

H2 Mathematics (9758) Chapter 2 Transformations of Curves Discussion Questions (Suggested Solutions)

Level 1

1 Describe a single transformation that will change y = f(x) into each of the following functions in part (a) – (f). The diagram shows the graph of y = f(x).

On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of intersection with the axes.

(a) y = f(x) - 1 (b) y = f(x - 2) (c) y = 2f(x) (d) $y = f\left(\frac{x}{3}\right)$ (e) y = -f(x) (f) y = f(-x) (g) y = |f(x)|

Level 2

2 The diagram shows the graph of y = f(x) with asymptotes x = 0 and y = x. The points A, B, O have coordinates (-1, -2), (1, 2), (0, 0) respectively. Sketch on separate diagrams the graph of

showing in each case the coordinates of the points corresponding to A, B and O and the equations of the asymptotes where applicable.

3

The diagram shows the graph of y = f(x). On separate diagrams, sketch the graphs of (i) y = f(2x+1)+1,

(ii)
$$\frac{y}{3} = -f(|x|),$$

labelling each graph clearly, showing the asymptotes (if any) and the coordinates of the points corresponding to A and B.

4 The diagram shows the graph of y = f(x). The curve crosses the x-axis at the origin *O* and the point A(2,0), and has a maximum point at B(1,2). Sketch, on separate diagrams, the graphs of y = B(1,2)

indicating in each case the coordinates of the axial intercepts and turning points, and the equation of the asymptotes where applicable.

[1]

5 2016/Specimen Paper/I/2

The curve *C* with equation $y = x^3$ is transformed onto the curve with equation y = f(x) by a translation of 2 units in the negative *x*-direction, followed by a stretch of factor $\frac{1}{2}$ parallel to the *y*-axis, followed by a translation of 1 unit in the positive *y*-direction.

- (i) Write down the equation of the new curve.
- (ii) Sketch *C* and the curve with equation y = f(x) on the same diagram, stating the exact values of the coordinates of the points where y = f(x) crosses the *x* and *y*-axes. Find the *x*-coordinate(s) of the point(s) where the two curves intersect, giving your answer(s) correct to 3 decimal places. [4]

- 6 A curve y = f(x) undergoes, in succession, the following transformations.
 - *A*: A translation of magnitude 2 units in the positive *x*-direction.
 - B: A stretching parallel to the x-axis by a factor $\frac{1}{2}$.
 - *C*: A reflection in the *y*-axis.
 - *D*: A translation of magnitude 1 unit in the positive *y*-direction.

The resulting curve has equation $y = 1 + e^{2(x+1)}$. Determine the equation of the curve before the four transformations were effected.

if you are able to get the resulting curve

7 2013/SRJC Prelim/I/3 (Modified)

The graph of the function y = f(x) where $f(x) = \frac{(x-a)(x+b)}{cx+d}$, $x \neq -\frac{d}{c}$, $a, b, c, d \in \mathbb{R}^+$, is shown below. The asymptotes are y = x + k and x = -2 where k is a constant. The

is shown below. The asymptotes are y = x + k and x = -2 where k is a constant. The curve cuts the x-axis at -3 and 2 and the y-axis at -3.

- (i) Find the values of a, b, c, d and k. [5]
- (ii) Sketch on a separate diagram, the graph of $y = \frac{1}{f(x)}$

Your sketch should clearly show any axial intercepts and equations of asymptotes.

7	Suggested Solutions		
(i)	As the x intercepts are $x = -3$ and $x = 2$, therefore $a = 2, b = 3$.		
	Since oblique asymptote is $y = x + k$, by comparing coefficients of largest powers of x		
	in numerator and denominator, $c = 1$. Since vertical asymptote is $x = -2$, $d = 2$.		
	$y = f(x) - \frac{(x-2)(x+3)}{x-2} - \frac{x^2 + x - 6}{x-2}$		
	y = 1(x) = x + 2 $x + 2$		
	Method 1 (Long Division)		
	$f(x) = \frac{x^2 + x - 6}{x + 2} = x - 1 + \frac{-4}{(x + 2)}$		
	Therefore, $k = -1$.		
	Method 2 (Combine into single fraction)		
	$f(x) = x + k + \frac{A}{x + k} = \frac{(x+k)(x+2) + A}{(x+2) + A} = \frac{x^2 + (k+2)x + 2k + A}{(k+2)(x+2) + k}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	By comparing coefficient of x in the numerator, $k = -1$.		

[3]

8 2015(9740)/I/5

(i) State a sequence of transformations that will transform the curve with equation $y = x^2$ on to the curve with equation $y = \frac{1}{4}(x-3)^2$. [3]

A curve has equation y = f(x), where

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1, \\ \frac{1}{4}(x-3)^2 & \text{for } 1 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

- (ii) Sketch the curve for $-1 \le x \le 4$.
- (iii) On a separate diagram, sketch the curve with equation $y = 1 + f\left(\frac{1}{2}x\right)$, for $-1 \le x \le 4$. [2]

Level 3

9 A curve *C* has equation $x^2 + 6x + 5 = \frac{(y-5)^2}{-4}$. Describe fully a sequence of three transformations which would transform *C* on to the curve $x^2 + y^2 = 4^2$.

9 Solution

$$(x+3)^{2}-4 = \frac{(y-5)^{2}}{-4} \implies (x+3)^{2} + \frac{(y-5)^{2}}{2^{2}} = 2^{2} \implies 2^{2}(x+3)^{2} + (y-5)^{2} = 4^{2}$$

$$\frac{(x+3)^{2}}{\left(\frac{1}{2}\right)^{2}} + (y-5)^{2} = 4^{2}$$

$$\downarrow \text{ Replace } y \text{ by } y + 5 \implies (1) \text{ Translation of 5 units in the negative } y\text{-direction.}$$

$$\frac{(x+3)^{2}}{\left(\frac{1}{2}\right)^{2}} + y^{2} = 4^{2}$$

$$\downarrow \text{ Replace } x \text{ by } x - 3 \implies (2) \text{ Translation of 3 units in the positive } x\text{-direction.}$$

$$\frac{x^{2}}{\left(\frac{1}{2}\right)^{2}} + y^{2} = 4^{2}$$

$$\downarrow \text{ Replace } x \text{ by } \frac{x}{2} \implies (3) \text{ Stretch of factor 2 parallel to the } x\text{-axis.}$$

$$x^{2} + y^{2} = 4^{2}$$
Alternative

(1) Translate by 5 units in the negative *y*-direction.

(2) Stretch of factor 2 parallel to the *x*-axis.

(3) Translate by 6 units in the positive *x*-direction.

10 2016(9740)/I/3

The curve $y = x^4$ is transformed onto the curve with equation y = f(x). The turning point on $y = x^4$ corresponds to the point with coordinates (a,b) on y = f(x). The curve y = f(x) also passes through the point with coordinates (0,c). Given that f(x) has the form $k(x-l)^4 + m$ and that a, b and c are positive constants with c > b, express k, l and m in terms of a, b and c. [2]

By sketching the curve y = f(x), or otherwise, sketch the curve $y = \frac{1}{f(x)}$. State, in terms

of *a*, *b* and *c*, the coordinates of any points where $y = \frac{1}{f(x)}$ crosses the axes and of any turning points. [4]

10	Suggested Solutions		
	Method 1:	Method 2:	
	$y = f(x) = k(x-l)^4 + m$	$y = f(x) = k(x-l)^4 + m$	
	Observe that the turning point is (l,m)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4k\left(x-l\right)^3$	
	And given that (a,b) is a turning point	$\frac{dy}{dt} = 0 \implies x = l$	
	$\therefore l = a, m = b$	$dx \\ \therefore l = a$	
	Sub $(0,c)$ into $y = f(x)$:	Sub (a,b) into $y = f(x)$:	
	$k\left(0-a\right)^4 + b = c$	$b = k\left(a-a\right)^4 + m$	
	$\therefore k = \frac{c - b}{a^4}$	$\therefore m = b$	
	(0,c) (a,b) (a,b)	f(x) Note that the curve has a minimum point (since $c > b$) which must lie in the first quadrant as $a, b > 0$.	
	y = 0 $y = 0$	$y = \frac{1}{f(x)}$	