\times2400e^{-\frac{0.693}{86.4}(3.2)}$	
	= 160 W	A1
8(d)(i)	half-life of plutonium-238 is higher than that of polonium-210 so fuel lasts longer	B1
	hence provide higher average power during the flight	B1
8(d)(ii)	plutonium-238 emits α particles while strontium-90 emits β particles hence thinner shielding material can be used	B1
		B1