# PHYSICS

SUGGESTED MARK SCHEME Maximum Mark: 190

| Paper 1<br>Multiple Choice |  |
|----------------------------|--|
| •                          |  |
|                            |  |

| Question | Key | Question | Key | Question | Key |
|----------|-----|----------|-----|----------|-----|
| 1        | В   | 6        | С   | 11       | В   |
| 2        | D   | 7        | В   | 12       | Α   |
| 3        | D   | 8        | Α   | 13       | Α   |
| 4        | Α   | 9        | D   | 14       | В   |
| 5        | С   | 10       | В   | 15       | В   |
|          |     |          |     |          |     |
| 16       | Α   | 21       | Α   | 26       | D   |
| 17       | С   | 22       | В   | 27       | С   |
| 18       | С   | 23       | Α   | 28       | D   |
| 19       | D   | 24       | В   | 29       | Α   |
| 20       | С   | 25       | В   | 30       | D   |

## Notes:

Candidates found Questions 8, 16, 19, 22 and 24 more challenging.

### **Question 8**

distractor  $\mathbf{B}$  – did not account for two ropes

distractor  $\boldsymbol{C}$  – confused the air densities

distractor **D** – did not account for the weight of air inside the balloon

#### **Question 11**

Takes 1 hour (3600 s) for a minute hand to complete one revolution.

## **Question 14**

Note that line MN is NOT an isothermal change. Using PV = nRT, temperature is decreasing.

## **Question 16**

Note that the energy of the oscillations reduced by E / 4 rather than to E / 4.

#### **Question 19**

Single slit equation accounts for only one side of the central maximum. The width of the central maximum is double of this.

#### **Question 24**

Note that the question asks for potential difference, not potential.

1 let radius be r

volume of sphere  $V = \frac{4}{3}\pi r^3$ 

$$\frac{\Delta V}{V} = 3\left(\frac{\Delta r}{r}\right)$$

so *y* quantity is directly proportional to *x* quantity

- 2 for N3L, the forces involved should
  - be of same type
  - be of same magnitude
  - be of different directions
  - act on different interacting bodies

Option D fails first bullet point

**3** let wire be a cylinder length *L* and cross-sectional radius *r* 

stress 
$$= \frac{F}{\pi r^2}$$
  
strain  $= \frac{\Delta L}{L}$   
units of area under curve  $= \left(\frac{N}{m^2}\right) \left(\frac{m}{m}\right)$   
 $= J m^{-3}$ 

- at t = 0, both car are at same position at t = T, both cars same position again so equal displacement from 0 to T since area under v-t graph is displacement P + (Q + R) = (Q + R) + S
- 5 relative velocity taking car as reference  $\vec{v_r} = \vec{v_b} - \vec{v_c}$ so  $\vec{v_r}$  has a rightwards component and a

downwards component

6 equilibrium so no resultant force in any direction no resultant torque about any point

C is wrong because while the torque have same magnitude, one must act clockwise and the other anti-clockwise (so **not** "equal")

- **7** moment of a couple can be calculated by either of the following:
  - (magnitude of one of the pair of equal and opposite forces)(perpendicular distance between forces)
  - 2(magnitude of one of the pair of equal and opposite forces)( (perpendicular distance between 1 force and the pivot)

[useful tip for angles] check what it means by  $\theta = 0^{\circ}$  and  $\theta = 90^{\circ}$ . in this case when  $\theta = 90^{\circ}$  we should get max force so the function should be sin $\theta$ 

8 there are **two ropes.** consider free body diagram of balloon+basket:



upthrust U = weight of displaced air  $= \rho_{cool} Vg$ 

total weight

$$\mathsf{W} = \left( m_{\mathsf{deflated}} + m_{\mathsf{hot\,air}} 
ight) g$$

equilibrium so  

$$U = W + 2T$$
  
 $T = \frac{1}{2} ((\rho_{cool} - \rho_{hot})V - m_{deflated})g$   
 $= \frac{1}{2} ((1.204 - 0.898)(2800) - 700)(9.81)$   
 $= 769 \text{ N}$ 

**9** some thermal energy is not converted into useful work

$$P_{\text{useful}} = F_{\text{useful}} v$$
$$= (1600)(22)$$
$$P_{\text{produced}} = \frac{3.3 \times 10^6}{60}$$

efficiency = 
$$\frac{P_{\text{useful}}}{P_{\text{produced}}} \times 100\%$$
$$= \frac{(1600)(22)}{\frac{3.3 \times 10^6}{60}} \times 100\%$$
$$= 64\%$$

10 given period,

$$a_{c} = r\omega^{2}$$

$$= r\left(\frac{2\pi}{T}\right)^{2}$$

$$= (3.85 \times 10^{8}) \left(\frac{2\pi}{27.3 \times 24 \times 60^{2}}\right)^{2}$$

$$= 0.00273 \text{ m s}^{-2}$$

11 minute hand takes 1 hour to go around

$$\omega = \frac{2\pi}{T}$$
$$= \frac{2\pi}{60^2}$$
$$= 0.00175 \text{ rad s}^{-1}$$

- 12 let increase in GPE be U  $U = m(\phi_{\text{final}} - \phi_{\text{initial}})$   $= m_2 \left(\frac{-Gm_1}{2r} - \frac{-Gm_1}{r}\right)$   $= \frac{Gm_1m_2}{2r}$
- 13 gravitational field strength

$$g = \frac{GM}{r^2}$$
  
=  $\frac{(6.67 \times 10^{-11})(2.0 \times 10^{31})}{(150 \times 10^6 \times 10^3)^2}$   
= 0.0593 N kg<sup>-1</sup>

**14** pV = (nR)T

for L  $\rightarrow$  M, process is constant pressure V is directly proportional to T, eliminate A and D

for M → N,  $p_{\rm M}V_{\rm M} = (2.0 \times 10^6)(0.003)$   $= 6000 \text{ Pa m}^3$   $p_{\rm N}V_{\rm N} = (0.8 \times 10^6)(0.005)$  $= 4000 \text{ Pa m}^3$ 

temperature drops so eliminate C (as a second layer of confirmation, direct proportionality above should suffice)

- **15** by first law of thermodynamics,  $\Delta U = Q + W$ for expt 1,  $\Delta U = Q + 0$ for expt 2,  $\Delta U = Q + (-W)$  due to expansion (negative work done <u>on</u> gas) so  $\Delta U_1 > \Delta U_2$
- **16** energy is transferred to and fro between max ke and max pe every quarter cycle

$$E_{\text{max}} = KE_{\text{max}} = \frac{1}{2}mv_0^2$$
$$= \frac{1}{2}m\left(\pm\omega\sqrt{x_0^2 - x^2}\right)^2 \propto x_0^2$$
$$\frac{x_{\text{new}}}{x_0} = \sqrt{\frac{E - E/4}{E}} = 0.867$$

Change in amplitude = (1 - 0.867)x= 0.134x

- **17** phase difference between a sine and negative cosine wave is 90°
- 18 wavelength is 8 m

$$f = \frac{v}{\lambda} = \frac{12}{8} = 1.5 \text{ Hz}$$

displacement



**19** angle of first minima involves half of *x*:



20 taking ratios:

$$\frac{V_{\text{new}}}{V_{\text{old}}} = \frac{\frac{Q}{4\pi\varepsilon_0 d}}{\frac{Q}{4\pi\varepsilon_0 \frac{d}{2}}} = 2$$

**21** electric field strength of point charge:

$$E = \left(\frac{Q}{4\pi\varepsilon_0}\right) \left(\frac{1}{r^2}\right)$$
  
gradient =  $\frac{Q}{4\pi\varepsilon_0}$   
 $Q = (4\pi\varepsilon_0)$ (gradient)

22 same p.d. across both elements:

$$\frac{P_{\rm X}}{P_{\rm Y}} = \frac{\frac{V^2}{R_{\rm X}}}{\frac{V^2}{R_{\rm Y}}} = \frac{R_{\rm Y}}{R_{\rm X}} = \frac{\rho \frac{L}{A_{\rm Y}}}{\rho \frac{L}{A_{\rm X}}} = \frac{A_{\rm X}}{A_{\rm Y}}$$
$$= \frac{\pi \left(\frac{d_{\rm X}}{2}\right)^2}{\pi \left(\frac{d_{\rm Y}}{2}\right)^2} = \left(\frac{d_{\rm X}}{d_{\rm Y}}\right)^2$$

$$\frac{d_{\rm X}}{d_{\rm Y}} = \sqrt{\frac{P_{\rm X}}{P_{\rm Y}}} = \sqrt{\frac{1}{1.5}} = 0.816$$

**23** effective external resistance of circuit 2 is R/2

$$I = \frac{E}{2R + r}$$
$$3I = \frac{E}{\frac{R}{2} + r}$$
$$\frac{E}{2R + r} = \frac{E}{3\left(\frac{R}{2} + r\right)}$$
$$= \frac{E}{\left(\frac{3R}{2} + 2r\right) + r}$$
$$2R = \frac{3R}{2} + 2r$$

- **24** to have zero p.d., *R*<sub>XY</sub> has to have ability to be zero, eliminate A, C and D
- **25** let time of flight within plates be *t*

$$t = \frac{s_x}{v_x} = \frac{5 \times 10^{-2}}{1.97 \times 10^7}$$

 $r = \frac{R}{4}$ 

$$F = ma = qE = q\left(\frac{\Delta V}{d}\right)$$
$$a_{y} = \frac{q\Delta V}{m_{e}d}$$

$$\Delta h = ut + \frac{1}{2}a_{y}t^{2}$$

$$= 0 + \frac{1}{2}\left(\frac{q\Delta V}{m_{e}d}\right)t^{2}$$

$$= \frac{1}{2}\left(\frac{q\Delta V}{m_{e}d}\right)\left(\frac{s_{x}}{v_{x}}\right)^{2}$$

$$= \frac{1}{2}\left(\frac{\left(1.6 \times 10^{-19}\right)(3000)}{\left(9.11 \times 10^{-31}\right)\left(10 \times 10^{-2}\right)}\right)\left(\frac{5 \times 10^{-2}}{1.97 \times 10^{7}}\right)^{2}$$

$$= 0.017 \text{ m}$$

26 let vertical component of Earth's flux density be B  $NBA = (10)(2.1 \times 10^{-5})(20^{2})$ 

$$BA = (10)(2.1 \times 10^{\circ})(20^{\circ})$$
$$= 0.084 \text{ T m}^{2}$$

27

$$P = I_{\rm rms}^2 R$$
$$I_{\rm rms} = \sqrt{\frac{P}{R}}$$

28

$$E_1 - E_2 = hf = \frac{hc}{\lambda}$$
$$\lambda = \frac{hc}{E_1 - E_2}$$

29

$$m_{\rm rxt} = (235.04 + 1.01)u$$

 $m_{\text{pdt}}$ = (140.91+91.91+3(1.01))u

$$E = (m_{rxt} - m_{pdt})c^{2}$$
  
= 0.2*uc*<sup>2</sup>  
= 0.2(1.66 × 10<sup>-27</sup>)(3 × 10<sup>8</sup>)<sup>2</sup>  
= 2.99 × 10<sup>-11</sup> J

30

$$N_0 - N = 3.00 \times 10^{12}$$
  
 $5.00 \times 10^{12} - N = 3.00 \times 10^{12}$   
 $N = 2.00 \times 10^{12}$ 

$$N = N_0 e^{-\lambda t}$$
$$\frac{N}{N_0} = e^{-\lambda t}$$
$$\ln\left(\frac{N}{N_0}\right) = -\lambda t$$
$$\ln\left(\frac{N_0}{N}\right) = \lambda t$$
$$t = \left(\frac{1}{1.15 \times 10^{-8}}\right) \left(\ln\left(\frac{5}{2}\right)\right)$$
$$= 7.97 \times 10^7 \text{ s}$$