Graph-theoretic Models

Lesson 5



objectives

* basic of graphs
* how to implement graphs
* shortest path problem

e search
* Breadth-first search (implementation 1)
* Depth-first search (implementation)
e Breadth-first search (implementation 2)



Computational Models

"Programs that help us understand the world and solve
practical problems

sSaw how we could map the informal problem of
choosing what to eat into an optimization problem,
and how we could design a program to solve it

*Now want to look at class of models called graphs



Who owes whom money ?

)



the full graph could look like this.




What's a Graph?

sSet of nodes (vertices)
> Might have properties associated with them

sSet of edges (arcs) each consisting of a pair of nodes
o Undirected (graph)
> Directed (digraph)
> Source (parent) and destination (child) nodes

o Unweighted or weighted




What'’s a Graph?

5Set of nodes (vertices)
o> Might have properties associated with them

sSet of edges (arcs) each consisting of a pair of nodes
> Undirected (graph)
o Directed (digraph)
° Source (parent) and destination (child) nodes

o> Unweighted or weighted




Why Graphs?

"To capture useful relationships among entities
> Rail links between Paris and London

o How the atoms in @ molecule are related to one another
> Ancestral relationships



Trees: An Important Special Case

=A special kind of directed graph in which any pair of
nodes is connected by a single path

o Recall the search trees we used to solve knapsack
problem



Why Graphs Are So Useful

* World is full of networks based on relationship
* Computer networks
* Transportation networks

Financial networks

Sewer or water networks

Political networks

Criminal networks

Social networks

etc



Why Graphs Are So Useful

"\We will see that not only do graphs capture
relationships in connected networks of elements, they
also support inference on those structures

o Finding sequences of links between elements — is there a
path from A to B

> Finding the least expensive path between elements (aka
shortest path problem)

o Partitioning the graph into sets of connected elements
(aka graph partition problem)

> Finding the most efficient way to separate sets of
connected elements (aka the min-cut/max-flow problem)



Graph Theory Saves Me Time
Every Day
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*Model road system using a digraph
> Nodes: points where roads end or meet

o Edges: connections between points
o Each edge has a weight

o Expected time to get from source node to destination node for that edge

o Distance between source and destination nodes
o Average speed of travel between source and destination nodes

=Solve a graph optimization problem
> Shortest weighted path between my hous‘ an;j my office

“.




First Reported Use of Graph Theory

"Bridges of
Konigsberg
(1735)

=Possible to take
a walk that
traverses each of
the 7 bridges
exactly once?




Leonhard Euler’s Model

®Fach island a node

"Each bridge an undirected edge

"Model abstracts away irrelevant details
o Size of islands

o Length of bridges

5|s there a path that contains each edge exactly once?
> No!

https://en.wikipedia.org/wiki/Seven Bridges of K%C3%B6nigsberg



https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Suppose you want to travel to Golden Gate
Bridge from Twin Peaks.

GATE
BRIDG-E




What’s your algorithm to find the path with
the fewest steps?

GATE
BRIDG-E

BUS # 38L




can you get there in one step?

.
-
-,




if no, can you get there in two steps?




if no, can you get there in three steps?




it takes three steps to get there.




summary.

* there are other routes that will get you there
* they are at least three steps long

* the algorithm found that the shortest route to the bridge is three
steps long

* this type of problem is called a shortest-path problem



Breadth — first search

* we have discussed linear search and binary search
* BFS is a different kind of search algorithm: one that runs on graphs

* it can help answer two types of questions:

1. Isthere a path from node A to node B?
2. What is the shortest path from node A to node B?



Suppose you’re the proud owner of a mango
farm. Looking for mango seller to sell yours.

CLARE

* this search is pretty straightforward 808
* first, make a list of friends to search -

Auin .
(0 ALICE \t A
) gob

O cLAIRE
7 AR T




NnOow g0 to each person in the list
and check whether that person
sells mangoes.
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suppose none of your friends are
mango sellers. now you have to
search through your friends’ friends.



ANUT




each time you search for
someone from the list, add all of
their friends to the list.
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* you not only search your friends, but you search their triends too
 the goal is to find one mago seller in your network
* if Alice isn’t a mango seller, you add her friends to the list, too

* that means you’ll eventually search her friends —and then their
friends

 with this algorithm, you’ll search your entire network until you come
across a mango seller. This algorithm is breadth-first search.



relook.

e Question 1: is there a path from node A to node B?
* |s there a mango seller in your network?

* Question 2: what is the shortest path from node A to node B?
* Who is the closest mango seller?



look deeper to question 2.

* can you find the closest mango seller?




look deeper.

* we will prefer a first degree connection to a second degree
connection, and so on

* we shouldn’t search any second degree connections before we make
sure we don’t have a first degree connection who is a mango seller.

* breadth first search already does this!
* the way breadth-first search works, the search radiates out from the starting
point
* notice that this only works if we search people in the same order in which
they are added.

* we need to search people in the order that they are added.
* there’s a data structure for this: it’s called a queue



Queues

e same concept as real life

* suppose you and your friend are queuing up at the bus stop. if you
are before him in the queue, you get on the bus first.

* two operations in queue
* enqueue
* dequeue




o
Queues %g@ @:C\zlslof]

ENGUEVE DEAQUVEUE
ADD AN ITEM TO AAKE AN \TEM OFF
T™HE QUEVE THE QUELE

* if we enqueue two items to the list, the first item we add will be
dequeued before the second item

e we can use this for our search list
* the queue is called a FIFO data structure: First in, First Out.

&z|3|4]
FIFO

(FIRST W , RST odT)




let’s try this simple graph.

FiNISH

* Find the length of @

the shortest path

from start to MAT
finish. START
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CLARE

BoB

Implementing the graph.

Ee; '
you
* use a dictionary \E

* key, value pair

 we want to map a node to all of its neighbours

g @

graph s ACE
graph[*“you”] = ["alice”, "“bob”, “claire”]
N
AULCE
YO | Boe
’ CLAE




a bigger graph.

graph = {}

graph([”“yvou”] = ["alice”, “bob”, "“clalire”]
graph[“bob”] = ["anuj”, “peggy”]
graph[”alice”] = [“peggy”]

graphl[”“claire”] = ["thom”, "“jonny”]
graph[”anuj”] = I[]

graph[“peggy”] = []

graph[”thom”] = []

graph[“jJonny”] = []




directed graph vs undirected graph

* Anuj, Peggy, Thom and Jonny don’t have any neighbors.

* they have arrows pointing to them, but no arrows from them to
someone else

* this is called a directed graph

* an undirected graph doesn’t have any arrows, and both nodes are
each other’s neighbours.
* For eg, both of these graphs are equal

PIRECTED UNDIRECTED
GRAPH GRAPH



implementing the algorithm

ALICE

ok
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Note

When updating queues, |
use the terms enqueue and
dequeue.You'll also encoun-
ter the terms push and pop.
Push is almost always the
same thing as enqueue, and
pop is almost always the
same thing as dequeue.
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implementation.

* make a queue to start. in python, use the double ended queue
(deque) function for this:

from collections 1mport degque
gearch_queue — deq'_;_ei} B TR NPT

~ Creates a hew queue
search_qgueue += graphl[”vyou”] =

- Adds all of your neighbors to the search queue

* remember, graph[“you”] will give you a list of all your neighbours, like
[“alice’, “bob”, “Claire”]. those all get added to the search queue.




implementation.

while search gueue: = Whilethe queueisn’t empty ...
person = search gueue.popleft()=-- ... grabs the first person off the queue
if person is seller(person): = Checks whether the person is a mango seller
print person 4+ * ig a mango seller!”= - Yes, they're a mango seller.
return True
else:
search _gueue += graphlperson] = No, they arent. Add all of this
return False = |f youreached here, no one in person’s friends to the search queue.

the queue was a mango seller.

def person 15 seller(name):
return namel[-1] == ‘m’
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when will it ends.

* the algorithm will keep going until either:
* a mango seller is found, or
* the queue becomes empty, in which case there is no mango seller.



potential problem.

* alice and bob share a friend Peggy. So Peggy will be added to the
gueue twice:

* once when you add Alice’s friends and ra.mp.e eeew!naowl
—

| * again when you ad.d Bob’s friends | G s

* if you check her twice, you're doing GHOM , PEGLY 15 \N
unnecessary, extra work. So once you THE SEARCH QRUELE
search a person, you should mark that TwWICE |
person as searched and not search them '
again

* if you don’t do this, you could end up in an infinite loop



Suppose the mango seller graph looked like

i CeZ

To start, the search queue contains all of your neighbors.

/*
| PEGGY l

Now you check Peggy. She isn't a mango seller, so you add all of her
neighbors to the search queue.

You
A



Next, you check yourself. Youre not a mango seller, so you add all of
your neighbors to the search queue.

-—-’--__-
I PEG&Y l

And so on. This will be an infinite loop, because the search queue will
keep going from you to Peggy.

/’3
gl

N [



final code.

def search(name):

search gueue = dequel)
search gueue += graph[name]
SEATCHEA = [ A This array is how you keep track of
while search gqueue: which people you've searched before.
person = search gqueue.popleft()
if not person in searched: = ... Only search this person if you
if person is cseller(person): haven't already searched them.

print persocon 4+ “ 18 a mango seller!”
return True
else:
search_gueue += graphl[person]
searched.append (person) < Marks this person as searched
return False



Implementing and using graphs

"Building graphs
> Nodes
o Edges
o Stitching together to make graphs

*Using graphs
o Searching for paths between nodes
o Searching for optimal paths between nodes



Class Node

class Node(object):

def __1nit__(self, name):
"""Assumes name 1s a string
self.name = name

def getName(self):
return self.name

def _str__(self):
return self.name



Class Edge

class Edge(object):

def _1nit__(self, src, dest):
"""Assumes src and dest are nodes”
self.src = src
self.dest = dest

def getSource(self):
return self.src

def getDestination(self):
return self.dest

def _str__(sel?):
return self.src.getName() + "'->"\

+ self.dest.getName()



Common Representations of Digraphs

*Digraph is a directed graph
> Edges pass in one direction only

"Adjacency matrix
> Rows: source nodes

> Columns: destination nodes
o Cell[s, d] = 1 if there is an edge from s to d
= 0 otherwise
> Note that in digraph, matrix is not symmetric

sAdjacency list
o Associate with each node a list of destination nodes



Class Digraph, part 1

class Digraph(object): | , _
edges is a dict|mapping each node|to al list|of

1ts

def

def

def

children™"”
25
_init__(self): #ﬁﬁﬁ
self.edges = {} eﬂa{ZN
e\ o)
6?’9 (O
addNode(self, node): $pq;ﬁ6\
if node in self.edges: W&
raise ValueError('Duplicate node') o
else: Eﬁﬁﬁ,ﬂwﬁ
self.edges[node] = [] ieﬂ)t@"qa\ge%\@\eﬁ*
,a(E 25 0O X
addEdge(self, edge): g&§§p§¥f§¢ﬁpﬁ
src = edge.getSource() 3" (o
dest = edge.getDestination() 25

if not (src in self.edges and dest in self.edges):
raise ValueError('Node not in graph')
self.edges[src].append(dest)



Class Digraph, part 2

def childrenOf(self, node):
return self.edges[node]

def hasNode(self, node):
return node in self.edges

def getNode(self, name):
for n in self.edges:
it n.getName() == name:
return n
raise NameError(name)

def _str__(self):
result = "'
for src in self.edges:
for dest in self.edges[src]:
result = result + src.getName() + '->"\

+ dest.getName() + '\n'
return result[:-1]



Class Graph

class Graph(Digraph):
def addEdge(self, edge):
Digraph.addEdge(self, edge)
rev = Edge(edge.getDestination(), edge.getSource())
Digraph.addEdge(self, rev)

®Graph does not have directionality associated with an edge
o Edges allow passage in either direction

"\Why is Graph a subclass of Digraph?

sRemember the substitution rule?

° |f client code works correctly using an instance of the
supertype, it should also work correctly when an instance of

the subtype is substituted for the instance of the supertype

=Any program that works with a Digraph will also work with
a Graph (but not vice versa)



A Classic Graph Optimization Problem

sShortest path fromnlton2
> Shortest sequence of edges such that

° Source node of first edge is n1l
o Destination of last edge is n2

° For edges, el and e2, in the sequence, If e2 follows el in the
sequence, the source of e2 iIs the destination of el

sShortest weighted path
> Minimize the sum of the weights of the edges in the path



Some Shortest Path Problems

"Finding a route from one city to another
=Designhing communication networks

"Finding a path for a molecule through a chemical
labyrinth
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An Example

, Providencev @

Chicago ) "Denver )

Adjacency List
Boston: Providence, New York
Providence: Boston, New York

New York: Chicago - @

Chicago: Denver, Phoenix

Denver: Phoenix, New York
Los Angeles: Boston
Phoenix:



Build the Graph

def buildCityGraph(graphType):

g = graphType()

for name in ('Boston', 'Providence', 'New York', "'Chicago’,
'‘Denver’, 'Phoenix', 'Los Angeles'):
g.addNode (Node(name) )

{eNlelsNlalleNlolielegelie

.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge(Edge(qg.
.addEdge(Edge(g.
.addEdge(Edge(qg.
.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge(Edge(g.
.addEdge(Edge(g.

getNode('Boston'), g.getNode( Providence')))
getNode('Boston'), g.getNode( 'New York')))
getNode( ' Providence'), g.getNode('Boston')))
getNode('Providence'), g.getNode('New York')))
getNode( 'New York'), g.getNode('Chicago')))
getNode( 'Chicago'), g.getNode('Denver')))
getNode('Chicago'), g.getNode(' Phoenix')))
getNode('Denver'), g.getNode(' Phoenix')))
getNode('Denver'), g.getNode(’'New York')))
getNode('Los Angeles'), g.getNode( 'Boston')))



Finding the Shortest Path

5Algorithm 1, depth-first search (DFS)

sSimilar to left-first depth-first method of enumerating
a search tree (Lecture 2)

*Main difference is that graph might have cycles, so we
must keep track of what nodes we have visited to avoid

going in infinite loops

Note that we are using divide-and-conquer: if we can find a path
from a source to an intermediate node, and a path from the
intermediate node to the destination, the combination is a path

from source to destination




Depth First Search

#Start at an initial node

®Consider all the edges that leave that node, in some
order

"Follow the first edge, and check to see if at goal node

'|f not, repeat the process from new node

"Continue until either find goal node, or run out of
options
> When run out of options, backtrack to the previous node
and try the next edge, repeating this process



Depth First Search (DFS)

R\
X\
def DFS(graph, start, end, path, shortest, toPrint = False): _ qﬁﬁﬁtéﬁ
path = path + [start] ﬂaiﬁﬁ {LOQ
if toPrint: ﬁ{%{\% ’ e \D{e
print('Current DFS path:', printPath(path)) {éﬁiédot \gﬁQﬁﬁgL

: __ . . W

if start == end: o D\N\N 0\}%‘(\
return path ¢ 0,@‘0 N

for node §n graph.childrenOf(start): N ﬁﬁx (ﬁe'

if node not 1in path: 6‘3'“9
if shortest == None or 1en(;giﬂlﬂg;l&ﬂ{sﬁﬁFEEgzgjﬂﬂ A\
newPath = DFS(graph, node, end, path, shortest, toPrint)
if newPath != None:
shortest = newPath

elif toPrint:

print("Already visited', node)
return shortest

def shortestPath(graph, start, end, toPrint = False):
return DFS(graph, start, end, [], None, toPrint)



Test DFS

def testSP(source, destination):
g = buildCityGraph(DiGraph)
sp = shortestPath(g, g.getNode(source), g.getNode(destination)
toPrint = True)

1T sp != None:
print('Shortest path from', source, 'to',

destination, 'is', printPath(sp))
else:

print('There 1s no path from', source, 'to', destination)

testSP('Boston’', ’'Chicago')



An Example

v

Boston

Providence > New York

Chicago Denver

Adjacency List
Boston: Providence, New York
Providence: Boston, New York @

New York: Chicago @

Chicago: Denver, Phoenix

Denver: Phoenix, New York
Los Angeles: Boston
Phoenix:



Output (Chicago to Boston)

Providence @

Chicago Denver

Current DFS path: Chicago

Current DFS path: Chicago->Denver @
Current DFS path: Chicago->Denver->Phoenix

g . Los Angeles
Current DFS path: Chicago->Denver->New York

Already visited Chicago
Current DFS path: Chicago->Phoenix

There is no path from Chicago to Boston



Output (Boston to Phoenix)

Current DFS path: Boston

Current DFS path: Boston->Providence

Already visited Boston

Current DFS path: Boston->Providence->New York

Current DFS path: Boston->Providence->New York->Chicago

Current DFS path: Boston->Providence->New York->Chicago->Denver

Current DFS path: Boston->Providence->New York->Chicago->Denver->Phoenix Found path
Already visited New York

Current DFS path: Boston->Providence->New York->Chicago->Phoenix Found a shorter path
Current DFS path: Boston->New York

Current DFS path: Boston->New York->Chicago

Current DFS path: Boston->New York->Chicago->Denver

Current DFS path: Boston->New York->Chicago->Denver->Phoenix Found a “shorter” path
Already visited New York

Current DFS path: Boston->New York->Chicago->Phoenix Found a shorter path

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Denver->Phoenix



Breadth First Search

#Start at an initial node

"Consider all the edges that leave that node, in some
order

"Follow the first edge, and check to see if at goal node
5|f not, try the next edge from the current node

®"Continue until either find goal node, or run out of
options
> When run out of edge options, move to next node at
same distance from start, and repeat

> When run out of node options, move to next level in the
graph (all nodes one step further from start), and repeat



Algorithm 2: Breadth-first Search (BFS)

def BFS(graph, start, end, toPrint = False):
initPath = [start]
pathQueue = [initPath]
while Ten(pathQueue) != 0:

tmpPath = pathQueue.pop(0)
if toPrint:

print("'Current BFS path:', printPath(tmpPath))
lastNode = tmpPath[-1]
if lastNode == end: P,

return tmpPath < .
for nextNode in graph.childrenOf(lastNode):

if nextNode not in tmpPath:

newPath = tmpPath + [nextNode]

pathQueue.append(newPath)
return None




Output (Boston to Phoenix)

Current BFS path: Boston

Current BFS path: Boston->Providence

Current BFS path: Boston->New York

Current BFS path: Boston->Providence->New York

Current BFS path: Boston->New York->Chicago

Current BFS path: Boston->Providence->New York->Chicago
Current BFS path: Boston->New York->Chicago->Denver
Current BFS path: Boston->New York->Chicago->Phoenix

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix



Output (Boston to Pheonix)

node

Note that we
skip a path
that revisits a

Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:
Current BFS path:

Current BFS path:
Current BFS path:

Current BFS path:

Boston

Boston-
Boston-
Boston-

Boston-

Providence

Chicago

>Providence
>New York
>Providence->New York

>New York->Chicago

Boston->Providence->New York->Chicago

Boston->New York->Chicago->Denver

Boston->New York->Chicago->Phoenix

Denver

Los Angeles

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix



What About a Weighted Shortest Path

"\Want to minimize the sum of the weights of the edges,
not the number of edges

*DFS can be easily modified to do this

"BFS cannot, since shortest weighted path may have
more than the minimum number of hops



Recap

"Graphs are cool
> Best way to create a model of many things

o Capture relationships among objects

> Many important problems can be posed as graph
optimization problems we already know how to solve

=Depth-first and breadth-first search are important
algorithms

> Can be used to solve many problems



terms to find out more.

e weighted graph
* cycles

* tree
 complete graph
e clique

* bipartite graph

* Dijkstra’s algorithm



Finger Exercises

Modify the DFS algorithm to find a path that minimizes the sum of the
weights. Assume that all weights are positive integers.

Consider a digraph with weighted edges. Is the first path found by BFS
guaranteed to minimize the sum of the weights of the edges?



