

PEICAI SECONDARY SCHOOL SECONDARY 4 EXPRESS PRELIMINARY EXAMINATION 2021

CANDIDATE NAME	SOLUTIONS					
CLASS				REGISTER NU	IMBER	

ADDITIONAL MATHEMATICS

Paper 2

4049/02 27 August 2021

2 hours 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your register number, class and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

This document consists of **20** printed pages.

Setter: Mrs Ho Thuk Lan

Mathematical Formulae

1. ALGEBRA

Quadratic Equation For the quadratic equation *ax*

$$x^{2} + bx + c = 0,$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

we integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

where *n* is a positive integer and

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for *AABC*

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

1 Solve the equation
$$2\cos 2x = 3 - 5\sin x$$
 for $\Re \le x \le$ [5]
 $2(1-2\sin^2 x) = 3-5\sin x$
 $4\sin^2 x - 5\sin x + 1 = 0$
 $(\sin x - 1)(4\sin x - 1) = 0$
 $\sin x = 1$
 $x = \frac{\pi}{2} = 1.57$
 $\sin x = \frac{1}{4}$
 $\sin x = \frac{1}{4}$
 $\sin x = \sin^{-1}\frac{1}{4}$
 $x = 0.253, 2.89$

x = 0.253, 1.57, 2.89

2

The diagram shows two circles $\stackrel{C}{\rightarrow}$ and $\stackrel{C}{\rightarrow}_2$ with centres *P* and *Q* respectively. Both circles $\stackrel{C}{\rightarrow}$ and $\stackrel{C}{\rightarrow}_2$ is tangent to the *x* axis at *R* (1.5, 0). The radius of $\stackrel{C}{\rightarrow}$ is 6 units.

- (i) Find the coordinates of the centre, *P* of circle C. [1] $P = \begin{pmatrix} 1.5, 6 \end{pmatrix}$
- (ii) Find the equation of the circle C_{\cdot} . [1] $(x-1.5)^2 + (y-6)^2 = 36$

(iii) Given that the area of C_1 is 18 times the area of C_2 , find the coordinates of the centre, Q of C_2 . [3]

	[5]
$\frac{Area_{C_2}}{Area_{C_1}} = \left(\frac{RQ}{PR}\right)^2$	$Area_{C_1} = \pi (6)^2$ $Area_{C_1} = 36\pi$
$\frac{Area_{C_2}}{18Area_{C_2}} = \left(\frac{RQ}{6}\right)^2$	$Area_{C_2} = \frac{36\pi}{18} = 2\pi$
$\left(\frac{RQ}{6}\right)^2 = \frac{1}{18}$	$\pi \left(r_2 \right)^2 = 2\pi$
$RQ = \sqrt{2}$	$P_2 = \sqrt{2}$
$Q = (1.5, \sqrt{2})$	

[Turn over

3 (i) Using
$$\sin 3x = \sin(2x+x)$$
, show that $\sin 3x = 3\sin x - 4\sin^3 x$. [3]

$$\sin 3x = \sin(2x + x)$$

$$\sin 3x = \sin 2x \cos x + \cos 2x \sin x$$

$$\sin 3x = (2 \sin x \cos x) \cos x + (1 - 2 \sin^2 x) \sin x$$

$$\sin 3x = 2 \sin x \cos^2 x + \sin x - 2 \sin^3 x$$

$$\sin 3x = 2 \sin x (1 - \sin^2 x) + \sin x - 2 \sin^3 x$$

$$\sin 3x = 2 \sin x - 2 \sin^3 x + \sin x - 2 \sin^3 x$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x \text{ (shown)}$$

(ii) State the amplitude and period of $y = 6 \sin x - 8 \sin^3 x$. [2]

$$y = 6 \sin x - 8 \sin^3 x$$

$$y = 2(3 \sin x - 4 \sin^3 x)$$

$$y = 2(3\sin x - 4\sin^3 y) = 2\sin 3x$$

 $\begin{array}{l} \text{Amplitude} = 2\\ \text{Period} = 120^{\circ} \end{array}$

4 A glass of hot water was left to cool in the fridge. The temperature, $T \circ C$, of the water decreases with time, *t* minutes. The table shows the measured values of *T* and *t*.

t (min)	10	20	30	40	50
<i>T</i> (°C)	60	37	23	14	9

It is known that t and T are related by the equation $T = ae^{-kt}$ where a and k are constants.

(i) Explain clearly how *a* and *k* can be calculated when a graph of ln *T* against *t* is drawn. [2]

$T = ae^{-it}$	k = gradient
$\ln T = \ln a e^{-kt}$	ln <i>a</i> is the ln T – intercept, <i>c</i>
$\ln T = \ln a + \ln e^{-kt}$	$\ln a = c$
$\ln T = -kt + \ln a$	$a = e^{a}$

<i>t</i> (min)	10	20	30	40	50
$\ln T(^{\circ}\mathrm{C})$	4.09	3.61	3.14	2.64	2.20

(ii) On the grid below, plot ln *T* against *t* for the given data and draw a straight line graph.
[2]

Use your graph to estimate

5

(iii)
 the value of
$$a$$
 and of k .

 10
 20
 30
 40
 50

[3]

ln *a* is the ln *T* – intercept, *c* $a = e^{a}$ ln *a* = 4.55 $a = e^{4.55}$ a = 94.6 (3SF) the temperature of the water at the beginn

(iv) the temperature of the water at the beginning of the experiment. [1] Temperature = 94.6° C

A bus travelling on a straight road passes a traffic light at junction P with speed 11 m/s and, 2 minutes later, passes another traffic light at junction Q with speed

21 m/s. During the journey from *P* to *Q*, the acceleration, a = kt - 2 m/s², where *k* is a constant and *t* seconds is the time after passing *P*.

(i) Show that
$$k = \frac{5}{144}$$
. [5]

Speed = 11 m/s 2 min later Speed = 21 m/s Q

a = kt - 2	At Q , $t = 2 \min$, $v = 21 \text{m/s}$
kt^2 2t + c	$21 = \frac{k(120)^2}{2} - 2(120) + 11$
$v = \frac{1}{2} - 2t + c$	2^{2} 21 = 7200k - 229
At <i>P</i> , $t = 0$, $v = 11$	7200k = 250
$11 = \frac{k0^2}{2} - 2(0) + c$	5
c = 11	$k = \frac{b}{144}$
kt^2	
$v = \frac{-2t+11}{2}$	

(ii) Find the distance between <i>P</i> and	<i>Q</i> . [4]
velocity, $v = \frac{5t^2}{288} - 2t + 11$	At P, $t = 0$, $s = 0$ $s = \frac{5}{864}t^3 - t^2 + 11t + c$
displacement, $s = \frac{5t^3}{288(3)} - t^2 + 1 lt + c$	c = 0
$s = \frac{5}{864}t^3 - t^2 + 11t + c$	

$$s = \frac{5}{864}t^3 - t^2 + 11t$$

$$s = \frac{5}{864}(120)^3 - (120)^2 + 11(120)$$

$$s = -3080$$

Distance = 3080 m

The diagram shows a circle passing through the points A, B and C. The point B lies on the line SC. ST is a tangent to the circle at A. The points E and F lie on AB and AC respectively. Given that EF is parallel to ST, show that BCFE is a cyclic quadrilateral. [5]

BAS = *ACB* (Alternate segment Theorem) M1 [Alt segment] BAS = AEF (Alternate angles, EF//ST) M1 [Alternate s] $BEF = 180^{\circ}$ AEF (Adjacent angles on a straight line) $BEF = 180^{\circ}$ $BAS = 180^{\circ}$ ACB $ACB + BEF = ACB + 180^{\circ}$ ACB ACB + BEF=180° **M**1 CAT = ABC (Alternate segment Theorem) CAT = EFA (Alternate angles, EF//ST) $EFC = 180^{\circ}$ EFA (Adjacent angles on a straight line) $EFC = 180^{\circ}$ $CAT = 180^{\circ}$ ABC $ABC + EFC = ABC + 180^{\circ} ABC$ $ABC + EFC = 180^{\circ}$ M1

Since $ACB + BEF = 180^{\circ}$ (angles in opposite segments) M1 and $ABC + EFC = 180^{\circ}$ (angles in opposite segments) Therfore BCFE is a cyclic quadrilateral.

6

The equation of a polynomial given is by $f(x)=3x^3 + 5x^2 + 7x - 3$. (i) Find the remainder when f(x) is divided by x + 1. [1] $f(-1) = 3(-1)^3 + 5(-1)^2 + 7(-1) - 3$ f(-1) = -3 + 5 - 7 - 3 = -8Remainder = 8 (ii) Show that 3x = 1 is a factor of f(x). [1] $f\left(\frac{1}{3}\right) = 3\left(\frac{1}{3}\right)^3 + 5\left(\frac{1}{3}\right)^2 + 7\left(\frac{1}{3}\right) - 3$ $f\left(\frac{1}{3}\right) = 3\left(\frac{1}{9}\right) + \left(\frac{5}{9}\right) + \left(\frac{7}{3}\right) - 3$ $f\left(\frac{1}{3}\right) = 0$ Since $f\left(\frac{1}{3}\right) = 0$, therefore 3x = 1 is a factor of f(x).

(iii) Show that the equation
$$f(x) = 0$$
 has only one real root. [4]

$$x^{2} + 2x + 3$$

$$3x - 1 \overline{\smash{\big)}3x^{3} + 5x^{2} + 7x - 3}$$

$$-3x^{3} + x^{2}$$

$$\overline{-3x^{3} + x^{2}}$$

 $\frac{-3x^{3} + x^{2}}{6x^{2} + 7x - 3} - \frac{6x^{2} + 2x}{9x - 3} - 9x + 3$

7

$$f(x)=3x^{3}+5x^{2}+7x-3$$

$$f(x) = (3x-1)(x^{2}+2x+3)$$

$$f(x) = 0$$

$$(3x-1)(x^{2}+2x+3) = 0$$

$$x = \frac{1}{3} \text{ or } x = \frac{-2 \pm \sqrt{-8}}{2}$$

Since $\sqrt{-8}$ is undefined, there are no real roots for $x^2 + 2x + 3 = 0$. Hence f(x) = 0 has only one real root. A1

(iv) Use your answers to parts (ii) and (iii) to solve the equation

$$\frac{3}{2} (2^{3y+1}) + 5(2^{2y}) + 7(2^{y}) = 3$$

$$3(2^{-1})(2^{3y})(2^{1}) + 5(2^{y})^{2} + 7(2^{y}) = 3$$

$$3(2^{-1})(2^{3y})(2^{1}) + 5(2^{y})^{2} + 7(2^{y}) = 3$$
Let $x = 2^{y}$

$$3x^{3} + 5x^{2} + 7x - 3 = 0$$

$$(3x - 1)(x^{2} + 2x + 3) = 0$$

$$x = \frac{1}{3}$$

$$1g 2^{y} = 1g\frac{1}{3}$$

$$1g 2^{y} = 1g\frac{1}{3}$$

$$y = \frac{1g\frac{1}{3}}{1g2}$$

$$y = -1.58 (3SF)$$
(4)

A contractor was given 240m of fencing for a playground, He designed the playground *ABCDEF* consisting of a rectangle *ABCF* and an isosceles trapezium *CDEF*. Given that AB = 12 m, DE = 6 m, CD = EF = 5x m and BC = y m.

(i) The contractor used 240 m of fencing to enclose the playground. Express y in terms of x. [1]

2y+12+6+10x = 240y=111-5x

(ii) Show that the enclosed area, $A \text{ m}^3$, of the playground is given by $A = 1332 - 60x + 9\sqrt{25x^2 - 9}$. [2]

Height of trapezium = $\sqrt{(5x)^2 - (3)^2} = \sqrt{25x^2 - 9}$ Area = $\frac{12y + \frac{1}{2}(12 + 6)\sqrt{25x^2 - 9}}{4 = 12(111 - 5x) + 9\sqrt{25x^2 - 9}}$ $A = 1332 - 60x + 9\sqrt{25x^2 - 9}$

8

(iii) Given that x can vary, find the stationary value of A.

$$A = 1332 - 60x + 9\sqrt{25x^2 - 9}$$

$$A = 1332 - 60x + 9(25x^2 - 9)^{\frac{1}{2}}$$

$$\frac{dA}{dx} = -60 + \frac{9}{2}(25x^2 - 9)^{-\frac{1}{2}}(50x)$$

$$\frac{dA}{dx} = -60 + 225x(25x^2 - 9)^{-\frac{1}{2}}$$

$$\frac{dA}{dx} = -60 + \frac{225x}{\sqrt{25x^2 - 9}}$$
For stationary point, $\frac{dA}{dx} = 0$
For stationary point, $\frac{dA}{dx} = 0$

$$-60 + \frac{225x}{\sqrt{25x^2 - 9}} = 0$$

$$\frac{225x}{\sqrt{25x^2 - 9}} = 60$$

$$\sqrt{25x^2 - 9} = \frac{225x}{60}$$

$$\sqrt{25x^2 - 9} = \frac{15x}{4}$$

$$\sqrt{25x^2 - 9} = \frac{15x}{4}$$

$$25x^2 - 9 = \frac{15x}{16}x^2$$

[4]

$$\frac{175}{16}x^{2} = 9$$

$$x = \sqrt{\frac{144}{175}}$$

$$A = 1332 - 60\left(\sqrt{\frac{144}{175}}\right) + 9\sqrt{25}\left(\sqrt{\frac{144}{175}}\right)^{2} - 9$$

$$A = 1332 - 60\left(\frac{12}{5\sqrt{7}}\right) + 9\sqrt{25}\left(\frac{144}{175}\right) - 9$$

$$A = 1332 - \frac{144}{\sqrt{7}} + 9\sqrt{\frac{81}{7}}$$

$$A = 1308.188238 \text{ m}^{2}$$

$$A = 1310 \text{ m}^{2} \text{ (3SF)}$$

Stationary value of $A = 1310 \text{ m}^2$ (3SF)

(iv) Find the nature of this stationary value. Would the contractor be happy or disappointed with the design of his playground? [3]

d <i>A</i> 225x	144
$\frac{dx}{dx} = -60 + \frac{220x}{\sqrt{25x^2 - 9}}$	When $x = \sqrt{\frac{144}{175}}$
$\frac{dA}{dt} = -60 + 225x(25x^2 - 9)^{-\frac{1}{2}}$	$\frac{d^2 A}{d^2} = \frac{-2025}{(1-2)^2}$
dx dx dx	dx^{2} $\left(25\left(\sqrt{144}\right)^{2}, 0\right)\left(25\left(\sqrt{144}\right)^{2}, 0\right)$
$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = 225x \left[-\frac{1}{2} \left(25x^2 - 9 \right)^{-\frac{3}{2}} \left(50x \right) \right] + 225 \left(25x^2 - 9 \right)^{-\frac{1}{2}}$	$\left(\frac{25}{\sqrt{175}}\right)^{-9}\sqrt{25}\left(\sqrt{175}\right)^{-9}$
$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = -5625x^2 \left[\left(25x^2 - 9 \right)^{-\frac{3}{2}} \right] + 225 \left(25x^2 - 9 \right)^{-\frac{1}{2}}$	$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{-2025}{\left(81\right)\left(\sqrt{81}\right)}$
$d^2A = -5625x^2$ 225	
$\frac{dx^2}{dx^2} = \frac{1}{(25x^2 - 9)\sqrt{25x^2 - 9}} + \frac{1}{\sqrt{25x^2 - 9}}$	$d^2 A = 51.44516438 < 0$
$d^2A = -5625x^2 + 225(25x^2 - 9)$	$\frac{1}{dx^2} = -31.44310438 < 0$
$\frac{dx^2}{dx^2} = \frac{1}{(25x^2 - 9)\sqrt{25x^2 - 9}}$	$\frac{\mathrm{d}^2 A}{2} < 0$
$d^2 A = -2025$	Since dx^2 , the area of the playground is a
$\frac{1}{dx^2} = \frac{1}{(25x^2 - 9)\sqrt{25x^2 - 9}}$	maximum.

Method 2:

x	0.90	$x = \sqrt{\frac{144}{175}} = 0.907114$	0.92
Sign of $\frac{dy}{dx}$	+	0	

As the area of the playground is maximised, the contractor is not disappointed with the design.

9

The diagram shows part of the curve $y = x^2 - x + h$ and the line y = 4 - 2x. The line y = 4 - 2x intersects the x axis and the y axis at P and Q respectively. Given that R is the point of intersection of the line y = 4 - 2x and the curve $y = x^2 - x + h$ and that R is the midpoint of PQ, find

(i) the coordinates of R,

$\begin{array}{l} \text{At } P, \ y = 0\\ 4 - 2x = 0 \end{array}$	At Q , $x = 0$ y = 4 - 2(0)	$R = \left(\frac{2+0}{2}, \frac{0+4}{4}\right)$
$\begin{array}{l} x = 2\\ P = (2, 0) \end{array}$	y = 4 $Q = (0, 4)$	$R = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$

(ii) the value of h,

13

[3]

[1]

 $y = x^{2} - x + h$ At R(1, 2) $2 = 1^{2} - 1 + h$ h = 2

(iii) the area of the shaded region.

The diagram shows three fixed points *O*, *C* and *D* such that OD = 31 cm, CD = 17 cm and angle $ODC = 90^\circ$. The lines *OA* and *BC* are perpendicular to the line *BD* which makes an angle \setminus with the line *CD*. The angle \setminus can vary in such a way that the point *A* lies between the points *B* and *D*.

(i) Show	w that $OA + AB + BC = 48$ of	$\cos \left(14 \sin \left(. \right) \right)$	[3]
In $\otimes BCD$,	In $\otimes OAD$,	OA + AB + BC	
BC	Since angle $ODC=90^\circ$,	$= 31 \cos \left(+ (17 \cos \left(31 \sin \right) + 17 \sin \left(17 \sin $	
$\sin = \frac{17}{17}$	$AOD = \langle$		
$\square BC = 17 \sin \sqrt{10}$	OA OA	$OA + AB + BC = 48 \cos (14 \sin (. (Shown)))$	
BD	$\cos = \frac{1}{31}$		
$\theta_{\text{os}} = \frac{1}{17}$	$\Box OA = 31 \cos \sqrt{2}$		
$\square BD = 17 \cos \langle$	$\theta in = \frac{AD}{D}$		
	31		
	$\Box AD = 31 \sin \zeta$		
	AB = BD AD		

14

[6]

$AB = 1 / \cos \langle 31 \sin \rangle$	

(ii) Express OA + AB + BC in the form $R \theta os() + \alpha$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]

(iii) Find the values of
$$\int$$
 for which $OA + AB + BC = 30$. [4]

$$\begin{array}{l} 60 \, dds(3 + 30^\circ) = \\ 60 \, dds(3 + 30^\circ) = \frac{3}{5} \\ Basic \, angle, \alpha = \cos^{-1} \frac{3}{5} = 53.1301^\circ \\ 0 + 16.2602^\circ = 53.1301^\circ, 360^\circ - 53.1301^\circ \\ 0 = 36.9^\circ, 290.6^\circ \text{ (rejected)} \end{array}$$

11 The equation of a curve is
$$y = x \sin x$$
.
(i) Find an expression for $\frac{dy}{dx}$. [2]
 $y = x \sin x$
 $\frac{dy}{dx} = x \cos x + \sin x$
(ii) Hence find $\int x \cos x \, dx$. [2]
 $\frac{d}{dx} x \sin x = x \cos x + \sin x$
 $x \sin x = \int (x \cos x + \sin x) \, dx$
 $x \sin x = \int (x \cos x + \sin x) \, dx$
 $x \sin x = \int (x \cos x + \sin x) \, dx$
 $x \sin x = \int (x \cos x + \sin x) \, dx$
 $x \sin x = \int (x \cos x) \, dx + \int \sin x \, dx$
 $\int (x \cos x) \, dx = x \sin x - \int \sin x \, dx$
 $\int (x \cos x) \, dx = x \sin x - \int \sin x \, dx$

(iii) Find an expression for
$$\frac{d}{dx}(x^2 \cos x)$$
 [2]
 $\frac{d}{dx}(x^2 \cos x) = 2x \cos x + (-\sin x)x^2$
 $\frac{d}{dx}(x^2 \cos x) = 2x \cos x - x^2 \sin x$
(iv) Using the result found in part (ii) and part (iii), find $\int x^2 \sin x \, dx$ [4]
 $\frac{d}{dx}(x^2 \cos x) = 2x \cos x + (-\sin x)x^2$
 $(x^2 \cos x) = \int [2x \cos x + (-\sin x)x^2] \, dx$
 $x^2 \cos x = \int 2x \cos x \, dx - \int x^2 \sin x \, dx$
 $\int x^2 \sin x \, dx = 2\int x \cos x \, dx - x^2 \cos x$
 $\int x^2 \sin x \, dx = 2(x \sin x + \cos x + c) - x^2 \cos x$
 $\int x^2 \sin x \, dx = 2(x \sin x + \cos x - c) - x^2 \cos x + d$ where $d = 2c$

END OF PAPER