CHIJ ST. NICHOLAS GIRLS' SCHOOL Sec 2 Science 2024[modified for 2025 9 july 2024]

Diversity 1 : Exploring Diversity of Matter by their Physical properties

D 1.1 Ionic Bonding

Students should be able to :

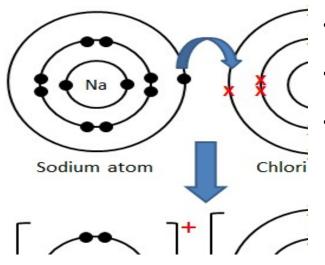
- (a) Describe the formation of ionic bonds between metals and non-metals eg in NaC*I* and MgC*I*₂, using 'dot and cross' diagrams to illustrate
- (b) State that ionic materials contain a giant lattice in which the ions are held by electrostatic attraction, e.g. NaCl (diagrams of ionic lattices will not be required)
- (c) Deduce the formulae of other ionic compounds from diagrams of their lattice structures, limited to binary compounds
- (d) Relate the physical properties (including electrical property of ionic compounds to their lattice structure)
- (e) Explain how to derive the chemical formula from the charges of the ions present

Students should be able to :

- (a) explain the choice of the main classes of materials (metals, ceramics, glass, plastics, fibres) in the production of common household items, in terms of their properties, e.g. density ,strength, hardness, flexibility, electrical conductivity, thermal conductivity, boiling/melting point
- (b) use data on the properties of different materials to evaluate their uses
- (c) relate the properties of substances to type of bonding and structure :

Ionic Bond

What are ions? : <u>http://youtu.be/900dXBWgx3Y</u>


- 1. lons are formed when atoms **loses** outer/valence shell electrons or **gain** electrons into the outer/valence shell.
- 2. The charge on the ion is either **positive** or **negative**.
- 3. If an atom loses electrons, the ion formed is **positively** charged because the number of **protons** present is more than the number of **electrons** left.
- If an atom gains electrons, the ion formed is negatively charged because the number of electron is more than the number of protons.

Ionic compound

An ionic compound is formed when a metal reacts with a non-metal. The metal atom loses electrons to the non-metal aroms. This results in forming positive metal ions and negative non-metal ions. These oppositely charged ions are attracted together to form ionic compound.

http://youtu.be/zpaHPXVR8WU

Using the reaction between sodium and chlorine as an example:

- Metallic atoms **lose** their valence electrons to non-metallic atoms.
- Metallic atoms become positive ions (cations).
- Non-metallic atoms become negative ions (anions).

- Cations and anions are attracted to one another through strong electrostatic forces of attraction. This constitutes an ionic bond.
- The compound formed is called **sodium chloride**.

Definition of ionic bond

An ionic bond is the strong electrostatic forces of attraction between oppositely charged ions.

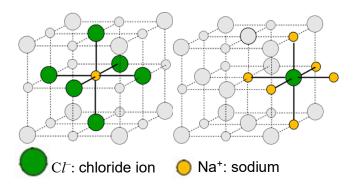
More practice

Draw the 'dot and cross' diagrams to show the electronic structures of ionic compounds

formed by the following elements. Show all the electrons.

(answers on the power point)

a) Lithium and fluorine	b) Beryllium and oxygen
,	
Chemical name:	Chemical name:
Chemical formula:	Chemical formula:
c) Potassium and oxygen	d) Aluminium and sulfur
Chemical name:	Chemical name:
Chemical formula:	Chemical formula:
e) Sodium and oxygen	f) Aluminium and nitrogen
,	
Chemical name:	Chemical name:
Chemical formula:	Chemical formula:


For the following two compounds, **draw only the valence electrons**, given that bromine (Br) is in Group VII of the Periodic Table, while rubidium (Rb) is in Group I.

g) Calcium and bromine	h) Rubidium and chlorine
g) calciant and promite	
Chemical name:	Chemical name:
Chemical formula:	Chemical formula:

Physical properties of Ionic Compounds

https://www.youtube.com/watch?v=NfNIn4R8tg4

In the solid state, an ionic compound has a regular arrangement of alternating positive and negative ions. This regular arrangement is known as a **giant ionic lattice**.

Using sodium chloride as an example,

- The ions are arranged in a giant ionic structure in a regular repeating manner.
- Each sodium ion is surrounded by 6 chloride ions, and each chloride ion is in turn surrounded by 6 sodium ions.
- Thus the ratio of sodium ions to chloride ions is 1:1.
- Ionic compounds which have ions of equal and opposite charge will have the same structure as sodium chloride, NaCl, MgO, CaO, KFand etc but not MgCl₂, Na₂O and etc

	pounds with Giant Ionic Structure					
Property	Explanation					
	• They have ionic bonding and					
	giant ionic structure.					
Melting point and boiling point	• A large amount of energy is					
• High and usually exist as solids at room	needed to overcome the strong					
temperature and pressure	electrostatic forces of attraction					
e.g. NaC/ (m.p 801 °C, b.p. 1465 °C)	between the oppositely-charged					
	ions in the giant ionic lattice					
	structure.					
Electrical Conductivity	They have a gight ingin structure					
	They have a giant ionic structure.					
https://www.youtube.com/watch?v=NfNIn4R8tg4	• In the solid state, the oppositely					
	charged ions can only vibrate					
Unable to conduct electricity in the solid	about their fixed positions due to					
state but can do so in the molten and	the strong electrostatic forces of					
aqueous states.	attraction. Therefore, the ions are					
	not mobile to conduct electricity.					
	 In the aqueous/molten state, this 					
	• In the aqueous/molen state, this attractive weakened. Hence, the					
	ions become mobile and are able					
	to conduct electricity.					
	(FYI)					
	water molecules can separate the					
Solubility	positive ions from the negative ions					
Mostly soluble in water	and surround them, forming new					
	interactions with the ions.					

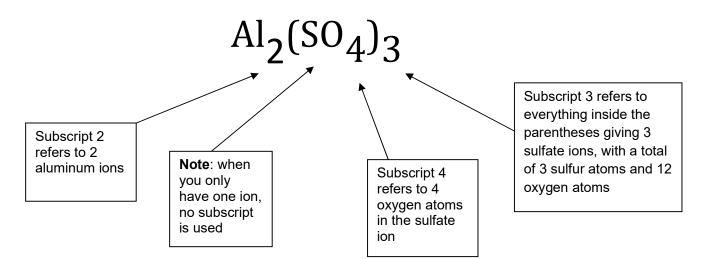
Factor affecting the strength of ionic bonds

Substances	Melting point/°C			
Sodium chloride	801			
Magnesium oxide	2852			

Based on the information given above, what affects the strength of ionic bonds?

The higher charge of the ions, the stronger its ionic bonds (electrostatic forces of attraction)

Explain why MgO has higher melting point than NaCl.


 Mg^{2+} has higher ionic charge than Na⁺. O²⁻ has higher ionic charge than Cl⁻. More energy is needed to overcome the stronger electrostatic forces of attraction between oppositely charged ions (Mg²⁺ and O²⁻).

Chemical formula of ionic compounds

The formula of an ionic compound is derived by balancing the charges on the positive ions with those on the negative ions.

All the positive charges must equal all the negative charges in an ionic compound.

For instance, aluminum sulfate consists of aluminum cations and sulfate anions

(A) For simple ions

View the following video :

Writing Ionic Formulas: Introduction (<u>https://www.youtube.com/watch?v=URc75hoKGLY</u>)

Practice

Write down the chemical formulas of each of the following compounds :

	Name of compound			Chemical formula of compound	
1	sodium fluoride	Na⁺	F-	NaF	
2	calcium chloride	Ca ²⁺	CI	CaCl₂	
3	aluminium fluoride	Al ³⁺	F [.]	AIF ₃	
4	potassium oxide	K⁺	O ²⁻	K₂O	
5	magnesium sulfide	Mg ²⁺	S ²⁻	MgS	
6	iron(III) oxide	Fe ³⁺	O ²⁻	Fe ₂ O ₃	

(B) For polyatomic ions

A **polyatomic ion**, is a charged particle which is made up of two or more atoms covalently bonded. It can be considered to be acting as a single unit.

There are many polyatomic ions. Here are the more common ones:

Name	ammonium hydroxide		nitrate	carbonate	sulfate	
Formula	NH4 ⁺	OH -	NO 3 ⁻	CO ₃ ²⁻	SO 4 ²⁻	

Rules for Naming Ionic Compounds and Writing Formulae

Rule	Example
The metal is written first, followed by the non-metal.	Sodium chloride (NaCl) Magnesium chloride (MgCl ₂)
The positive ion is written first, followed by the negative ion.	Copper (II) sulfate (CuSO ₄) Ammonium chloride (NH ₄ Cl)
The number of ions is written as a subscript.	Al ₂ O ₃ (not Al2O3) MgCl ₂ (not MgCl2 or 2MgCl)

Rule	Example		
It is not necessary to write down the subscript "1" in formulae.	NaCl (not Na ₁ Cl ₁) MgCl ₂ (not Mg ₁ Cl ₂)		
Metals that form more than one ion, such as iron, add a Roman numeral to the name to indicate the charge	Fe ²⁺ is called iron (II) Fe ³⁺ is called iron (III)		
Special ions are treated NH_4^+ , OH^- , $CO_3^{2^-}$,	-		

More practice

	Name of compound	ompound Formula of Formula of positive ion negative ion		Chemical formula of compound
1	sodium hydroxide	Na⁺	OH [.]	NaOH
2	magnesium hydroxide	Mg ²⁺	OH [.]	Mg(OH) ₂
3	aluminium nitrate	Al ³⁺	NO ₃ -	AI(NO ₃) ₃
4	potassium sulfate	K⁺	SO 4 ²⁻	K ₂ SO ₄
5	calcium carbonate	Ca ²⁼	CO ₃ ²⁻	CaCO ₃
6	iron(III) sulfate	Fe³⁺	SO 4 ²⁻	Fe ₂ (SO ₄) ₃

Write down the chemical formulas of each of the following compounds:

		Cl⁻	OH-	NO ₃ -	O ²⁻	SO42-	CO32-	N ³
		chloride	hydroxide	nitrate	oxide	sulfate	carbonate	nitride
Na⁺	sodium	NaCl	NaOH	NaNO ₃	Na ₂ O	Na₂SO₄	Na ₂ CO ₃	Na₃N
NH₄⁺	ammonium	NH₄CI	NH₄OH	NH ₄ NO ₃	NA	(NH ₄) ₂ SO ₄	(NH ₄) ₂ CO ₃	(NH ₄) ₃ N
Ag⁺	silver	AgCl	AgOH	AgNO ₃	Ag ₂ O	Ag ₂ SO ₄	Ag ₂ CO ₃	Ag₃N
Mg ²⁺	magnesium	MgCl ₂	Mg(OH) ₂	Mg(NO ₃) ₂	MgO	MgSO₄	MgCO₃	Mg ₃ N ₂
Zn ²⁺	zinc	ZnCl ₂	Zn(OH) ₂	Zn(NO ₃) ₂	ZnO	ZnSO ₄	ZnCO₃	Zn ₃ N ₂
Fe ²⁺	iron(II)	FeCl ₂	Fe(OH) ₂	Fe(NO ₃) ₂	FeO	FeSO₄	FeCO ₃	Fe ₃ N ₂
Pb ²⁺	lead(II)	PbCl ₂	Pb(OH) ₂	Pb(NO ₃) ₂	PbO	PbSO ₄	PbCO ₃	Pb ₃ N ₂
Al ³⁺	aluminium	AICI ₃	AI(OH) ₃	AI(NO ₃) ₃	Al ₂ O ₃	Al ₂ (SO ₄) ₃	Al ₂ (CO ₃) ₃	AIN
Fe ³⁺	iron(III)	FeCl₃	Fe(OH)₃	Fe(NO ₃) ₃	Fe ₂ O ₃	Fe ₂ (SO ₄) ₃	Fe ₂ (CO ₃) ₃	FeN
Cr³⁺	Chromium(III)	CrCl ₃	Cr(OH) ₃	Cr(NO ₃) ₃	Cr ₂ O ₃	Cr ₂ (SO ₄) ₃	Cr ₂ (CO ₃) ₃	CrN

Complete the table below on the chemical formulae of the common ionic compounds:

To practise writing formula at your own time:

http://apps.apple.com/sg/app/write-formula/id934269976