2024 JC1 H2 MATH

1	Solution [5] Solving system of linear equations
	$y = \frac{a}{x^2} + \frac{b}{x} + c$
	Substitute $\left(-2, -\frac{11}{2}\right)$
	$\Rightarrow \frac{a}{4} - \frac{b}{2} + c = -\frac{11}{2}$
	$\Rightarrow a - 2b + 4c = -22(1)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2a}{x^3} - \frac{b}{x^2}$
	When $x = 1$, $\frac{dy}{dx} = 0$
	$\Rightarrow -2a - b = 0$ $\Rightarrow 2a + b = 0(2)$
	When $x = 2$, $\frac{dy}{dx} = -\frac{3}{2}$
	$\Rightarrow -\frac{a}{4} - \frac{b}{4} = -\frac{3}{2}$
	$\Rightarrow a+b=6(3)$
	Solving (1), (2) and (3), from GC, $a = -6$, $b = 12$, $c = 2$
	Equation of C is $y = -\frac{6}{x^2} + \frac{12}{x} + 2$

3	Solution [5] Solving inequalities
(i)	$\frac{9}{x^2-5} > -1$
	$\frac{9}{x^2-5}+1>0$
	$\frac{x^2+4}{x^2-5} > 0$
	Since $x^2 + 4 > 0$ as $x^2 \ge 0$,
	hence $x^2 - 5 > 0$
	$\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)>0$
	_+ _ +
	$\frac{+ - +}{-\sqrt{5} \sqrt{5}}$
	$x < -\sqrt{5}$ or $x > \sqrt{5}$
(b)	Replacing x with e^x ,
	$\frac{9}{e^{2x}-5} > -1$
	e 3
	Using result in (i),
	$e^x < -\sqrt{5}$ or $e^x > \sqrt{5}$
	(Reject as $e^x > 0$ for all real x) $x > \ln(\sqrt{5})$
	$x > \frac{1}{2} \ln 5$
	$\frac{x}{2}$ $\frac{1}{2}$
	Therefore $x > \frac{1}{2} \ln 5$
	Therefore $x > \frac{1}{2} \ln 5$.

4	Solution [6] Sigma Notation	
(a)	$\sum_{r=n}^{2n} (r+1)^3 = \sum_{k=n+1}^{2n+1} k^3$	
	$=\sum_{k=1}^{2n+1}k^3 - \sum_{k=1}^nk^3$	
	$= \frac{1}{4} (2n+1)^2 (2n+2)^2 - \frac{1}{4} n^2 (n+1)^2$	
	$= (n+1)^{2} (2n+1)^{2} - \frac{1}{4} n^{2} (n+1)^{2}$	
	$= \frac{1}{4}(n+1)^{2} \left[4(2n+1)^{2} - n^{2}\right]$	
	Therefore $a=4$	
(b)	$1^{3} + 3^{3} + + (2k - 1)^{3} = \sum_{r=1}^{2k} r^{3} - \sum_{r=1}^{k} (2r)^{3}$	
	$=\sum_{r=1}^{2k}r^3-8\sum_{r=1}^kr^3$	
	$= \frac{1}{4} (2k)^{2} (2k+1)^{2} - \frac{1}{4} (8)(k)^{2} (k+1)^{2}$	
	$= (k)^{2} (2k+1)^{2} - 2(k)^{2} (k+1)^{2}$	
	$=\left(k\right)^{2}\left(2k^{2}-1\right)$	
	$=2k^4-k^2$	

5	Solution [8] Graphing techniques
(i)	Since C has asymptote $x=4 \Rightarrow b=-4$
	Method 1 $y = 2x - 3 + \frac{k}{x - 4} = \frac{(2x - 3)(x - 4) + k}{x - 4}$, where k is a constant By comparing $y = \frac{2x^2 + ax + 20}{x - 4} = \frac{2x^2 - 11x + (k + 12)}{x - 4}$, we obtain $a = -11$. Method 2 By long division, $y = \frac{2x^2 + ax + 20}{x - 4} = 2x + a + 8 + \frac{4a + 52}{x - 4}$
(1.)	By comparing $y = 2x - 3 = 2x + a + 8$, we obtain $a = -11$.
(b) (i)	When $a = -11$, $b = -4$, $y = \frac{2x^2 - 11x + 20}{x - 4}$ $y = \frac{2x^2 - 11x + 20}{x - 4}$ x $(2x^3)$ $y = 3x^3$
(iii)	$2x^2 + ax + 20 = -(x+b)^3$
	$\frac{2x^2 + ax + 20}{x + b} = -(x + b)^2 (1)$

6	Solution [8] Integration Techniques
(a)	$\int \frac{x^3}{1+x^4} dx = \frac{1}{4} \int \frac{4x^3}{1+x^4} dx$
(i)	$\int \frac{1}{1+x^4} dx = \frac{1}{4} \int \frac{1}{1+x^4} dx$
	$=\frac{1}{4}\ln\left(1+x^4\right)+c$
(a) (ii)	$\int \frac{x}{1+x^4} \mathrm{d}x = \frac{1}{2} \int \frac{2x}{1+\left(x^2\right)^2} \mathrm{d}x$
	$= \frac{1}{2} \tan^{-1} x^2 + c$
(b)	$\int x \tan^{-1} x^2 dx$
	$= \left(\tan^{-1} x^{2}\right) \left(\frac{1}{2} x^{2}\right) - \int \left(\frac{1}{2} x^{2}\right) \left(\frac{2x}{1+x^{4}}\right) dx$
	$= \left(\frac{1}{2}x^2\right) \tan^{-1} x^2 - \int \frac{x^3}{1+x^4} dx$
	$= \left(\frac{1}{2}x^2\right) \tan^{-1} x^2 - \frac{1}{4} \int \frac{4x^3}{1+x^4} dx$
	$= \left(\frac{1}{2}x^2\right) \tan^{-1}x^2 - \frac{1}{4}\ln\left(1 + x^4\right) + c$

7	Solution [9] Functions
(a)	Let $y = 6x - x^2 - 2$, $x \le -1$
	$y = -x^2 + 6x - 2$
	$y = -\left(x^2 - 6x + 2\right)$
	$y = -[(x-3)^2 - 9 + 2]$
	$y = 7 - \left(x - 3\right)^2$
	$\left(x-3\right)^2 = 7 - y$
	$x - 3 = \pm \sqrt{7 - y}$
	$x = 3 \pm \sqrt{7 - y}$
	$x = 3 - \sqrt{7 - y}$ (reject $x = 3 + \sqrt{7 - y}$ as $x \le -1$)
	$D_{f^{-1}} = R_f = (-\infty, -9]$
	$f^{-1}: x \mapsto 3 - \sqrt{7 - x}, x \in \square, x \le -9$
(b) (i)	$g^{2}(x) = \frac{a\left(\frac{ax}{x-a}\right)}{\left(\frac{ax}{x-a}\right) - a}$
	$=\frac{\frac{a^2x}{x-a}}{\frac{ax-a(x-a)}{ax}}$
	$x-a$ $= \frac{a^2x}{ax - ax + a^2}$ $= \frac{a^2x}{a^2}$
	a^{-} $= x$
(ii)	$g^2(x) = x$
	$g^{-1} \left[g^2(x) \right] = g^{-1}(x)$
	$g^{-1}[g(g(x))] = g^{-1}(x)$
	$g(x) = g^{-1}(x) \text{ (Shown)}$
(iii)	For fg^{-1} to exist, $R_{g^{-1}} \subseteq D_f$.
	Since $R_{g^{-1}} = D_g = (-\infty, a)$ and $D_f = (-\infty, -1]$,

∴ <i>a</i> ≤ −1	
Alternatively, from (ii), since $g(x) = g^{-1}(x)$,	
Since $R_{g^{-1}} = R_g = (-\infty, a)$ and $D_f = (-\infty, -1]$	
∴ <i>a</i> ≤ −1	

8	Solution [10] Integration
(a)	$y \uparrow$ $y = 1$
	(1, 0)
	(1, 0)

(1, 0)

$$y = \frac{1}{x} \sqrt{x^2 - 1} = \frac{\left(x^2 - 1\right)^{\frac{1}{2}}}{x}$$

$$\frac{dy}{dx} = \frac{\left(x\right)\left(\frac{1}{2}\right)\left(x^2 - 1\right)^{\frac{-1}{2}}\left(2x\right) - \left(x^2 - 1\right)^{\frac{1}{2}}}{x^2} = \frac{1}{x^2\sqrt{x^2 - 1}}$$

When
$$x = \sqrt{2}$$
,

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=\sqrt{2}} = \frac{1}{2}$$
 (This value can be obtained via GC)

Equation of normal:

$$y - \frac{1}{\sqrt{2}} = (-2)\left(x - \sqrt{2}\right)$$
$$y = -2x + \frac{5}{\sqrt{2}}$$

Alternatively

$$y = \frac{1}{x} \sqrt{x^2 - 1} = \sqrt{\frac{x^2 - 1}{x^2}} = \sqrt{1 - \frac{1}{x^2}}$$

$$dy = (1)(-1)^{\frac{-1}{2}}(2)$$

$$\frac{dy}{dx} = \left(\frac{1}{2}\right) \left(1 - \frac{1}{x^2}\right)^{\frac{-1}{2}} \left(\frac{2}{x^3}\right)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{1}{2}\right) \left(\frac{x^2}{x^2 - 1}\right)^{\frac{1}{2}} \left(\frac{2}{x^3}\right)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2 \sqrt{x^2 - 1}}$$

9	Solution [10] AP, GP contextual question
(a)	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
	$= \frac{77}{2} \Big[2 (1250) + (77 - 1) (12) \Big]$
	=131 362
	The theoretical maximum amount of waste that the landfill can contain is 131 362 tonnes.
(b) (i)	$S_n = \frac{a(1-r^n)}{1-r}$
	$=\frac{1500(1-0.98^n)}{1-0.98}$
	1-0.98
	Method 1
	$\frac{1500(1-0.98^n)}{1-0.98} > 50\ 000$
	$1500(1-0.98^n) > 1000$
	$1 - 0.98^n > \frac{2}{3}$
	$0.98^n < \frac{1}{3}$
	$n > \frac{\ln\left(\frac{1}{3}\right)}{\ln(0.98)}$
	n > 54.4 (3 s.f.)
	M-d- 12
	$\frac{\text{Method 2}}{1500(1-0.98^n)}$
	$\frac{1-0.98}{1-0.98} > 50\ 000$
	By GC,
	$\frac{1500(1-0.98^n)}{1-0.98}$
	54 49 808 < 50 000
	55 50 311 > 50 000
	Thus least $n=55$ and the least number of years is 55.

(b) Method 1

(ii)
$$S_{\infty} = \frac{a}{1-r} = \frac{1500}{1-0.98} = 75\,000$$

Method 2

As
$$n \to \infty$$
, $\frac{1500(1-0.98^n)}{1-0.98} \to \frac{1500}{1-0.98} = 75\ 000$

Yes, the plant can cope with the total amount of waste of 75 000 tonnes to be incinerated.

(c) In the *n*th year from 2014, amount of waste deposited in landfill is 1250 + (n-1)(12).

In the *n*th year from 2014, amount of waste incinerated is $1500(0.98)^{n-1}$.

$$1250 + (n-1)(12) > 1500(0.98)^{n-1}$$
$$1250 + (n-1)(12) - 1500(0.98)^{n-1} > 0$$
By GC, $n > 7.17$

By GC.

2	
n	$1250 + (n-1)(12) - 1500(0.98)^{n-1}$
7	-6.764 < 0
8	31.812 > 0

Thus n = 8 and it is the 8^{th} year after the year 2014 that the amount of waste deposited in the landfill first exceeds the amount of waste incenerated in the incineration plant.

10	Solution [10] Maclaurin series
(a)	$y = \ln(2 + \sin 2x)$
(i)	$e^y = 2 + \sin 2x$
	$e = z + \sin zx$
	Disc.
	Differentiate w.r.t. x:
	$e^{y} \frac{dy}{dx} = 2\cos 2x (1)$
	$\mathrm{d}x$
	Differentiate w.r.t. x:
	$e^{y} \frac{d^{2} y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} = -4\sin 2x$
	$e^{y} \left(\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx} \right)^{2} \right) + 4\sin 2x = 0 (2)$
	Alternative method
	$y = \ln\left(2 + \sin 2x\right)$
	Differentiate w.r.t. x:
	$dy = 2\cos 2x$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2x}{2 + \sin 2x}$
	Differentiate w.r.t. x:
	$\frac{d^2y}{dx^2} = \frac{-4\sin 2x(2+\sin 2x) - 2\cos 2x(2\cos 2x)}{(2+\sin 2x)^2}$
	$=\frac{-4\sin 2x}{2+\sin 2x} - \left(\frac{2\cos 2x}{2+\sin 2x}\right)^2$
	$2+\sin 2x (2+\sin 2x)$
	$=\frac{-4\sin 2x}{e^{y}}-\left(\frac{dy}{dx}\right)^{2}$
	$-\frac{1}{e^y} - \frac{1}{dx}$
	$e^{y} \frac{d^{2} y}{dx^{2}} = -4\sin 2x - e^{y} \left(\frac{dy}{dx}\right)^{2}$
	$e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} + 4\sin 2x = 0$
	$e^{y} \left(\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx} \right)^{2} \right) + 4\sin 2x = 0$

(a)	Differentiate implicitly w.r.t. x:	
(ii)	$e^{y} \frac{d^{3} y}{dx^{3}} + e^{y} \left(\frac{dy}{dx}\right) \left(\frac{d^{2} y}{dx^{2}}\right) + 2e^{y} \left(\frac{dy}{dx}\right) \left(\frac{d^{2} y}{dx^{2}}\right) + e^{y} \left(\frac{dy}{dx}\right)^{3} + 8\cos 2x = 0$	
	When $x = 0$, $y = \ln 2$, $\frac{dy}{dx} = 1$, $\frac{d^2y}{dx^2} = -1$, $\frac{d^3y}{dx^3} = -2$,	
	$y = \ln 2 + x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3 + \dots$	
	$y \approx \ln 2 + x - \frac{1}{2}x^2 - \frac{1}{3}x^3$ (up to x^3 term)	
(a) (iii)	$\ln\left(2+\sin 2x\right) = \ln 2 + x - \frac{1}{2}x^2 - \frac{1}{3}x^3 + \dots$	
	Differentiate w.r.t. x:	
	$\frac{2\cos 2x}{2+\sin 2x} = 1 - x - x^2 \text{(up to } x^2 \text{ term)}$	
(b)	$\frac{2\cos 2x}{2 + \sin 2x} \approx 2\left(1 - \frac{(2x)^2}{2}\right)(2 + 2x)^{-1}$	
	$\approx 2(1-2x^2)(2)^{-1}(1+x)^{-1}$	
	$\approx \left(1 - 2x^2\right) \left(1 - x + \frac{(-1)(-2)}{2!}(-x)^2\right)$	
	$=(1-2x^2)(1-x+x^2)$	
	$=1-x+x^2-2x^2+$	
	$=1-x-x^2 \qquad \text{(up to } x^2 \text{ term)}$	

11	Solution [12] Tangent & Rate of change	
(a)	C: $x = \frac{3}{\theta} - \theta$, $y = \frac{2}{\theta} + 2$, where $\theta > 0$	
(b)	$x = \frac{3}{\theta} - \theta$ $\frac{dx}{d\theta} = \frac{-3}{\theta^2} - 1 = \frac{-3 - \theta^2}{\theta^2}$ $\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt} = -\frac{\theta^2}{3 + \theta^2} \cdot 10$ At $(2,4)$, $\frac{3}{\theta} - \theta = 2$ and $\frac{2}{\theta} + 2 = 4$ $\theta^2 + 2\theta - 3 = 0$ $\theta = -3 \text{ or } 1 \text{ and } \theta = 1$ $\therefore \theta = 1$ $\frac{d\theta}{dt} = -\frac{(1)^2}{3 + (1)^2} \cdot 10 = -\frac{5}{2} \text{ units s}^{-1}$	
(c) (i)	$y = \frac{2}{\theta} + 2$ $\frac{dy}{d\theta} = -\frac{2}{\theta^2}$ $\frac{dy}{dx} = \frac{-\frac{2}{\theta^2}}{\frac{-3 - \theta^2}{\theta^2}}$ $= \frac{-2}{\theta^2} \times \frac{\theta^2}{-3 - \theta^2}$ $= \frac{2}{3 + \theta^2}$	

	When $\theta = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{2}$, $x = 2$ and $y = 4$. $y - 4 = \frac{1}{2}(x - 2)$ $y = \frac{1}{2}x + 3$
	The tangent at point P is $y = \frac{1}{2}x + 3$.
(c) (ii)	$y-4=\frac{1}{2}(x-2)$ (1)
	Substitute $x = \frac{3}{\theta} - \theta$, $y = \frac{2}{\theta} + 2$ into (1):
	$\frac{2}{\theta} + 2 - 4 = \frac{1}{2} \left(\frac{3}{\theta} - \theta - 2 \right)$
	$\frac{2-2\theta}{\theta} = \frac{3-\theta^2 - 2\theta}{2\theta}$
	$4-4\theta=3-\theta^2-2\theta$
	$\theta^2 - 2\theta + 1 = 0$
	$\left(\theta-1\right)^2=0$
	$\theta = 1$ which corresponds to P .
	Alternatively, $\theta^2 - 2\theta + 1 = 0$
	$b^2 - 4ac = (-2)^2 - 4(1)(1) = 0$
	This implies that the equation $\theta^2 - 2\theta + 1 = 0$ has two equal and real roots, which is $\theta = 1$.
	Hence the tangent will not meet the curve again.
(c) (iii)	Tangent to C at point P , gradient is $\frac{1}{2}$
	Tangent to C at point M, gradient is
	$\frac{2}{3+\theta^2} = \frac{2}{3+(2)^2}$
	$=\frac{2}{7}$
	,
	Therefore, Normal to C at point M has gradient $-\frac{7}{2}$.

$$x = \theta - \frac{3}{\theta}$$
, $y = \frac{2}{\theta} + 2$, where $\theta > 0$

After by a stretch with scale factor 2 in the x-direction, the equation of becomes

$$\frac{x}{2} = \theta - \frac{3}{\theta}$$
, $y = \frac{2}{\theta} + 2$, where $\theta > 0$

$$D: x = 2\theta - \frac{6}{\theta}, \quad y = \frac{2}{\theta} + 2, \quad \text{where } \theta > 0$$

12	Solution [12] Differential Equations
(a)	$\frac{\mathrm{d}v}{\mathrm{d}z} = c$
(i)	$\frac{1}{\mathrm{d}t} = c$
(a)	dv
(ii)	$\frac{\mathrm{d}t}{\mathrm{d}t} = c$
	$\int dv = \int c dt$
	$v = ct + v_0$
	Given that $c = 10$, $v = 10t + v_0$
	When $t = 0$, $v = 0 \Rightarrow v_0 = 0$
	Therefore $v = 10t$.
	When $v = 30 \Rightarrow 30 = 10t \Rightarrow t = 3$
	It will take 3 seconds for the velocity to reach 30 ms ⁻¹
(b) (i)	$\frac{\mathrm{d}v}{\mathrm{d}t} = 10 - k\sqrt{v}$
(1)	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 0 \text{ when } v = \frac{100}{k^2}$
	$v = \frac{100}{k^2}$ is the constant velocity that the object moves
	eventually.

(b)
(ii)
Let
$$u = \sqrt{v} \Rightarrow v = u^2 \Rightarrow \frac{dv}{du} = 2u$$

$$\frac{dv}{dt} = 10 - k\sqrt{v}$$

$$\frac{dv}{du} \cdot \frac{du}{dt} = 10 - ku$$

$$2u \frac{du}{dt} = 10 - ku - ----(*)$$

$$2 \int \frac{u}{10 - ku} du = \int dt$$

$$2 \int \frac{1}{k} \left(\frac{10}{10 - ku} - 1 \right) du = \int dt \text{ using given result}$$
Note: Given $\frac{ku}{10 - ku} = \frac{10}{10 - ku} - 1 \text{ where } k \text{ is a constant}$

$$\int \frac{10}{10 - ku} - 1 du = \frac{kt}{2} + C$$

$$-\frac{10}{k} \ln|10 - ku| - u = \frac{kt}{2} + C$$

$$u + \frac{10}{k} \ln|10 - ku| = -\frac{kt}{2} - C$$

$$\sqrt{v} + \frac{10}{k} \ln|10 - k\sqrt{v}| = -\frac{kt}{2} - C$$

$$2k\sqrt{v} + 20\ln|10 - k\sqrt{v}| = A - k^2t,$$
where $A = -2Ck$ (Shown)