[2]

H2 Mathematics (9758) Chapter 8 Applications of Differentiation Assignment Suggested Solutions

1 2019/SAJC Promo/Q8

The curve C has parametric equations

$$x = \frac{t^3}{3}$$
, $y = \left[\ln(t)\right]^2$, for $0 < t \le 3$.

- (i) Sketch the graph of C, giving the coordinates of its endpoint(s) and the point(s) where C meets the axes. State also the equation of the vertical asymptote. [3]
- (ii) Find the equation of the tangent to the curve C at the point $\left(\frac{p^3}{3}, \left[\ln(p)\right]^2\right)$, simplifying your answer. [5]
- (iii) Hence find the exact coordinates of the points Q and R where the tangent to the curve C when t = e meets the x-axis and y-axis respectively. [3]
- (iv) Find the area of triangle *OQR* in exact form.

Q1 Solution
(i) y (9, $[\ln(3)]^2$) 0 x = 0

Remember to press p and set Tmin = 0Tmax = 3

For sketch, need to label the endpoint as a closed circle, since endpoint is at t = 3 which is included.

As $t \to 0$, $y \to +\infty$, $x \to 0$. Hence vertical asymptote is x = 0. Question asks to state equation of vertical asymptote. Keep this in mind and make sure you have a vertical asymptote in your graph.

As
$$t \to 0$$
, $x = \frac{t^3}{3} \to 0$

$$\ln t \to -\infty$$
, $y = (\ln t)^2 \to \infty$

Asymptote: x = 0

Intercept: $y = 0, t = 1 \Rightarrow x = \frac{1}{3}$

(ii)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{3t^2}{3} = t^2, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2\ln t}{t}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

$$= \frac{2\ln t}{t} \times \frac{1}{t^2}$$

$$=\frac{2\ln t}{t^3}$$

At
$$t = p$$
, $\frac{dy}{dx} = \frac{2 \ln p}{p^3}$.

Equation of the tangent of C at point p:

$$y - \left[\ln p\right]^2 = \frac{2\ln p}{p^3} \left(x - \frac{p^3}{3}\right)$$

$$y - [\ln p]^2 = \left(\frac{2}{p^3} \ln p\right) x - \frac{2}{3} \ln p$$

$$y = \left(\frac{2}{p^3} \ln p\right) x + \left[\ln p\right]^2 - \frac{2}{3} \ln p$$

Note: t is the parameter, p is a constant that gives a specific point

So, you have to differentiate with respect to t, then substitute t = p to find the value of the gradient at that point

You need to find the value of the gradient at point P by substituting t = p

Recall:

Equation of line:

$$y - y_0 = m(x - x_0)$$

where m is the gradient and (x_0, y_0) is a point on the line

ALERT: $\left[\ln p\right]^2 \neq 2\ln p$

(iii) Equation of the tangent of C at point t = p:

$$y = \left(\frac{2}{p^3} \ln p\right) x + \left[\ln p\right]^2 - \frac{2}{3} \ln p$$

At p = e,

$$y = \left(\frac{2}{e^3} \ln e\right) x + \left[\ln e\right]^2 - \frac{2}{3} \ln e$$

$$y = \frac{2}{e^3}x + \frac{1}{3}$$

When the tangent cuts the x – axis,

$$y = 0 \Rightarrow x = -\frac{e^3}{6}$$
.

When the tangent cuts the axis at y - axis,

$$x = 0 \Rightarrow y = \frac{1}{3}$$
.

The coordinates of Q are $\left(-\frac{e^3}{6}, 0\right)$.

The coordinates of *R* are $\left(0, \frac{1}{3}\right)$.

Keyword: 'Hence'

Means you need to use the previous result (equation of tangent at point t = p) to solve

Note: e is a constant Use equation of tangent found in (ii), substituting p = e. Simplify using $\ln e = 1$

Reminder:

Question wants **exact coordinates** so remember to answer the question

(iv)	$1(a^3)(1)$	
	Area of triangle $OQR = \frac{1}{2} \left(\frac{e^3}{6} \right) \left(\frac{1}{3} \right)$	Reminder: Area is alw
	$=\frac{e^3}{36}$ units ²	Triangle O
	30	i i i i i i i i i i i i i i i i i i i
		1 0 1 D

vays positive

QR is a right angled triangle as Q and R are on the x- and y-axes respectively

2 2019/JPJC Promo/Q4

Steel sheets of negligible thickness are used to make cans in the shape of a right-circular cylinder of radius r cm and height h cm. Given that a can is to hold 300 cm³ of liquid,

show that the external surface area, A cm², of a closed can is (i)

$$A = 2\pi r^2 + \frac{600}{r} \ . \tag{2}$$

- (ii) Find, using differentiation, the exact value of r which produces a can with a minimum value of A. Hence, find the minimum value of A. [4]
- Deduce that $\frac{h}{r} = 2$ when A is a minimum. (iii) [2]
- Liquid is dispensed into an empty can at a rate of 100 cm³/s. Find the rate of increase (iv) of the depth of the liquid, H, given that A is a minimum. [4]

Given that $V = \pi r^2 h = 300$, $h = \frac{300}{\pi r^2}$ **(i)**

$$A = 2\pi r^2 + 2\pi rh$$

$$=2\pi r^2 + 2\pi r \left(\frac{300}{\pi r^2}\right)$$

$$=2\pi r^2 + \frac{600}{r}$$

$$=2\pi r^2 + \frac{600}{r}$$
(ii)
$$\frac{dA}{dr} = 4\pi r - \frac{600}{r^2}$$

When
$$\frac{dA}{dr} = 0$$
, $4\pi r - \frac{600}{r^2} = 0$

$$r = \sqrt[3]{\frac{150}{\pi}}$$

r	$\left(\sqrt[3]{\frac{150}{\pi}}\right)^{-}$	$\sqrt[3]{\frac{150}{\pi}}$	$\left(\sqrt[3]{\frac{150}{\pi}}\right)^{+}$
$\frac{\mathrm{d}A}{\mathrm{d}r}$			

 \therefore A is minimum when $r = \sqrt[3]{\frac{150}{\pi}}$.

Remember to prove that value of r gives minimum A.

Alternatively:

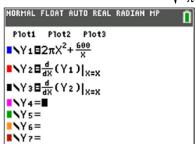
Using GC,
$$\frac{d^2 A}{dr^2}\Big|_{r=\sqrt[3]{\frac{150}{\pi}}} = 37.7 > 0$$

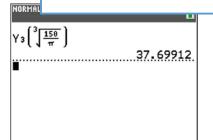
 \therefore A is minimum when $r = \sqrt[3]{\frac{150}{\pi}}$.

For second derivative test:

Write down the value of $\frac{d^2A}{dr^2} = 37.7$ at

 $r = \sqrt[3]{\frac{150}{\pi}}$ before comparing with 0.





Minimum A

$$=2\pi \left(\sqrt[3]{\frac{150}{\pi}}\right)^2 + \frac{600}{\sqrt[3]{\frac{150}{\pi}}}$$

Question does not require A to be

= 248 (to 3 s.f.)

(iii) A is minimum when $r = \sqrt[3]{\frac{150}{\pi}}$.

From
$$h = \frac{300}{\pi r^2}$$
,
$$\frac{h}{r} = \frac{300}{\pi r^3}$$

$$= \frac{300}{\pi \left(\frac{150}{\pi}\right)}$$
Deduce that $\frac{h}{r} = 2$ when A is a minimum.

Use value of r found in (ii)
$$= 2$$

(iv) Let W be volume of liquid.

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}t} \times \frac{\mathrm{d}H}{\mathrm{d}W}$$

When A is a minimum, $r = \sqrt[3]{\frac{150}{\pi}}$.

$$W = \pi r^2 H = \pi \left(\sqrt[3]{\frac{150}{\pi}} \right)^2 H = \pi \left(\frac{150}{\pi} \right)^{\frac{2}{3}} H$$

When water is added to the can, depth increases but radius remains constant.

$$\frac{dW}{dH} = \pi \left(\frac{150}{\pi}\right)^{\frac{2}{3}}$$

$$\frac{dH}{dt} = 100 \times \frac{1}{\pi \left(\frac{150}{\pi}\right)^{\frac{2}{3}}}$$

$$= 2.4186$$

$$= 2.42 \text{ cm/s}$$

 $W = \pi r^2 H = \pi \left(\frac{H}{2}\right)^2 H = \frac{1}{4}\pi H^3$ refers to the volume of the can

when A is minimum. When liquid is added to the empty can, the depth of the liquid increases, but the radius of the liquid surface remains as a constant, thus in $W = \pi r^2 H$, r is constant and

 $\frac{dW}{dH} = \pi r^2$ and the value of r is the value of r when A is

minimum (i.e
$$r = \sqrt[3]{\frac{150}{\pi}}$$
).

The rate of increase of depth of liquid is 2.42 cm/s.

3 2015/MJC/Prelim/P2/Q2

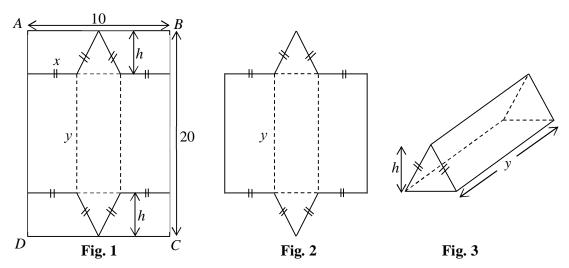


Fig. 1 shows a rectangular piece of cardboard *ABCD* of sides 10 cm and 20 cm. A trapezium shape is cut out from each corner, to give the shape shown in Fig. 2. This shape consists of 2 isosceles triangles and 3 rectangles of different sizes. The remaining cardboard shown in Fig. 2 is folded along the dotted lines, to form a closed triangular prism shown in Fig. 3.

- (i) Show that the volume $V \text{ cm}^3$ of the closed triangular prism is given by $V = \frac{1}{5} \left(h^4 10h^3 25h^2 + 250h \right).$ [4]
- (ii) Use differentiation to find the maximum value of V, proving that it is a maximum. [5]

Q3 Solution

(i) $y + 2h = 20 \implies y = 20 - 2h$ By Pythagoras Theorem, $h^2 + (5 - x)^2 = x^2$ $h^2 + 25 - 10x + x^2 = x^2$ Note that if you used other variables in your solution, you are supposed to define your variables clearly. $x = \frac{25 + h^2}{10}$ Base of isosceles triangle = 10 - 2x

$$V = \frac{1}{2} (10 - 2x) hy$$

$$= \frac{1}{2} \left[10 - 2 \left(\frac{25 + h^2}{10} \right) \right] h (20 - 2h)$$

$$= \frac{1}{5} h (10 - h) (25 - h^2)$$

$$= \frac{1}{5} h (h^3 - 10h^2 - 25h + 250)$$

$$= \frac{1}{5} (h^4 - 10h^3 - 25h^2 + 250h) \quad \text{(shown)}$$

(ii) Differentiate wrt x,

 $\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{5} \left(4h^3 - 30h^2 - 50h + 250 \right)$

Obtain $\frac{dV}{dh}$ first before applying

 $\frac{dV}{dh} = 0$ for maximum value of V.

For maximum V, $\frac{dV}{dh} = 0$.

 $\therefore \frac{dV}{dh} = \frac{1}{5} \left(4h^3 - 30h^2 - 50h + 250 \right) = 0$ $4h^3 - 30h^2 - 50h + 250 = 0$

Use GC to solve if possible

Express intermediate solutions in 5 significant figures.

Using GC, h = 8.0902 cm (rejected :: 2x = 18.090 > 10),

h = -3.0902 cm (rejected :: h > 0) or h = 2.5 cm.

Give reasons for rejection.

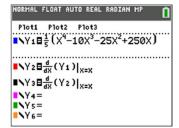
2.5^{-}	2.5	2.5+
		/
	75	9.5 1 2.3

 \therefore *V* is maximum at h = 2.5.

Alternatively

Using GC,
$$\frac{d^2V}{dh^2}\Big|_{h=2.5} = -25.0 < 0$$

 \therefore *V* is maximum at h = 2.5.



$$\therefore \text{ maximum } V = \frac{1}{5} \left((2.5)^4 - 10(2.5)^3 - 25(2.5)^2 + 250(2.5) \right)$$

 $= 70.3125 \text{ cm}^3$

70.3125 is an exact value. No rounding off is allowed.