
Graph-theoretic Models
Lesson 5



objectives

• basic of graphs

• how to implement graphs

• shortest path problem

• search
• Breadth-first search (implementation 1)

• Depth-first search (implementation)

• Breadth-first search (implementation 2)





Who owes whom money ?



the full graph could look like this.











Why Graphs Are So Useful

• World is full of networks based on relationship
• Computer networks

• Transportation networks

• Financial networks

• Sewer or water networks

• Political networks

• Criminal networks

• Social networks

• etc





Graph Theory Saves Me Time 
Every Day









https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Suppose you want to travel to Golden Gate 
Bridge from Twin Peaks.



What’s your algorithm to find the path with 
the fewest steps?



can you get there in one step?



if no, can you get there in two steps?



if no, can you get there in three steps?



it takes three steps to get there.



summary.

• there are other routes that will get you there

• they are at least three steps long

• the algorithm found that the shortest route to the bridge is three 
steps long

• this type of problem is called a shortest-path problem



Breadth – first search

• we have discussed linear search and binary search

• BFS is a different kind of search algorithm: one that runs on graphs

• it can help answer two types of questions:
1. Is there a path from node A to node B?

2. What is the shortest path from node A to node B?



Suppose you’re the proud owner of a mango 
farm. Looking for mango seller to sell yours.
• this search is pretty straightforward

• first, make a list of friends to search



now go to each person in the list 
and check whether that person 
sells mangoes.





suppose none of your friends are 
mango sellers. now you have to 
search through your friends’ friends.





each time you search for 
someone from the list, add all of 
their friends to the list.



• you not only search your friends, but you search their friends too

• the goal is to find one mago seller in your network

• if Alice isn’t a mango seller, you add her friends to the list, too

• that means you’ll eventually search her friends – and then their 
friends

• with this algorithm, you’ll search your entire network until you come 
across a mango seller. This algorithm is breadth-first search.



relook.

• Question 1: is there a path from node A to node B?
• Is there a mango seller in your network?

• Question 2: what is the shortest path from node A to node B?
• Who is the closest mango seller?



look deeper to question 2.

• can you find the closest mango seller?



look deeper.

• we will prefer a first degree connection to a second degree 
connection, and so on

• we shouldn’t search any second degree connections before we make 
sure we don’t have a first degree connection who is a mango seller.

• breadth first search already does this!
• the way breadth-first search works, the search radiates out from the starting 

point

• notice that this only works if we search people in the same order in which 
they are added.

• we need to search people in the order that they are added. 
• there’s a data structure for this: it’s called a queue



Queues

• same concept as real life

• suppose you and your friend are queuing up at the bus stop. if you 
are before him in the queue, you get on the bus first.

• two operations in queue
• enqueue

• dequeue



Queues

• if we enqueue two items to the list, the first item we add will be 
dequeued before the second item

• we can use this for our search list

• the queue is called a FIFO data structure: First in, First Out.



let’s try this simple graph.

• Find the length of 
the shortest path 
from start to 
finish.

• Find the length of 
the shortest path 
from “cab” to 
“bat”



Implementing the graph.

• use a dictionary
• key, value pair

• we want to map a node to all of its neighbours



a bigger graph.



directed graph vs undirected graph

• Anuj, Peggy, Thom and Jonny don’t have any neighbors. 

• they have arrows pointing to them, but no arrows from them to 
someone else

• this is called a directed graph

• an undirected graph doesn’t have any arrows, and both nodes are 
each other’s neighbours.
• For eg, both of these graphs are equal



implementing the algorithm





implementation.

• make a queue to start. in python, use the double ended queue 
(deque) function for this:

• remember, graph[“you”] will give you a list of all your neighbours, like 
[“alice’, “bob”, “Claire”]. those all get added to the search queue.



implementation.



in action. . .



in action . . .



when will it ends.

• the algorithm will keep going until either:
• a mango seller is found, or

• the queue becomes empty, in which case there is no mango seller.



potential problem.

• alice and bob share a friend Peggy. So Peggy will be added to the 
queue twice: 
• once when you add Alice’s friends and

• again when you add Bob’s friends

• if you check her twice, you’re doing 
unnecessary, extra work. So once you 
search a person, you should mark that
person as searched and not search them
again

• if you don’t do this, you could end up in an infinite loop



Suppose the mango seller graph looked like 
this





final code.



















































terms to find out more.

• weighted graph

• cycles

• tree

• complete graph

• clique 

• bipartite graph

• Dijkstra’s algorithm



Finger Exercises

Modify the DFS algorithm to find a path that minimizes the sum of the 
weights. Assume that all weights are positive integers.

Consider a digraph with weighted edges. Is the first path found by BFS 
guaranteed to minimize the sum of the weights of the edges?


