

River Valley High School 2023 JC2 Mathematics (9758) Lecture Test 3 (Term 2)

Name	:	Index Number	:	
Class	:	Date	:	12 May 2023
Duration	: 50 min	Max. No. of Marks	:	30

Formulae from MF26

Vectors

The point dividing *AB* in the ratio $\lambda : \mu$ has position vector $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$ Vector product:

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

[Answer all the questions on writing papers. Up to 1 mark will be deducted for poor presentation.]

1 The line *l* has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{k})$ where λ is a parameter.

The plane π_1 has equation x + 2y + 2z = -2 and the point *A* is at (1, 1, 2).

- (i) Find the acute angle between the plane π_1 and the line *l*. [2]
- (ii) The plane π_2 contains the line *l* and is perpendicular to plane π_1 . Show that the equation of plane π_2 is 2x 3y + 2z = 3. [2]
- (iii) Find a vector equation of the line of intersection between π_1 and π_2 . [2]
- (iv) Find the shortest distance from the point A to the plane π_1 .
- 2 (a) The complex number v = 1 + i is a root of the equation $2z^2 cz + 1 i = 0$ where c is a complex number.
 - (i) Without the use of a calculator, find the value of c. [4]
 - (ii) Without calculating the other root, explain why v^* is not the other root of the equation $2z^2 cz + 1 + i = 0$. [1]

(**b**) The complex number w is given by
$$w = 2\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$$
.

Showing your working clearly, find the modulus and argument of $\frac{iw^2}{2i-2\sqrt{3}}$. [6]

[3]

3 A disc with sectors labelled 1, 2 and 3 with a free spinning arrow and a fair coin are used in a game booth at a bazaar. When the arrow on the disc is spun, it comes to a stop pointing at

the sector labelled 1 with probability of p while it has a probability of $\frac{2}{3}p$ pointing at the

sector labelled 2. In a game, the arrow is spun, then the coin is tossed 1, 2 or 3 times according to the sector where the arrow points on the disc. The random variable X denotes the score of the game obtained by adding the total number of heads from the resulting coin toss(es).

(i) Show that $P(X=1) = \frac{3}{8} + \frac{5}{24}p$. Construct a probability distribution table for X with the expressions of the probabilities in terms of p. [5]

(ii) Given that
$$E(X) = \frac{5}{6}$$
, find the value of *p*. [2]

(iii) It is given that $Var(X) = \frac{5}{9}$ and that X_1 and X_2 are two independent observations of

X. Find
$$\operatorname{Var}\left(\frac{1}{2}X_1 - 3X_2\right)$$
. [3]

End of Paper

RVHS 2023	<i>JC2 H2</i>	Maths	Lecture	Test 3	Solution
------------------	---------------	-------	---------	--------	----------

Questi	Question 1 [9] Vectors (Planes)					
(i)	Let the acute angle be θ .					
	$\theta = \sin^{-1} \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{vmatrix}$ $= \sin^{-1} \begin{vmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ $= \sin^{-1} \begin{vmatrix} 1 \\ \sqrt{1^2 + 2^2 + 2^2} \sqrt{2} \end{vmatrix}$ $= \sin^{-1} \begin{vmatrix} 1 \\ 3\sqrt{2} \end{vmatrix}$ $= 13.6^{\circ} (1 \text{ d.p.})$	Some responses have mixed up the formula with others.				
(ii)	(1)					
	The normal of plane π_1 : $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -2$ is parallel to the plane π_2 . A normal vector to plane $\pi_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ And point A is on the plane. $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} = 2 - 3 + 4 = 3$. Therefore, the equation of plane π_2 is $2x - 3y + 2z = 3$. (Shown)	Generally most responses are able to identify the 2 vectors to cross for the normal vector for π_2 and substituting the point \overrightarrow{OA} for the constant.				
(iii)	Using GC to solve the system of equations:	Some responses crossed				
	$x + 2y + 2z = -2$ $2x - 3y + 2z = 3$ NORMAL FLOAT AUTO REAL DEGREE MP SOLUTION SET $x1 \blacksquare 0 - \frac{10}{7} \times 3$ $x2 = -1 - \frac{2}{7} \times 3$ $x3 = x3$	the normals of the 2 planes to get the direction of the line. However, many of these responses have difficulties getting a particular point on the line of intersection.				
	MAIN MODE SYSM STORE RREF					

	$x = 0 - \frac{10}{7}t$ $y = -1 - \frac{2}{7}t \text{for some } t \in \mathbb{R}.$ $z = t$ Line of intersection: $\mathbf{r} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{10}{7} \\ -\frac{2}{7} \\ 1 \end{pmatrix}, \ t \in \mathbb{R}$ or $\mathbf{r} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 10 \\ 2 \\ -7 \end{pmatrix}, \ t \in \mathbb{R}$	
(iv)	Let $N(0, -1, 0)$ be a point on π_1 . $\overrightarrow{AN} = \overrightarrow{ON} - \overrightarrow{OA} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix}$ Shortest distance from point A to plane π_1 $= \left \overrightarrow{AN} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right $ $= \left \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix} \cdot \frac{1}{\sqrt{1^2 + 2^2 + 2^2}} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right $ $= \left \frac{-9}{\sqrt{9}} \right $ = 3 units <u>Alternatively</u> Let l_n be a line passing through point A and perpendicular to π_1 . l_n : $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \ \mu \in \mathbb{R}$ Let point N be the intersection of l_n and π_1 ,	Some responses did not identify a point on the plane to get a vector from the plane to point <i>A</i> for the formula. Using \overrightarrow{OA} for the formula gives the distance of point A to a plane containing the origin parallel to π_1 .

$$\begin{bmatrix} \begin{bmatrix} 1\\1\\2 \end{bmatrix} + \mu \begin{bmatrix} 1\\2\\2 \end{bmatrix} \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\2 \end{bmatrix} = -2$$

$$1(1+\mu) + 2(1+2\mu) + 2(2+2\mu) = -2$$

$$\mu = -1$$

$$\therefore \overrightarrow{ON} = \begin{bmatrix} 1\\1\\2 \end{bmatrix} - \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$$

Shortest distance from point A to plane π_1

$$\begin{vmatrix} \overrightarrow{AN} \\ = \begin{vmatrix} 0\\-1\\0 \end{bmatrix} - \begin{bmatrix} 1\\1\\2 \\ \end{vmatrix}$$

$$= \begin{vmatrix} 0\\-1\\0 \\ -1 \\ 2 \\ \end{vmatrix}$$

$$= \begin{vmatrix} 0\\-1\\-2\\-2 \\ \end{vmatrix}$$

$$= \sqrt{(-1)^2 + (-2)^2 + (-2)^2}$$

$$= 3 \text{ units}$$

Ques	Question 2 [11] Complex Numbers					
(ai)	Sub $z = 1 + i$ into $2z^{2} - cz + 1 - i = 0$, $2(1+i)^{2} - c(1+i) + 1 - i = 0$ 2(1+2i-1) - c(1+i) + 1 - i = 0 c(1+i) = 1 + 3i $c = \frac{1+3i}{1+i} \times \frac{1-i}{1-i}$ $= \frac{1-i+3i+3}{2}$ = 2+i	Most responses are able to substitute $z = 1 + i$ to find c. Most are able to use operations to make c the subject.				
(aii)	If v^* is also a root, then all coefficients of the quadratic equation must be real. However, that is not the case. Therefore, v^* is not a root.	Many responses fall short in quoting the theorem although their response shows sign of knowledge.				
(b)	$\begin{vmatrix} 2i - 2\sqrt{3} \end{vmatrix} = 4$ $\arg \left(2i - 2\sqrt{3} \right) = \frac{5\pi}{6}$ $\left \frac{iw^2}{2i - 2\sqrt{3}} \right = \frac{ i w ^2}{ 2i - 2\sqrt{3} }$ $= \frac{(1)(2)^2}{4}$ = 1 unit	Many are not successful in getting the correct argument for $2i - 2\sqrt{3}$. Many are able to use the properties of modulus to get the correct answer.				
	Note that $w = 2\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right) = 2\left(\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right)\right).$ Therefore $\arg(w) = -\frac{\pi}{5}$ and $ w = 2$. $\arg\left(\frac{iw^2}{2i - 2\sqrt{3}}\right) = \arg(i) + 2\arg(w) - \arg\left(2i - 2\sqrt{3}\right)$ $= \frac{\pi}{2} + 2\left(-\frac{\pi}{5}\right) - \frac{5\pi}{6}$ $= -\frac{11\pi}{15} \operatorname{rad}$	Few responses did not notice that w is not given in standard polar form so the argument is not $\frac{\pi}{5}$.				

Ques	Question 3 [10] Discrete Random Variable					
(i)	$P(X = 1) = p\left(\frac{1}{2}\right) + \frac{2}{3}p\left(\frac{2}{1}\right)\left(\frac{1}{2}\right)^{2} + \left(1 - \frac{5}{3}p\right)\left(\frac{3}{1}\right)\left(\frac{1}{2}\right)^{3}$ $= \frac{3}{8} + \frac{5}{24}p \text{ (shown)}$ $P(X = 0) = p\left(\frac{1}{2}\right) + \frac{2}{3}p\left(\frac{1}{2}\right)^{2} + \left(1 - \frac{5}{3}p\right)\left(\frac{1}{2}\right)^{3} = \frac{1}{8} + \frac{11}{24}p$ $P(X = 2) = \frac{2}{3}p\left(\frac{1}{2}\right)^{2} + \left(1 - \frac{5}{3}p\right)\left(\frac{3}{2}\right)\left(\frac{1}{2}\right)^{3} = \frac{3}{8} - \frac{11}{24}p$					Many students are unable to cope with the complexity of the context. Some good response includes drawing a tree diagram to visualise all outcomes and calculate the probabilities based on the tree.
	$P(X = 3) = \begin{pmatrix} \\ X = x \\ P(X = x) \end{pmatrix}$	0	1	2	$\frac{3}{\frac{1}{8} - \frac{5}{24}p}$	Most responses missed out the outcome where there is no heads i.e. $X = 0$
(ii)	$E(X) = \sum x P(X = x)$ $(1) \left(\frac{3}{8} + \frac{5}{24}p\right) + 2 \left(\frac{3}{8} - \frac{11}{24}p\right) + (3) \left(\frac{1}{8} - \frac{5}{24}p\right) = \frac{5}{6}$ $\frac{3}{2} - \frac{4}{3}p = \frac{5}{6}$ $p = \frac{1}{2}$					Generally, those who did not manage to get the probability distribution table up are not able to do this part properly. Interesting observation is that those whose table missing out the "0" outcome can still get the correct answer for this part.
(iii)	$\operatorname{Var}\left(\frac{1}{2}X_{1}-3X_{2}\right)$ $=\left(\frac{1}{2}\right)^{2}\operatorname{Var}\left(X_{1}\right)+3^{2}\operatorname{Var}\left(X_{2}\right)$ $=\left(\frac{1}{4}\right)\left(\frac{5}{9}\right)+9\left(\frac{5}{9}\right)$ $=\frac{185}{36}=5\frac{5}{36}$					There are many responses where the variance is subtracted which produced a negative answer for variance. A simple check should reveal that it is impossible to have a negative variance.