Name: () Class: Sec 4 SG 5 / 6

Queenstown Secondary School

Preliminary Examination 2024
Secondary Four Normal (Academic)
Science (Physics)
5105/01

30 July 2024 Tuesday Time: 0800 - 0915h
Papers 1 and 2: 1 hour 15 minutes

Setter:

Additional Materials:

Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are twenty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Answers to Paper 1 and Paper 2 must be handed in separately.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

You are advised to spend no more than 30 minutes on Paper 1.

You may proceed to answer Paper 2 as soon as you have completed Paper 1.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

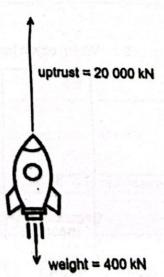
This document consists of 9 printed pages.

- 1 Which pair consists of two vector quantities?
 - A pressure and work done
 - B density and force
 - C energy and speed
 - D acceleration and weight
- 2 The diagram shows a simple pendulum. The bob of the pendulum was pulled to position X and released.

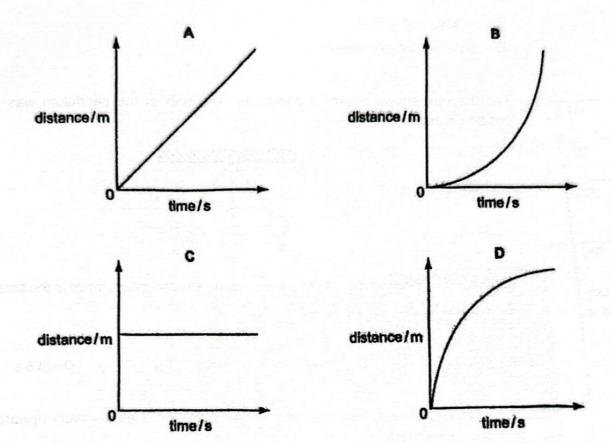
If the pendulum takes 3.6 s to make one complete oscillation, what is the time needed for the pendulum to move from X to Y?

A 0.9 s

B 1.8 s

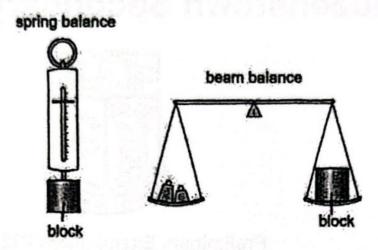

C 2.7 s

D 3.6 s


3 A rocket experiences upthrust and weight acting on it as it travels upwards in the Earth's atmosphere.

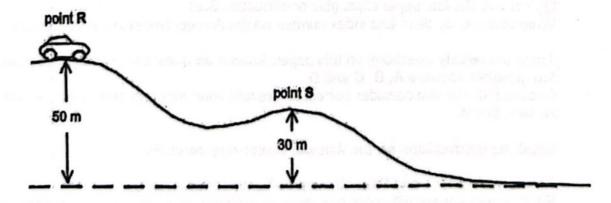
Which statement is correct?

- A The rocket will move at a constant speed in a straight line.
- B The rocket will accelerate upwards.
- C The rocket will accelerate downwards.
- D The rocket will decelerate upwards.


4 A car increases its speed for 60 seconds.
Which distance-time graph shows the car's motion?

5 Which object has the smallest density?

Resident	A	В	С	D
mass / g	15	60	20	60
volume / cm³	3	20	6	15

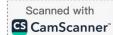

6 Two identical blocks are each placed on a spring balance and a beam balance on Earth as shown in the diagram below.

If the experiment is repeated on the surface of the Moon, what would happen to the readings on the balances?

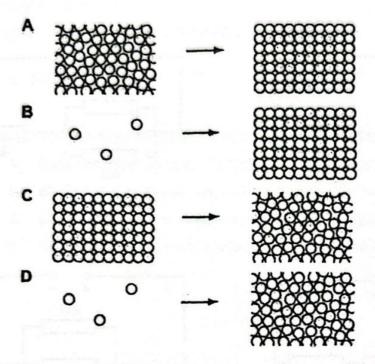
1.	reading of spring balance	reading of beam balance
Α .	no change	no change
В	decreases	decreases
C	decreases	no change
D	no change	decreases

7 A car with a mass of 500 kg is moving at a constant speed of 28 m/s from point R to point S. The difference in height between both points are shown in the diagram below. Take gravitational field strength, g = 10 N/kg.

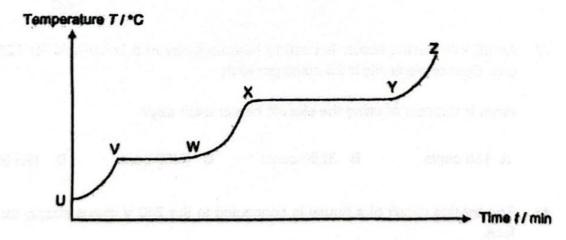
What is the energy in the kinetic store of the car when it reaches point S?


A 7000 J

B 150 000 J


C 250 000 J

D 196 000 J


Queenstown Secondary School

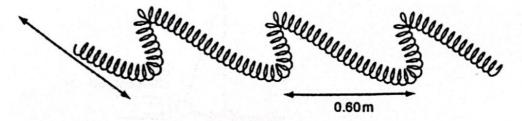
8 Which diagram best represents the change in arrangement of particles when a liquid freezes completely?

9 The following shows the heating curve of a solid substance.

How does the energies of the particles in the substance change with time?

	part of heating curve	potential energy	kinetic energy
A	UV	no change	no change
В	vw	increases	increases
C	wx	no change	increases
D	XY	increases	no change

Leenstown Secondary School


10 Polar bears living in cold climates have thick coats of fur to keep them warm.

How do the thick coats of fur keep them warm?

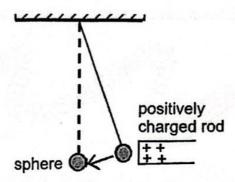
- A Fur is a poor emitter of radiation.
- B Fur is a good thermal conductor.
- C Fur traps air, which is a poor thermal conductor.
- D Fur traps air, which is a poor emitter of radiation.

11 The diagram shows part of a spring that is shaken from side to side to produce a wave.

The distance between successive peaks is 0.60 m and the frequency is 2.5 Hz.

What is the type of wave created in this spring and its speed?

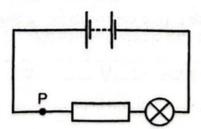
	type of wave	wave speed / ms ⁻¹
A	transverse	0.75
В	transverse	1.5
С	longitudinal	1.5
D	longitudinal	4.2


12 The diagram shows the components of the electromagnetic spectrum. They are arranged in order of increasing wavelength.

	a territoria de la transferior de la constantidad d					
Р	X-rays	Q	light	R	S	radiowaves

Which row lists the application of parts of the electromagnetic spectrum?

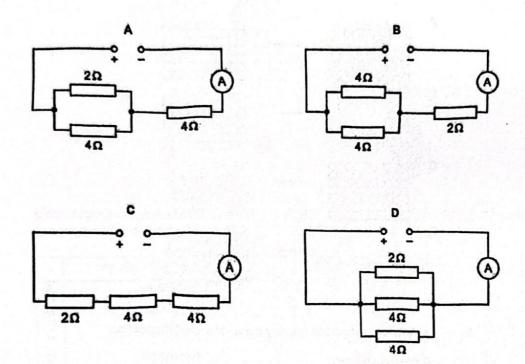
	Р	Q	R
A	intruder alarms	food sterilisation	treatment of cancer
в	optical fibres	treatment of cancer	food sterilisation
С	treatment of cancer	sunbeds	intruder alarms
D	intruder alarms	sunbeds	optical fibres


- 13 Which of the following electromagnetic waves travel the slowest in outer space?
 - A visible light
 - **B** microwaves
 - C gamma rays
 - D all travel at the same speed
- 14 A small conducting sphere is suspended by an insulated thread. When a positively charged rod is brought near the sphere, the sphere moves away from the rod.

Which of the following is/are possible reasons for the observation?

- 1 The sphere may carry a positive charge.
- 2 The sphere may carry a negative charge.
- 3 The sphere may be neutral.
- A 1 only
- B 1 and 3
- C 2 only
- D 2 and 3

15 The diagram below shows a lamp in a circuit.


Which change to the circuit would decrease the current through the lamp?

- A moving the lamp to point P in the circuit
- B replace the wires with thicker connecting wires
- C adding another resistor in parallel with the one in the circuit
- D decreasing the electromotive force (e.m.f.) of the battery in the circuit

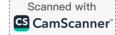
Queenstown Secondary School

16 An ammeter is connected to the three resistors and a power supply.
Which arrangement of resistors will give the smallest ammeter reading?

17 An 65 kW electric heater is used to heat up water in a household for 120 minutes a day. Cost of electricity is 25 cents per kWh.

What is the cost of using the electric heater each day?

- A 130 cents
- **B** 3250 cents
- C 7800 cents
- D 195 000 cents
- 18 The lighting circuit of a house is connected to the 240 V mains supply through a 5 A fuse.


If each lamp is rated at 110 W, what is the maximum number of lamps that can be used in this circuit?

- A 3
- B 5
- C 10
- D 11

19 The reading on a detector placed near a radioactive material is 500 counts per second. The background count rate is 40 counts per second. The half-life of the radioactive material is 30 hours.

What is the reading on the detector after 60 hours?

- A 300
- B 270
- C 125
- D 155
- 20 What are the possible dangers when dealing with radioactive materials?
 - A Beta-particles can pass through skin and damage body cells.
 - B Radioactive materials are safe to handle after two half-lives.
 - C Sources of gamma radiation are dangerous because they have long half-lives.
 - D Materials that emit only alpha-particles must be kept in thick lead containers.

Name: () Class: Sec 4 SG 5 / 6

Queenstown Secondary School

Preliminary Examination 2024 Secondary Four Normal (Academic) Science (Physics) 5105/02

30 July 2024 Tuesday Time: 0800 - 0915h

Papers 1 and 2: 1 hour 15 minutes

Setter:

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions. Write your answers in the spaces provided.

Section B

Answer one question. Write your answers in the spaces provided.

The use of an approved scientific calculator is expected, where appropriate. In calculations, you should show all the steps in your working, giving your answer at each stage. You are advised to spend no longer than 30 minutes on Paper 1.

You may proceed to answer Paper 2 as soon as you have completed Paper 1.

At the end of the examination hand in your answers to Paper 1 and Paper 2 separately.

The number of marks is given in brackets [] at the end of each question or part question.

Examiner's Us	se
Section A	/22
Section B	/8
TOTAL	/30

This document consists of 10 printed pages.

Section A

Answer all the questions in the spaces provided.

1 (a) Table 1.1 shows a list of apparatus used in the Science lab. Record the corresponding physical quantity which the apparatus is used to measure and its SI unit.

apparatus	physical quantity to measure	SI Unit
measuring cylinder	e.g. volume	e.g. cm³
electronic balance		E Casa Casa Casa
electronic stopwatch		
digital micrometer screw gauge		
ammeter		A Soft Subgert

Table 1.1

[4]

(b) Two of the apparatus above have been used to measure the density of a marble. State the SI unit for density.

unit =		[1]
	[Total: 5]	

[Turn over

Queenstown Secondary School

2 A magnetic crane with a strong electromagnet is used to scrap old cars for recycling as shown in Fig. 2.1 below.

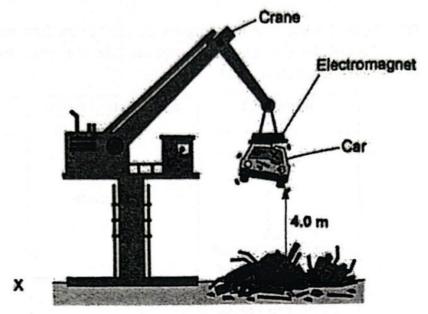
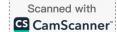


Fig. 2.1


(a) If the old car has a mass of 900 kg and is lifted to a height of 4.0 m, calculate the energy in its gravitational potential store.
 (Assume g = 10 N/kg)

energy in gravitational potential store = J [2]

(b) Calculate the power of the crane if it takes 9 seconds to lift the old car to the height shown in Fig. 2.1.

power = W [2]

Queenstown Secondary School

(c) The crane then moves the old car horizontally to a place above location X and releases the old car.

The statement below describes the transfer of energy due to the movement of the suspended old car by the crane.

Fill in the blanks below with the helping words given.

	internal	kinetic	potential	heating	
	gravitational	electrically	chemical	mechanically	
Energ	gy is tr	ansferred		from	the
		potential	store of	the car to	the
		store of the o	ar and the		
store	of the surround	dings.			[2]
				ITet	al: 61

3 The cover of a three-pin plug connected to a hair dryer is removed. Fig. 3.1 shows the inside of the plug.

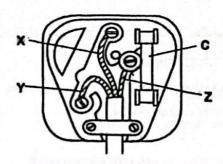


Fig. 3.1

(a) Name the wires and state the colour(s) of the wires.

wire	name	colour(s)
X		the second second to
Y	AND THE STATE OF MICH.	TO THE WAR AND WAS
Z		-

[2]

(b)	Name component C. Explain why component C is connected to wire Z.	
	name of component C:	
	explanation:	
		[1]
(c)	Some hair dryers have double insulation.	
	Explain how double insulation protects the user.	
	The design of the second secon	[1]
4 Fig	[Total: 4] 4.1 represents a transverse wave.	
4 Tig.	displacement/ cm	
	displacement cit	
	0.5	
	0 0.02 0.04 0.06 time/s	
	Fig. 4.1	
(a)	Determine the period of the wave.	
	period = s	[1]
(b)	Calculate the frequency of the water wave.	
	frequency = Hz	[1]
(c)	(i) State an example of a transverse wave.	
		[1]
Queenstow	n Secondary School	

		(ii) Explain what is meant by period as applied to a transverse wave.
		to each of a second an anomala of coord an amplicants second of the C
		[Total: 4]
5	When	n a skater skates in an ice rink, the blade of an ice skate cuts a groove into the
		TERRITARIA DE LA CONTRACTOR DE LA CONTRA
		groove Fig. 5.1
	(a)	Explain in terms of pressure, how the grooves are cut into the ice by the ice skate.
	(b)	When the skater is balancing on one leg as shown in Fig. 5.1, her ice skates exert an average pressure of 3 000 000 Pa on the ice. If the weight of the skater is 600 N, calculate the contact area of her ice skate on the ice.
		contact area = m ² [2]
		[Total: 3]
Que	ensto	wn Secondary School

Section B

Answer one question from this section.

6 Fig. 6.1 shows the apparatus used by a student to heat a container of water.

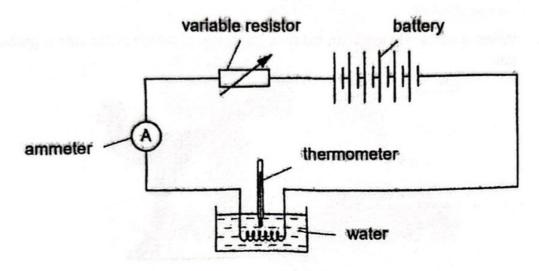


Fig. 6.1

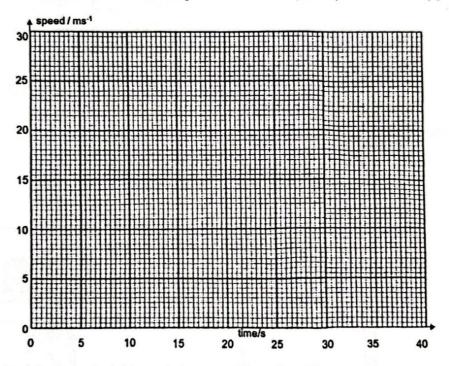
(i)	The heating coil is placed near the bottom of the beaker. Describe the process by which all the water in the container is heated up.	
	The manufacture described activities to the test of the second of the se	
		[2]
(ii)	The container holding the water is now painted black. State and explain how this would affect the time taken for the water to be heated up.	
	state:	
	explanation:	
	= ugraf yoglasia	[2]

(a)

(b) The resistance of the coil of wire in the water is $60~\Omega$ and the ammeter reading

lengt	wire is replaced with another coil of wire of the same material but twice the h.	
(i)	Determine the resistance of the new coil of wire.	
	resistance of new wire coil =Ω	
(ii)	Determine the new reading on the ammeter.	
	reading on ammeter = A	
(iii)	Calculate the charge that passes through the ammeter in 8 minutes.	
	charge = C	

7 A car travels along a straight road.
The speedometer reading is recorded down every 5 seconds.


speed/ms ⁻¹	0	10	20	30	30	30	30	10	0
time/s	0	5	10	15	20	25	30	35	40

(a) Plot a graph of the results, marking each point with a cross (x).

[1]

(b) Draw the best-fit line or curve taking into account all the plotted points.

[2]

(c) Describe the motion of the car between t = 15 s and t = 30 s.

[1]

(d) Determine the acceleration of the car over the first 15 seconds of its journey.

acceleration = m/s² [2]

Queenstown Secondary School

(e)	Given that the car has a mass of 500 kg, calculate the resultant force acting or	1
	the car between $t = 0$ s and $t = 15$ s.	

resultant force = N [2]

[Total: 8]

2024 QTSS Preliminary Examination Sec 4NA Science(Physics)

Marking Scheme Section A (20 Marks)

20 A	င္ပ	19 D (all	18 C	17 B	15 D	14 A	13 D	12 C	11 B
>	_	0	C				0	C	

Sec	
on	
8 (22	
Marks	

_	measuring cylinder	physical quantity to measure e.g. volume mass	e.g. cm³
	electronic balance	mass	-
	electronic stopwatch	time	
	digital micrometer screw gauge	length	mm
	ammeler	current	

A	5b P=	whi	cor	5a Sin	_	4c(ii) Per	4c(i) Ele			4b Fre	4a Per	3c Sor	3b Fuse. When the fu		П	_		အ	Pote	2c Energy	2b Pow	2a Ene	
$A = 0.0002 \text{ m}^2$ [1]	P=F/A	ch cut groov	ntact area of	CO P = F/A, 1	secutive cre	iod of a trans	ctromagnetic	= 25 Hz	= 1/0.04	Frequency = 1 / Period	Period = 0.04 s	ne hair dryer de of an Insi	e. [1] en an electric fuse rating protecting the		2	~	×	wire	ential store o	rgy is transferred	Power = Energy / time = 36000 / 9 = 4000 W	rgy in its gra	
(1)		which cut grooves into the ice.	contact area of the ice skate results in high pressure on the ice	Since $P = F/A$, the weight of the skater exerted over a small	consecutive crests to pass a certain point.	Period of a transverse wave refers to the time taken for	Electromagnetic waves, Water waves, Light waves, Rope waves	푦	0.04	Period		Some hair dryers which are double insulated have its casing made of an insulator which insulates the internal circuit.	Fuse. [1] When an electrical fault occurs and a large current higher than the fuse rating flows in the fuse, it melts and breaks the circuit. [1] protecting the user from an electric shock.		Live wire	Neutral wire	Earth wire	name	potential store of the car to the kinetic_store of the car and the internal store of the surroundings.	mechanically	/ time / 9 [1] / [1]	Energy in its gravitational potential store = mgh = 900 = 3600	•
			igh pressure on the ice	xerted over a small	-	time taken for	ght waves, Rope waves					ted have its casing he internal circuit.	e current higher than and breaks the circuit, ock.		Brown	Blue	Green and Yellow	colour(s)	store of the car and the	from the gravitational	Section of the sectio	= mgh = 900 x 10 x 4 [1] = 36000 J [1]	
5	2m			1m		'n	1m	ecf)	(allow marks for	1m	1m	1m	1m	*no 1/2 marks given	6 blanks correct – 2m	ā	3 blanks correct -	2m	blank)	2m	2m (allow marks for ecf)	2m	

Section C (8 + 8 Marks)

6ai	Water around the heating coil gains heat, becomes less dense and rises. Cooler denser water near the top of the container sinks. This forms convections currents which heats up all the water eventually.	2m
6aii	State: Longer time taken to heat up water [1] Explanation: Black is a good emitter of radiation. Water loses heat quickly through the container by radiaton, resulting in a longer time for the water to be heated up. [1]	2m
6bi	Longer wire, higher resistance. New resistance of wire = $60 \times 2 = 120 \Omega$	1m
6bii	Higher resistance, smaller current. New current in wire = 0.050 / 2 = 0.025 A	1m
6biii	Charge, Q = It Q = 0.025 x (8 x 60) [1] Q = 12 C [1]	2m
7a,b	25 20 25 30 35 40	3m (last 5s should be a curve)
7c	Moving at constant speed	1m
7d	Acceleration = $(v - u)/t$ = $(30 - 0)/(15 - 0)$ [1] = 2 m/s^2 [1]	2m
7e	F = ma F = 500 x 2 [1] F = 1000 N [1]	2m (allow marks for ecf)