

Raffles Institution Year 5 H2 Chemistry 2025 Supplementary Notes – The Mole Concept and Stoichiometry

Content

- Relative masses of atoms and molecules
- The mole, the Avogadro constant
- The calculation of empirical and molecular formulae
- Reacting masses and volumes (of solutions and gases)

Learning Outcomes

[The term relative formula mass or M_r will be used for ionic compounds]

Candidates should be able to:

- (a) define the terms relative atomic, isotopic, molecular and formula masses
- **(b)** define the term *mole* in terms of the Avogadro constant
- (c) calculate the relative atomic mass of an element given the relative abundances of its isotopes
- (d) define the terms *empirical* and *molecular formula*
- (e) calculate empirical and molecular formulae, using combustion data or composition by mass
- **(f)** write and/or construct balanced equations
- (g) perform calculations, including use of the mole concept involving:
 - (i) reacting masses (from formulae and equations);
 - (ii) volumes of gases (e.g. in the burning of hydrocarbons);
 - (iii) volumes and concentrations of solutions.

[when performing calculations, candidates' answers should reflect the number of significant figures given or asked for in the question]

(h) deduce stoichiometric relationships from above calculations such as those in (g)

Lecture Outline

- 1 Atoms and Sub-atomic Particles
- 2 Relative Masses
- 3 The Mole and Related Concepts
- 4 Empirical and Molecular Formulae
- 5 Stoichiometry
- 6 Reacting Volumes of Gases
- 7 Concentration of a Solution
- 8 Acid-Base Titrations

References

- 1 Cambridge International AS and A Level Chemistry (by Peter Cann and Peter Hughes)
- 2 Cambridge International AS and A Level Chemistry Coursebook with CD-ROM (by Lawrie Ryan and Roger Norris)
- 3 A Level Chemistry 4ed (by E. N. Ramsden)
- 4 Chemistry in Context 6ed (by Graham Hill and John Holman)
- 5 Chemistry The Molecular Nature of Mater and Change (by Silberberg)
- 6 https://www.chemguide.co.uk

Atoms and Sub-atomic Particles

1.1 The sub-atomic particles

1

- An <u>atom</u> is the smallest part of an element which can ever exist, whereas a <u>molecule</u> is the smallest part of an element or a compound which can exist alone under ordinary conditions.
- All atoms are composed of three fundamental particles <u>protons</u>, <u>neutrons</u> and <u>electrons</u>.

Sub-atomic particle	proton	neutron	electron
Symbol	¹p	¹ ₀ n	⁰ ₋₁ e
Relative mass	1	1	1 1840
Relative charge	+1	0	-1
Location within the atom	in the nucleus	in the nucleus	around the nucleus

1.2 <u>Important terms and definitions</u>

	Term	Symbol	Definition			
(a)	proton number or atomic number	Z	The <u>proton number (or atomic number)</u> of an element is the <u>number of protons</u> in the nucleus of an atom of that element. The atomic number determines the identity of an atom. For example, every atom with an atomic number of 6 is a carbon atom; it contains 6 protons in its nucleus.			
(b)	nucleon number or mass number	A	The <u>nucleon number (or mass number)</u> of an element is the <u>total number of protons and neutrons</u> in the nucleus of an atom of that element. Note: Protons and neutrons are collectively known as <u>nucleons</u> because they are both found in the nucleus.			
(c)	nuclide	AZX	 A <u>nuclide</u> is any species of given mass number and atomic number. Examples: 1 H 9 Be 12 C 16 O The nuclide of an element is represented by nucleon number (or mass number) proton number (or atomic number) Note: Note: Total number of protons and neutrons A Number of protons Z Number of neutrons A - Z Number of electrons (for uncharged species) 			

1.3 <u>Isotopes</u>

- <u>Isotopes</u> of an element are atoms with the <u>same proton number</u> but <u>different nucleon numbers</u> (i.e. they have the <u>same number of protons but different number of neutrons</u> in the nucleus).
- Isotopes have the same number of electrons ⇒ the same chemical properties
 Isotopes have different numbers of neutrons (i.e. different masses) ⇒ different physical properties
- Most elements consist of mixtures of isotopes. The abundance of each isotope in the mixture is called its <u>isotopic abundance</u> (in terms of percentages or fractions).
- Example 1: Isotopes of hydrogen

Name	Symbol	Number of protons	Number of neutrons	Number of electrons	Isotopic abundance in natural hydrogen
protium (hydrogen)	¹H or H	1	0	1	99.984%
deuterium (heavy hydrogen)	² Hor D	1	1	1	0.015%
tritium	³ Hor T	1	2	1	very rare — 1 part in 10 ¹⁷ (radioactive and unstable)

• Example 2: Isotopes of chlorine

Name	Symbol	Number of protons	Number of neutrons	Number of electrons	Isotopic abundance in naturally occurring chlorine
chlorine-35	³⁵ ₁₇ C <i>l</i>	17	18	17	75%
chlorine-37	³⁷ C <i>l</i>	17	20	17	25%

Worked Example 1 — PP

(a)	Which	one	of	the	following	particles	has	more	electrons	than	protons	and	more	protons	than
	neutro	ns?													

A D-

B OH-

C H₃O⁺

D OD-

(b) Consider the atoms and ions given in the table below.

Atom / Ion	Number of electrons	Number of neutrons
Р	11	15
Q ²⁻	11	17
R ⁺	10	15
S-	12	17
T ⁺	13	16

Which of the following is an isotope of P?

A Q

c s

B R

D T

Solution

(a)

	D-	OH ⁻	H₃O ⁺	OD-
No. of electrons	2	10		10
No. of protons	1	9		9
No. of neutrons	1	8		9

(b)

	Р	Q ²⁻	R⁺	S-	T⁺
No. of electrons	11	11	10	12	13
No. of protons					
No. of neutrons	15	17	15	17	16

Relative Masses

2.1 The carbon-12 scale

2

- The masses of atoms are very small, from 10^{-24} to 10^{-22} grams. Chemists use a relative atomic mass scale to compare the masses of different atoms.
- In 1961, the carbon-12 atom was adopted by the International Union of Pure and Applied Chemistry (IUPAC) as the reference standard for relative atomic masses.
- On the <u>carbon-12 scale</u>, atoms of the isotope ¹²C are assigned a relative atomic mass of 12 and the relative masses of all other atoms are obtained by comparison with the mass of the carbon-12 atom.

2.2 Relative isotopic mass

• The relative isotopic mass of a particular isotope of an element is defined as follows:

Relative isotopic mass =	mass of 1 atom of the isotope	Note:
Relative isotopic mass =	$\frac{1}{12}$ x mass of 1 atom of carbon-12	No units

- Examples: Relative isotopic mass of 21 Ne = 20.994 \approx 21.0 Relative isotopic mass of 35 Cl = 34.97 \approx 35.0
- Why is the relative isotopic mass of an isotope very close to a whole number?

Reason: On the carbon-12 scale, the relative masses of the proton and neutron are both very close to one and the electron has a negligible mass. It therefore follows that all relative isotopic masses will be very close to whole numbers which are essentially the corresponding nucleon numbers of the isotopes.

• In calculations, the relative isotopic mass of an isotope is often approximated by the nucleon number of that isotope. The two are assumed to be identical in all but the most accurate work.

2.3 Relative atomic mass (Symbol: A_r)

• The relative atomic mass (A_r) of an element is defined as follows:

Relative atomic mass =	(weighted) average mass of 1 atom of the element	Note:
Relative atomic mass –	1/12 x mass of 1 atom of carbon-12	No units

The A_r values can be found in the Periodic Table given in the Data Booklet.

Example: A_r of chlorine = 35.5

13	14	15	16	17	18
Al	Si	Р	S	Cl	Ar
aluminium	silicon	phosphorus	sulfur	chlorine	argon
27.0	28.1	31.0	32.1	35.5	39.9

• The relative atomic mass of an element may not be close to a whole number. Why is this so?

Reason: This is because naturally occurring elements often consist of a mixture of isotopes and the relative atomic mass of an element takes into consideration the different isotopes and their relative abundances.

Worked Example 2 — PPP

Calculate the relative atomic mass of chlorine from the given data.

Isotope	Relative isotopic mass	Percentage abundance
³⁵ C <i>l</i>	34.97	75.53
³⁷ C <i>l</i>	36.95	24.47

Solution

$$A_{\rm r}$$
 of $Cl = \frac{(75.53)(34.97) + (24.47)(36.95)}{75.53 + 24.47} = 35.5 (3 s.f.)$

Worked Example 3

The isotopes 79 Br and 81 Br have accurate isotopic masses of 78.918 and 80.916 respectively. Given that the A_r of bromine is 79.904, calculate the percentage abundances of these two isotopes.

Solution

Let x be the percentage abundance of 79 Br and (100 - x) be the percentage abundance of 81 Br.

 A_r of Br =

Percentage abundance of $^{79}Br = x =$

Percentage abundance of $^{81}Br = 100 - x =$

2.4 Relative molecular mass (Symbol: M_r)

• This is the term used when referring to the relative masses of molecular elements or covalent compounds.

Polotivo molocular mass	(weighted) average mass of 1 molecule of the substance	Note:
Relative molecular mass =	1/12 x mass of 1 atom of carbon-12	No units

- M_r of a substance = sum of the A_r of all the constituent atoms shown in the molecular formula
- Examples: M_r of $O_2 = (2)(16.0) = 32.0$

$$M_{\rm r}$$
 of aspirin, $C_9H_8O_4 = (9)(12.0) + (8)(1.0) + (4)(16.0) = 180.0$

2.5 Relative formula mass (Symbol: M_r)

This is the term used when referring to the relative masses of ions or ionic compounds.

Relative formula mass =
$$\frac{\text{(weighted) average mass of 1 formula unit of the substance}}{\frac{1}{12} \text{ x mass of 1 atom of carbon-12}} \text{ Note: No units}$$

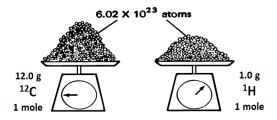
- Note: A <u>formula unit</u> is the smallest collection of atoms from which the formula of a compound can be established.
- Examples: Relative formula mass of NaCl = 23.0 + 35.5 = 58.5

$$M_r$$
 of CuSO₄.5H₂O = 63.5 + 32.1 + (4)(16.0) + (10)(1.0) + (5)(16.0) = 249.6

The Mole and Related Concepts

3.1 The mole and the Avogadro constant

3


• The mole is the SI (Système International) unit for measuring "amount of substance".

Base physical quantity	Usual symbol	SI unit	Symbol for unit
amount of substance	n	mole	mol

- Experimentally, it has been found that 12 grams of carbon-12 contain 6.02×10^{23} carbon atoms. \Rightarrow 1 mole of carbon-12 contains 6.02×10^{23} carbon-12 atoms.
- The definition of the mole reads as follows:

<u>A mole of substance</u> is the amount of that substance which contains 6.02×10^{23} elementary entities of that substance.

Note: The elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or other formula units. The quantity of $6.02 \times 10^{23} \text{ mol}^{-1}$ is termed the Avogadro constant (Symbol: L)

• The <u>Avogadro constant</u> (*L*) is the constant of proportionality between the number of specified entities of a substance (*N*) and the amount of specified entities of that substance (n).

number of specified entities of a substance	=	Avogadro constant (mol ⁻¹)	х	amount of specified entities of that substance (mol)
N	=	Ĺ	Х	n

Relationship between the mole and Avogadro constant

1 mole of H₂O

- contains **6.02 x 10²³** H₂O molecules.
- contains 1 mole of O atoms and hence contains 6.02 x 10²³ O atoms.
- contains 2 moles of H atoms and hence contains (6.02 x 10²³)(2) H atoms.
- contains 3 moles of atoms and hence contains (6.02 x 10²³)(3) atoms.

1 mole of $MgCl_2$

- contains **6.02** x **10**²³ formula units of MgC l_2 .
- contains 1 mole of Mg²⁺ ions and hence contains 6.02 x 10²³ Mg²⁺ ions.
- contains 2 moles of Cl^- ions and hence contains (6.02 x 10^{23})(2) Cl^- ions.
- contains 3 moles of ions and hence contains (6.02 x 10²³)(3) ions.

3.2 Molar mass

- The molar mass of a substance is the mass of one mole of the substance. It has units of g mol⁻¹.
- Examples:

Molar mass of Fe	= 55.8 g mol ⁻¹	$A_{\rm r}$ of Fe = 55.8
Molar mass of H₂O	= 18.0 g mol ⁻¹	$M_{\rm r}$ of H ₂ O = 18.0
Molar mass of MgCl ₂	= 95.3 g mol ⁻¹	$M_{\rm r}$ of MgC l_2 = 95.3
Molar mass of OH⁻	= 17.0 g mol ⁻¹	$M_{\rm r}$ of OH ⁻ = 17.0

• Note that the molar mass of a substance has the same numerical value as the A_r or M_r of that substance except that it has units of g mol⁻¹ while both A_r and M_r have no units.

3.3 Relationship between amount, mass, molar mass and number of particles

• Take note of the following:

Amount of substance X (mol) =	mass of X (g) molar mass of X (g mol ⁻¹)	m n molar
or n _X (mol) =	$= \frac{m_X (g)}{\text{molar mass of } X (g \text{ mol}^{-1})}$	m _X = mass of substance X / g n _X = amount of X / mol
Amount of substance X (mol) =	number of particles of X Avogadro constant (mol ⁻¹)	N n L
or n _X (mol) =	$= \frac{N}{L \text{ (mol}^{-1})}$	N = number of particles of X L = Avogadro constant / mol ⁻¹

— Worked Example 4 — ✓ ✓ ✓

Complete the table below.

Substance	Molar mass / g mol ⁻¹	Mass / g	Amount of substance / mol	Number of molecules	Amount of atoms / mol	Number of atoms	Amount of ions / mol	Number of ions
Water, H ₂ O		36.0						
Ethane, C ₂ H ₆			1.50					
Sodium chloride, NaC/								3.01 x 10 ²⁴

4 Empirical and Molecular Formulae

4.1 Definitions

- The <u>empirical formula</u> of a compound is the formula that shows the <u>simplest whole number ratio</u> of the atoms of different elements present in one molecule or formula unit of the compound.
- The <u>molecular formula</u> of a compound is the formula that shows the <u>actual number of atoms</u> of each element present in one molecule of the compound.

Examples

Compound	Molecular formula	Empirical formula	Note:
methane	CH ₄	CH₄	It is possible for a compound to have its empirical formula being the same
ethene	C ₂ H ₄	CH ₂	as its molecular formula.
propene	C ₃ H ₆	CH ₂	The molecular formula is always a
cyclohexane	C ₆ H ₁₂	CH ₂	multiple of the empirical formula.

- The empirical formula of a compound may be calculated from experimental data obtained from combustion analysis or elemental analysis.
- The molecular formula can be determined from the empirical formula, provided the molar mass or the relative molecular mass of the compound is known.

4.2 Calculations using combustion data

Worked Example 5 — PPP

0.500 g of an organic compound **X** containing carbon, hydrogen and oxygen gave on complete combustion 0.6875 g of CO_2 and 0.5625 g of H_2O .

- (a) Determine the empirical formula of X.
- (b) If the relative molecular mass of **X** is 32.0, determine its molecular formula.

Solution

(a)	Element C		Н	0
	Mass in 0.500 g of X / g	$\frac{0.6875}{12.0 + (2)(16.0)} \times 12.0$ $= 0.1875$	$\frac{0.5625}{(2)(1.0) + 16.0} \times 2 \times 1.0$ $= 0.0625$	0.500 - 0.1875 - 0.0625 =0.250
	Amount / mol	$\frac{0.1875}{12.0} = 0.01563$	$\frac{0.0625}{1.0} = 0.0625$	$\frac{0.250}{16.0} = 0.01563$
	Molar ratio	1	4	1

Hence the empirical formula of **X** is CH₄O.

(b) Let molecular formula of X be (CH₄O)_n.

$$M_r$$
 of $(CH_4O)_n = 32.0$
[12.0 + 4(1.0) + 16.0] n = 32.0

n = 1

Hence molecular formula of X is CH₄O.

4.3 Calculations using percentage composition by mass

— Worked Example 6 — ✓ ✓ ✓

The formula of a complex salt Q is $NH_4[Cr(SCN)_x(NH_3)_y]$ and analysis produced the following composition by mass: Cr, 15.5%; S, 38.1%; N, 29.2%.

Calculate the values of x and y in the formula for Q.

Solution

Element	Cr	S	N
% composition	15.5	38.1	29.2
Molar mass / g mol ⁻¹	52.0	32.1	14.0
Amount in 100 g of Q / mol			
Molar ratio		:	:
Molar ratio based on the formula	1	: x	: 1 + x + y

4.4 Some important points to take note of

- In the calculation of empirical formula from experimental data, it is a common procedure to round off figures to the corresponding nearest whole numbers in order to get the simplest ratio. The rounding off procedure is usually justified, taking into consideration the possibility of experimental errors.
- However, when figures such as those listed below are encountered, the usual rounding off process
 may lead to an incorrect empirical formula. Great care should be exercised when these figures are
 obtained. These figures are usually multiplied by a factor in order to get the correct simplest ratio.

Note: Hypothetical data are used here.

Ratio calculated	Incorrect simplest ratio deduced	Actual simplest ratio		Remarks
1.51 : 3.07 : 1.00	2:3:1	3:6:2	1.5 = 3/2	(multiply by a factor 2)
1.33 : 3.07 : 1.00	1:3:1	4:9:3	1.33 = 4/3	(multiply by a factor 3)
1.25 : 3.07 : 1.00	1:3:1	5:12:4	1.25 = 5/4	(multiply by a factor 4)
1.20 : 2.00 : 1.00	1:2:1	6:10:5	1.2 = 6/5	(multiply by a factor 5)

5 Stoichiometry

- <u>Stoichiometry</u> is the relationship between the amounts of reactants and products in a chemical reaction. It has to do with how much one substance will react with another.
- The amounts of substances undergoing reaction, as given by a balanced chemical equation, are called the stoichiometric amounts.
- The law of conservation of matter is a fundamental principle in stoichiometry. Mass is conserved in all chemical reactions. Every atom of every element must be accounted for since they are not destroyed nor created, but rearranged.

E.g. in the decomposition of CaCO₃,

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

mass of original sample of CaCO₃(s) = the mass of CO₂(g) produced + mass of CaO(s) residue

5.1 Quantitative information from a balanced equation

• Consider the complete combustion of propane gas to produce carbon dioxide and water:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$$

- This balanced equation can be used to deduce the following information:
 - (a) amounts of reactants and products

 1 mole of C₃H₈ reacts with 5 moles of O₂ to produce 3 moles of CO₂ and 4 moles of H₂O.
 - (b) masses of reactants and products44.0 g of C₃H₈ react with 160.0 g of O₂ to produce 132.0 g of CO₂ and 72.0 g of H₂O.

—■ Worked Example 7 —— 🖋 🖋

Diallyl sulfide, H₂C=CH-CH₂-S-CH₂-CH=CH₂, can be isolated from garlic.

Which statements about diallyl sulfide ($M_r = 114.1$) on complete combustion are correct?

- 1 0.10 g of diallyl sulfide reacts with 0.13 g of O₂.
- 2 0.10 g of diallyl sulfide produces 0.23 g of CO₂.
- 3 0.10 g of diallyl sulfide produces 0.876 mol of SO₂.

A 1, 2 and 3 **B** 1 and 2 only **C** 2 and 3 only **D** 2 only

Solution

$$H_2C=CH-CH_2-S-CH_2-CH=CH_2 + \frac{19}{2}O_2 \rightarrow 6CO_2 + SO_2 + 5H_2O_2$$

Amount of diallyl sulfide in 0.10 g =
$$\frac{0.10}{114.1}$$

= $\frac{8.764 \times 10^{-4} \text{ mol}}{1000 \times 1000}$
= Amount of SO₂

Amount of O₂ reacted =
$$\left(\frac{19}{2}\right) \left(8.764 \times 10^{-4}\right) = 8.326 \times 10^{-3} \text{ mol}$$

Mass of
$$O_2$$
 reacted = $8.326 \times 10^{-3} \times (2 \times 16.0) = \underline{0.266 \text{ g}}$

Amount of
$$CO_2$$
 produced = $6(8.764 \times 10^{-4}) = 5.258 \times 10^{-3}$ mol

Mass of
$$CO_2$$
 produced = $5.258 \times 10^{-3} \times (12.0 + 2 \times 16.0) = 0.231 g$

Use your EAR

Step 1: Write a balanced <u>EQUATION</u>
(so that you can figure out
the mole ratio between the
reactants and products)

Step 2: Calculate <u>AMOUNT</u>
Step 3: Compare mole <u>RATIO</u> for further calculations

5.2 <u>Limiting reagent</u>

- In carrying out chemical reactions, the reactants present may not be in stoichiometric amounts.
- One or more reactants may be in excess of that theoretically needed for complete reaction. The deficient reactant is called the limiting reagent and is consumed completely in the reaction.
- The maximum or theoretical yield of a product is thus determined based on the limiting reagent.

Worked Example 8 —— PPP

Consider the following reaction: $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$.

What will be the amount of H₂ produced when 3.0 moles of Mg(s) are added to 4.0 moles of HC/(aq)?

Solution

Amount of HCl(aq) used = 4.0 mol

Amount of Mg required to react with 4.0 mol of $HCl = (\frac{1}{2})(Amount of HCl) = (\frac{1}{2})(4) = 2.0$ mol Since the amount of Mg available > the amount of Mg required, Mg is present in excess.

 \Rightarrow The limiting reagent is HCl(aq).

Hence, amount of H₂ produced = $(\frac{1}{2})$ (Amount of HCl reacted) = $(\frac{1}{2})$ (4.0 mol) = **2.00 mol**

5.3 Percentage yield

- The mass of a product formed in a chemical reaction is called the <u>yield</u>.
- The <u>theoretical yield</u> of a product refers to the mass of product calculated from the chemical equation based on the amount of limiting reagent used.
- The <u>actual yield</u> refers to the mass of product that is actually obtained in the reaction during an experiment. It is usually less than the theoretical yield.
- The percentage yield relates the actual yield to the theoretical yield and is expressed as follows:

percentage yield =
$$\frac{\text{actual yield (g)}}{\text{theoretical yield (g)}} \times 100\%$$

— Worked Example 9 — ✓ ✓ ✓

Ethanol can undergo esterification with ethanoic acid in the presence of concentrated sulfuric acid to yield ethyl ethanoate:

$$CH_3CH_2OH(I) + CH_3COOH(I) \rightarrow CH_3COOCH_2CH_3(I) + H_2O(I)$$
 ethanol ethanoic acid ethyl ethanoate

- (a) In an experiment, 23.0 g of ethanol (the limiting reagent) were used for esterification. Calculate the theoretical yield of ethyl ethanoate.
- **(b)** If 30.0 g of ethyl ethanoate were obtained in the above experiment, determine the percentage yield.

Solution

(a) Amount of ethyl ethanoate produced

= Amount of ethanol used

$$=\frac{23.0}{2(12.0)+6(1.0)+16.0}=0.500 \text{ mol}$$

: Theoretical yield of ethyl ethanoate

= 0.500 [4(12.0) + 8(1.0) + 2(16.0)] = 44.0 g

%Yield =
$$\frac{30.0}{44.0} \times 100\% = \frac{68.2\%}{600}$$

Reacting Volumes of Gases

6.1 Avogadro's hypothesis

6

• Avogadro's hypothesis states that:

Equal volumes of all gases under the same conditions of temperature and pressure contain the same number of molecules.

Note: Since the hypothesis has been used successfully for nearly two centuries, it is often called Avogadro's Law.

• It follows from Avogadro's hypothesis that if equal volumes of gases contain equal numbers of molecules, then the volume occupied by 1 mole of a gas (i.e. containing 6.02 x 10²³ gas particles) must be the same for all gases.

Number of particles	6.02 x 10 ²³ CO ₂ molecules	6.02 x 10 ²³ O ₂ molecules	6.02 x 10 ²³ Ne atoms
Amount / mol	1.0	1.0	1.0
Mass / g	44.0	32.0	20.2
Volume of gas at same temperature and pressure / dm ³	V	V	V

This volume occupied by 1 mole of a gas (which contains 6.02 x 10²³ gas particles) is termed the molar volume of the gas and is the same for all gases under the same conditions of temperature and pressure.

6.2 Molar volume of a gas

Note the following data which are commonly used in calculations:

The molar volume (symbol: V_m) of a gas is	$V_{\rm m}$ = 22.7 dm³ mol ⁻¹ at s.t.p. where s.t.p. is expressed as 10 ⁵ Pa (1 bar) and 273 K (0°C)		
the volume occupied by 1 mole of the gas.	$V_{\rm m}$ = 24 dm ³ mol ⁻¹ at r.t.p. where r.t.p. is expressed as 101325 Pa (1 atm) and 293 K (20°C)		

• The amount of a gas X can be determined from its volume and molar volume measured under the same conditions of temperature and pressure.

Amount of gas X (mol) =
$$\frac{\text{volume of X (dm}^3)}{\text{molar volume of X (dm}^3 \text{ mol}^{-1})}$$
 $\frac{\text{Conversion of units for volume}}{1 \text{ cm}^3 = 10^{-3} \text{ dm}^3 = 10^{-6} \text{ m}^3}$ $1 \text{ dm}^3 = 1000 \text{ cm}^3 = 10^{-3} \text{ m}^3$ $1 \text{ m}^3 = 1000 \text{ dm}^3 = 10^6 \text{ cm}^3$

Using the previous example: $C_3H_8(g)$ $5O_{2}(g)$ $3CO_2(g)$ $+ 4H_2O(I)$ Vol. of gas at s.t.p. / dm³ 22.7 5 x 22.7 3 x 22.7 Vol. of gas at r.t.p. / dm³ 24 5 x 24 3 x 24 Vol. of gas at same T and P / dm³ 10 produced reacted

Worked Example 10 — PPP

In the preparation of hydrogen chloride by the reaction

$$NaCl(s) + H_2SO_4(I) \longrightarrow HCl(g) + NaHSO_4(s),$$

what mass of sodium chloride is required for the production of 10.0 dm³ of hydrogen chloride (at s.t.p.)?

Solution

Amount of HCl(g) produced =
$$\frac{10.0}{22.7}$$
 = 0.4405 mol

Amount of NaCl(s) required = Amount of HCl(g) produced = 0.4405 mol Molar mass of NaCl = 23.0 + 35.5 = 58.5 g mol⁻¹

Hence, mass of NaCl required = (0.4405)(58.5) = 25.8 g

6.3 Calculations involving combustion of hydrocarbons

• General equation for the complete combustion of a hydrocarbon:

$$C_xH_y(g) + (x + \frac{y}{4}) O_2(g) \longrightarrow x CO_2(g) + \frac{y}{2} H_2O(l)$$

$$C_xH_y(g) + (x + \frac{y}{4}) O_2(g) \longrightarrow x CO_2(g) + \frac{y}{2} H_2O(g)$$

Note:

- The state symbol for C_xH_y can either be (g) or (l) depending on the hydrocarbon analysed.
- H₂O(I) if volume measurement is done at room temperature.
- H₂O(g) if volume measurement is done at a temperature equal to or greater than 100 °C.
- **Note:** For gaseous reactions, the molar ratio shown in the balanced equation also indicates the volume ratio of the reactants and products.

	$C_xH_y(g)$	+ (2	$x+\frac{y}{4}$) O ₂ (g	ı)	<i>x</i> CO ₂ (g	g) +	$\frac{y}{2}$ H ₂ O(g)
Molar ratio	1	:	$(x+\frac{y}{4})$:	х	:	<u>y</u> 2
Volume ratio	1	:	$\left(X+\frac{y}{4}\right)$:	Х	:	<u>y</u> 2

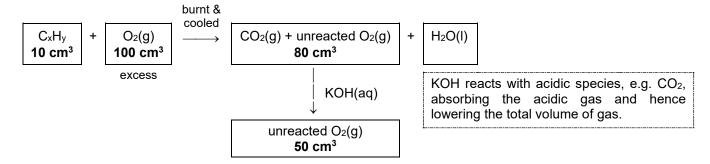
── Worked Example 11 —— ✔ ✔ ✔

Skunks are mammals best known for their ability to excrete a strong, foul-smelling odour in order to ward off potential attackers. Methanethiol, CH_3SH , is a foul-smelling chemical which is found in the sprays of skunks. A 20 cm³ sample of methanethiol was exploded with 80 cm³ of oxygen to produce only CO_2 , SO_2 and H_2O .

What would be the final volume of the resultant mixture of gases when cooled to room temperature and pressure?

Solution

Volume of unreacted $O_2 = 80 - 60 = 20 \text{ cm}^3$


Final volume of the resultant mixture of gases = $20 + 20 + 20 = 60 \text{ cm}^3$

Worked Example 12 — PPP

10 cm³ of a hydrocarbon was burnt in 100 cm³ (an excess) of oxygen gas. After reaction, the volume of the gaseous mixture was found to be 80 cm³ when cooled to room temperature. Upon passing the gaseous mixture through aqueous potassium hydroxide, its volume decreased to 50 cm³.

What is the molecular formula of the unknown hydrocarbon?

Solution

Let the hydrocarbon be C_xH_y.

After reaction, the gaseous mixture contained CO₂ and unreacted O₂.

When the gaseous mixture was passed through KOH(aq), only the acidic CO₂ gas reacted with KOH.

$$CO_2(g) + 2OH^-(aq) \rightarrow CO_3^{2-}(aq) + H_2O(I)$$

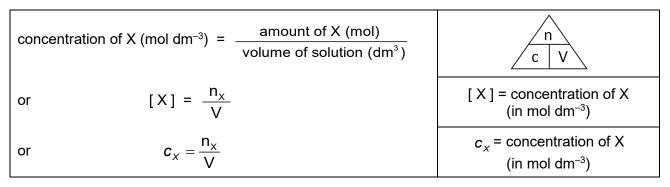
Volume of unreacted $O_2 = 50 \text{ cm}^3$

Volume of CO_2 produced = $80 - 50 = 30 \text{ cm}^3$

Volume of O_2 reacted = 100 - 50 = 50 cm³

	C _x H _y (g	j) + ($x+\frac{y}{4}$) O ₂ (g	$\rightarrow x$	CO ₂ (g)	+ $\frac{y}{2}$ H ₂ O(I)	
Volume of gas / cm ³	10					(negligible)	
Volume ratio		:		:			
Molar ratio		:		:			
Molar ratio (from equation)	1	:	$(x+\frac{y}{4})$:	Х		

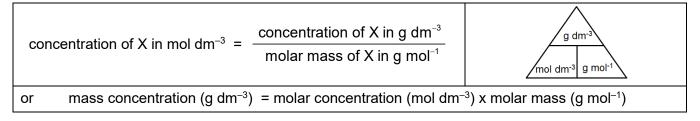
Hence,
$$x = \underline{\hspace{1cm}}$$
 and $(x + \frac{y}{4}) = \underline{\hspace{1cm}}$
 $\Rightarrow y = \underline{\hspace{1cm}}$


:. the molecular formula of the hydrocarbon is ______

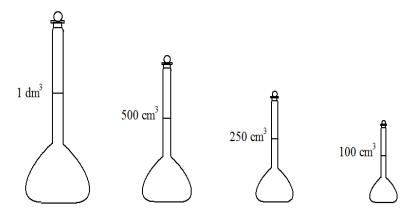
Concentration of a Solution

7.1 Definitions

7


- A <u>solution</u> is a homogeneous mixture of two or more substances. The substance which is in greater quantity is the <u>solvent</u> and the other substance is called the <u>solute</u>.
- The term <u>concentration</u> is used to designate the amount (or mass) of solute dissolved in a given quantity of solvent or solution.
- The concentration of a solute X in a solution can be expressed in various units.
 - (a) molar concentration (units: mol dm⁻³)

(b) mass concentration (units: g dm⁻³)


concentration of X (g dm⁻³) =
$$\frac{\text{mass of X (g)}}{\text{volume of solution (dm}^3)}$$

• The above two concentration terms in different units are related by the following expression:

7.2 Volumetric/ graduated flasks

- A solution of a particular concentration is usually prepared by dissolving the required amount of solute in a solvent (usually deionised water) in a <u>volumetric/</u> <u>graduated flask</u> of suitable capacity.
- The volume of solvent added to the flask is such that it makes up the required volume of the solution.

7.3 Calculations involving concentration of a solution

Worked Example 13 —— PPP

Calculate the mass of $Mg(NO_3)_2.6H_2O$ required to prepare a 250 cm³ solution containing 0.250 mol dm⁻³ of nitrate(V) ions.

Solution

$$Mg(NO_3)_2.6H_2O(s) + aq \rightarrow Mg^{2+}(aq) + 2NO_3^{-}(aq) + 6H_2O(l)$$

Amount of
$$NO_3^-$$
 ions = $\frac{250}{1000} \times 0.250 = 6.25 \times 10^{-2}$ mol

Amount of Mg(NO₃)₂.6H₂O required =
$$\frac{1}{2} \times 6.25 \times 10^{-2} = 3.125 \times 10^{-2}$$
 mol

Mass of Mg(NO₃)₂.6H₂O required =
$$3.125 \times 10^{-2} \times [24.3 + 2(14.0 + 3 \times 16.0) + 6(2 \times 1.0 + 16.0)]$$

= 8.01 g

Worked Example 14 — PPP

6.45~g of sodium thiosulfate pentahydrate (Na₂S₂O₃.5H₂O) is dissolved in deionised water and the volume made up to 250 cm³ in a volumetric flask.

- (a) What is the concentration of the sodium thiosulfate (Na₂S₂O₃) solution prepared?
- **(b)** What is the concentration of the thiosulfate ions (i.e. $S_2O_3^{2-}$ ions) in the solution?
- (c) Determine the concentration in g dm⁻³ of the thiosulfate ions in the solution.
- (d) If 40.00 cm³ of the solution is removed and made up to 250 cm³ in another volumetric flask using deionised water, what is the concentration of thiosulfate ions in the new solution?

Solution

(a)
$$Na_2S_2O_3.5H_2O(s) + aq. \rightarrow Na_2S_2O_3(aq) + 5H_2O(l)$$

Amount of $Na_2S_2O_3.5H_2O = \frac{6.45}{2 \times 23.0 + 2 \times 32.1 + 3 \times 16.0 + 5(2 \times 1.0 + 16.0)} = 2.599 \times 10^{-2} \text{ mol}$
Amount of $Na_2S_2O_3 = \text{Amount of } Na_2S_2O_3.5H_2O = 2.599 \times 10^{-2} \text{ mol}$

Concentration of Na₂S₂O₃ =
$$\frac{2.599 \times 10^{-2}}{250 \times 10^{-3}} = \underline{0.104 \text{ mol dm}^{-3}}$$

(b) Na₂S₂O₃(aq)
$$\rightarrow$$
 2Na⁺(aq) + S₂O₃²⁻(aq) Concentration of S₂O₃²⁻ = Concentration of Na₂S₂O₃ = 0.104 mol dm⁻³

(c) Concentration of
$$S_2O_3^{2-}$$
 in g dm⁻³ = 0.104 × (2 x 32.1 + 3 x 16.0) = $\underline{11.7 \text{ g dm}^{-3}}$

(d) Amount of S₂O₃²⁻ ions in 250 cm³ of diluted solution

= Amount of S₂O₃²⁻ ions in 40.00 cm³ of original solution

$$= \frac{40.00}{1000} \times 0.104 = 4.16 \times 10^{-3} \text{ mol}$$

Concentration of $S_2O_3^{\ 2-}$ in new solution

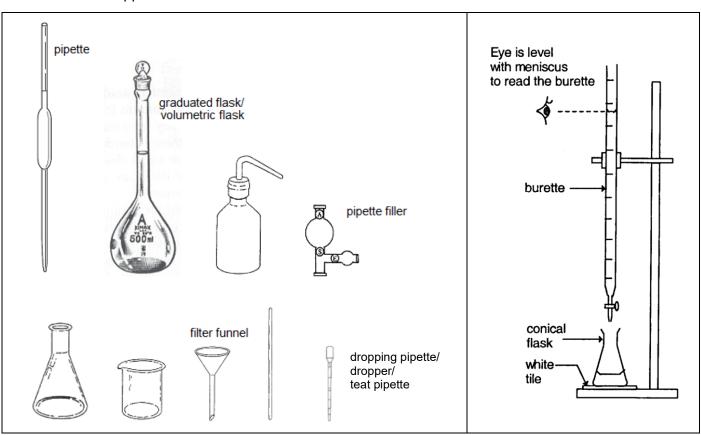
$$=\frac{4.16\times10^{-3}}{250\times10^{-3}}=\underline{0.0166\ mol\ dm^{-3}}$$

Amount of $S_2O_3^{2-}$ ions in 250 cm³ of diluted solution = Amount of $S_2O_3^{2-}$ ions in 40.00 cm³ of original solution

$$c_1V_1 = c_2V_2$$

$$c_1\left(\frac{250}{1000}\right) = 0.104 \left(\frac{40.00}{1000}\right)$$

 $c_1 = 0.0166 \text{ mol dm}^{-3}$


 $[S_2O_3^2-]$ in the diluted solution = 0.0166 mol dm⁻³

Acid-Base Titrations

8.1 Volumetric Analysis

8

- Volumetric analysis (or titrimetric analysis) is a method of quantitative analysis which depends
 essentially on the accurate measurements of the volumes of two solutions which react together
 completely.
- In volumetric analysis, a <u>standard solution</u> (i.e. a solution of known concentration) is used to determine the concentration of another solution.
- This is done through a <u>titration</u> process which involves the gradual addition of one solution (from a burette) to a fixed volume of another solution (in a conical flask) until stoichiometric amounts of the two reactants have reacted.
 - o The solution that is placed in the burette is sometimes referred to as the titrant.
 - The solution that is pipetted into the conical flask is less commonly referred to as the titrand.
- In practice, the completion of a titration is usually detected by a distinct colour change brought about
 by the use of a suitable <u>indicator</u>. The point at which this distinct colour change occurs is called the
 <u>end-point</u> of the titration.
- In an acid-base titration, the indicator used is usually added in a <u>small quantity</u>. Common indicators include methyl orange, screened methyl orange, thymol blue and thymolphthalein. Each indicator has a <u>pH range</u> over which it changes colour.
- The common apparatus used in a titration are shown below.

8.2 Acid-base titrations

- Acid-base titrations are carried out in order to establish the stoichiometric amounts of acid and base which are required to neutralise each other.
- · Basicity of an acid

	Number of H atom ionisable (as H ⁺ ion) per molecule	Examples
monobasic (or monoprotic) acid	1	HC/, HNO ₃ and CH ₃ COOH
dibasic acid (or diprotic) acid	2	H ₂ SO ₄ , HOOC-COOH
tribasic acid (or triprotic) acid	3	H ₃ PO ₄

8.3 Calculations involving acid-base titration

Worked Example 15 — PPP

In a titration experiment, 20.0 cm^3 of $0.200 \text{ mol dm}^{-3}$ NaOH reacted with 32.00 cm^3 of H_2SO_4 solution. Calculate the concentration of H_2SO_4 in (a) mol dm⁻³, and (b) g dm⁻³.

Solution

(a)
$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$$

Amount of NaOH reacted = $\frac{20.0}{1000} \times 0.200 = 4.00 \times 10^{-3}$ mol
Amount of H_2SO_4 reacted = $\left(\frac{1}{2}\right)$ (Amount of NaOH reacted) = $\frac{1}{2} \times 4.00 \times 10^{-3} = 2.00 \times 10^{-3}$ mol
Concentration of $H_2SO_4 = \frac{2.00 \times 10^{-3}}{32.00 \times 10^{-3}} = \frac{0.0625 \text{ mol dm}^{-3}}{200 \times 10^{-3}}$

(b) Concentration of $H_2SO_4 = (0.0625)(2 \times 1.0 + 32.1 + 4 \times 16.0) = 6.13 \text{ g dm}^{-3}$

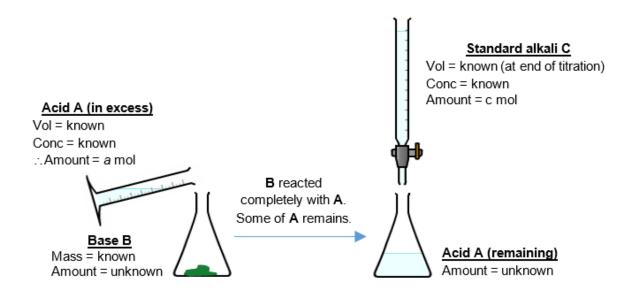
— Worked Example 16 —— ₽ ₽ ₽

An acid solution contains 25.2 g of $(COOH)_2.xH_2O$ per dm³. 50.0 cm³ of this solution needed 40.00 cm³ of 0.500 mol dm⁻³ KOH(aq) for complete neutralisation. Calculate the value of x.

Solution:

Concentration of (COOH)₂.xH₂O solution =
$$\frac{25.2}{\left(90.0+18.0x\right)}$$
 mol dm⁻³ (COOH)₂.xH₂O(aq) + 2KOH(aq) \rightarrow (COO⁻K⁺)₂(aq) + (x+2)H₂O(l) Amount of KOH reacted = $\left(\frac{40.0}{1000}\right)(0.500) = 0.0200$ mol

Amount of (COOH)₂.xH₂O reacted = $(\frac{1}{2})$ (Amount of KOH reacted) = $(\frac{1}{2})$ (0.0200) = 0.0100 mol

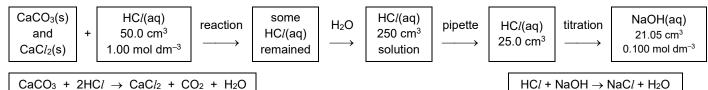

$$[(COOH)_2.xH_2O] = \frac{0.0100}{50.0 \times 10^{-3}} = 0.200 \text{ mol dm}^{-3}$$

Hence,
$$[(COOH)_2.xH_2O] =$$

$$x =$$

8.4 **Back titration**

- Back titrations are usually employed when the determination of the amount of a substance poses some difficulty in the direct titration method, e.g. solid substances (CaCO₃) where the end-point is difficult to detect, and volatile substances (ammonia, iodine) where inaccuracy arises due to loss of substance during titration.
- In a typical acid-base back titration, the following steps are involved:
 - A known excess of an acid A is added to a quantity of a base B (or vice versa).
 - Upon mixing, the base B reacts completely while only some of the acid A reacts.
 - o The acid A remaining is then titrated with a standard alkali C and its amount determined.
 - o From the results, the amount of acid A which has reacted with the base B can be found and the amount of base can then be calculated.



Worked Example 17 — PPP

A 3.00 g mixture of calcium carbonate and calcium chloride was added to 50.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid. The resulting solution was made up to 250 cm³ in a graduated flask with deionised water. When 25.0 cm³ of this solution was titrated with 0.100 mol dm⁻³ sodium hydroxide solution, 21.05 cm³ of sodium hydroxide was required for complete reaction.

Calculate the percentage by mass of calcium carbonate in the given mixture.

Solution

Amount of NaOH reacted =
$$(\frac{21.05}{1000})(0.100) = 2.105 \times 10^{-3} \text{ mol}$$

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$$

Amount of HCl that reacted with NaOH = 2.105 x 10⁻³ mol
Amount of HCl in 250 cm³ of solution = $(\frac{250}{25.0})(2.105 \text{ x } 10^{-3}) = 2.105 \text{ x } 10^{-2} \text{ mol}$

Initial amount of HC*l* used =
$$(\frac{50.0}{1000})(1.00) = 5.00 \times 10^{-2} \text{ mol}$$

Amount of HCl that reacted with CaCO₃ = $5.00 \times 10^{-2} - 2.105 \times 10^{-2} = 2.895 \times 10^{-2}$ mol

CaCO₃(s) + 2HC
$$l$$
(aq) \rightarrow CaC l_2 (aq) + CO₂(g) + H₂O(I) Amount of CaCO₃ reacted = (½)(2.895 x 10⁻²) = 1.448 x 10⁻² mol

Molar mass of $CaCO_3 = 40.1 + 12.0 + 3 \times 16.0 = 100.1 \text{ g mol}^{-1}$ Mass of $CaCO_3 = (1.448 \times 10^{-2})(100.1) = 1.449 \text{ g}$

Hence percentage by mass of CaCO₃ in the mixture = $(\frac{1.449}{3.00})(100\%) = \underline{48.3\%}$

Note:

When presenting the working for questions involving calculations,

- show essential steps
- write proper statements / use proper symbols
- use A_r values from the Periodic Table given in the Data Booklet
- present the answers for intermediate steps correct to 3 or 4 significant figures
- present the final answer to 3 significant figures unless instructed otherwise
- · include relevant units

Accepted statements:

- Amount of X = 4.00 mol
- Number of moles of X = 4.00 mol
- n_x = 4.00 mol

Not accepted:

• Amount of **X** = 4.00 **mols**

	18	2	He	helium 4.0	10	Ne	neon	18	Ā	argon 39.9	36	눟	krypton	83.8	54	×e	xenon	131.3	98	몺	radon	118	ő	oganesson	1
	17				6	ш	fluorine	17	10	chlorine 35.5	35	ä	bromine	6.62	53	Г	iodine	126.9	82	At	astatine	117	Ls	tennessine	\dashv
	16				8	0	oxygen 16.0	16	်	sulfur 32.1	34	Se	selenium	79.0	52	Te	tellurium	127.6	84	Ъо	mninolod	116	^	livermorium	\dashv
	15				2	z	nitrogen 14.0	15	2 🗅	phosphorus 31.0	33	As	arsenic	74.9	51	Sb	antimony	121.8	83	Bi	bismuth 209 0	115	Mc	moscovium	1
	14				9	O	carbon	14	S	silicon 28.1	32	Ge	germanium	72.6	20	Sn	ţiu	118.7	82	Pb	lead 207.2	114	Εl	flerovium	1
	13				2	В	boron 10 8	13	Al	aluminium 27.0	31	Ga	gallium	2.69	49	In	mnipui	114.8	81	11	thallium 204.4	113	R	nihonium	ı
										12	30	Zn	zinc	65.4	48	ပ္ပ	cadmium	112.4	08	Hg	mercury 200 6	112	S	copernicium	1
										1	53	C	copper	63.5	47	Ag	silver	107.9	6/	Αn	gold 197.0	111	Rg	roentgenium	1
Group										10	28	Z	nickel	58.7	46	Pd	palladium	106.4	8/	₹	platinum 195.1	110	Ds	darmstadtium	1
Gre					_					6	27	ပိ	cobalt	58.9	45	몬	modium	102.9	22	ı	iridium 192.2	109	¥	meitnerium	ı
		1	I	hydrogen 1.0						œ	26	Fe	iron	55.8	44	Ru	ruthenium	101.1	9/	SO	osmium 190.2	108	H	hassium	ı
								_		7	25	Mn	manganese	54.9	43	ည	technetium	ı	75	Re	rhenium 186.2	107	B	pohrium	ı
					er	pol	900	200		9	24	ర	chromium	52.0	42	Mo	molybdenum	95.9	74	>	tungsten 183.8	106	Sg	seaborgium	ı
				Key	atomic number	atomic symbol	name relative atomic mass	a a constant		2	23	>	vanadium	50.9	41	q	miopinm	92.9	73	Ta	tantalum 180.9	105	Op	dubnium	ı
					at	ato	iteler	Clar		4	22	F	titanium	47.9	40	Z	zirconium	91.2	72	Ξ	hafnium 178.5	104	R	rutherfordium	1
										8	21	Sc	scandium	45.0	39	>	yttrinm	88.9	12-29	lanthanoids		89–103	actinoids		
	2				4	Be	beryllium	12	Ma	magnesium 24.3	20	Ca	calcium	40.1	38	Š	strontium	97.8	99	Ba	barium 137.3	88	Ra	radium	1
	1				8	=	lithium	5 =	Na	sodium 23.0	19	¥	potassium	39.1	37	&	rubidium	85.5	22	S	caesium	87	Ľ.	francium	1

71	-1	Intetium	175.0	103	۲	wrencium	1
20	Υp	/tterbium	173.1	102	2	nobelium la	1
	E					Ę	1
89	ய்	erbinm	167.3	100	Fn	fermium n	1
29	운	holmium	164.9	66	Es	einsteinium	1
99	٥	dysprosium	162.5	86	ರ	californium	ı
99	ТР	terbium	158.9	26	쓢	berkelium	ı
64	В	gadolinium	157.3	96	Cu	curium	ı
63	En	europium	152.0	96	Am	americium	ı
62	Sm	samarium	150.4	94	Pn	plutonium	ı
19	Pm	promethium	1	63	ď	neptunium	ı
09	PN	neodymium	144.2	95	n	uranium	238.0
29	Ą	praseodymium	140.9		Pa	Ε	231.0
28	Se	cerium	140.1	06	H	thorium	232.0
25	La	lanthanum	138.9	88	Ac	actinium	ı
	lanthanoids				actinoide		

$V_{\rm m} = 22.7 \text{dm}^3 \text{mol}^{-1} \text{at s.t.p.}$ $V_{\rm m} = 24 \text{dm}^3 \text{mol}^{-1} \text{at r.t.p.}$	where s.t.p. is expressed as 10 ⁵ Pa [1 bar] and 273 K [0 °C], r.t.p. is expressed as 101325 Pa [1 atm] and 293 K [20 °C])
molar volume of gas $V_{\rm m} = S_{\rm m}$	(where