

Anderson Serangoon Junior College 2024 JC2 H1 Physics Preliminary Examination Mark Scheme

Paper 2 (80 marks)

1ai	Any two of time, temperature, current, (luminous intensity)	B2
1aii	Any derived quantity, e.g. energy, force, power, velocity, acceleration, pressure, density, etc	B1
1bi	Percentage uncertainty = 2 + (3x2) = 8%	A1
1bii	$g = \frac{(4\pi^2 \times 1.50)}{2.48^2}$ = 9.63 m s ⁻²	C1
	Absolute uncertainty = 0.08×9.63 = 0.8 m s^{-2} $g = 9.6 \pm 0.8 \text{ m s}^{-2}$	C1 A1
2a	As the sky-diver picks up speed, air resistance increases, the resultant force decreases and hence the acceleration decreases.	B1 B1
2b	Since the sky-diver starts from rest, there is <u>no air resistance initially</u> , hence his initial acceleration is equal to 9.81 m s^{-2} .	M1 A1
2c	Before 24.0 s, <u>speed increases with decreasing rate</u> After 24.0 s, falling with <u>constant velocity</u>	B1 B1
2d	Find the area under the graph by using trapezium rule/counting squares	B1 B1
2e	Correct shape start with zero gradient and ends with constant gradient from about $t = 24.0$ s	M1 A1

r		1
	$\ln R = \ln A + \frac{E_g}{2kT} = \left(\frac{E_g}{2k}\right)\left(\frac{1}{T}\right) + \ln A$	A1
	As seen from relationship, when $\ln R$ is plotted against $1/T$, a straight line should be obtained	
	with gradient = $\frac{E_g}{2k}$ and y-intercept = lnA.	
	2 <i>K</i> Since a straight line is seen in Fig. 7.3, it supports the proposal.	
4cii	Gradient = E _g /2k	M1
	$\frac{E_g}{2k} = \frac{5.95 - 4.90}{(2.48 - 2.22) \times 10^{-3}} = 4038$	M1
	$E_g = 2(1.38 \times 10^{-23})(4038) = 1.11 \times 10^{-19} \text{ J}$	A1
4d	Parallel combination of resistance	
	$=(\frac{1}{90}+\frac{1}{120})^{-1}$	
	00 120	C1
	$=51.43\Omega$	
	Using potential divider, 51.43	C1
	$V_{out} = \frac{51.43}{51.43 + 243} \times 9.0$	C1
	= 1.57 V	A1
4e	For metal, as temperature increases, the increase in lattice-electron collisions is	A1
70	more significant than the increase in charge carriers, thus the resistance of	
	metal <u>increases with temperature</u> .	
4f	R/Ω	
	↑	
	12.5	
	7.5	
	1.5	
	0 → <i>V</i> / <i>V</i>	
	Correct shape - constant resistance then increasing (allow straight line)	B1
	Include at least one set of correct resistance value, e.g. 7.5 Ω , 12.5 Ω or any correct value.	B1
5a	electric field strength at a point is defined as the electric force exerted <u>per</u> unit positive charge placed at that point.	A1
	OR	
<u> </u>	1	1

	electric field strength at a point is defined as electric force per unit positive charge acting	
	on a small stationary charge placed at that point.	
5b		
ac	F = qE $ma = qE$	
	$a = \frac{qE}{m} = \frac{1.6 \times 10^{-19} (4.0 \times 10^4)}{9.11 \times 10^{-31}}$	C1
		A 4
	$= 7.0 \times 10^{15} \text{ m s}^{-2}$	A1
5ci	magnetic force on ion in path B provides for centripetal force	B1
	By N2L,	
	$B_{0}v - m^{v^2}$	
	$P_{r} = \frac{12.3}{r} \times 10^{-2} \times 640 \times 10^{-3} \times 1.6 \times 10^{-19}$	01
	$m = \frac{16q}{v} = \frac{2}{2} 160 + 4000 + 10000 + 1000 + 10000 + 10000 + 1000 + 10000 + 1000 + 1000 + 1000 +$	C1
	$= 6.56 \times 10^{-26} \text{ kg}$	
	By N2L, $Bqv = m \frac{v^2}{r}$ $m = \frac{rBq}{v} = \frac{\frac{12.3}{2} \times 10^{-2} \times 640 \times 10^{-3} \times 1.6 \times 10^{-19}}{9.6 \times 10^{4}}$ $= 6.56 \times 10^{-26} \text{ kg}$ $= \frac{6.56 \times 10^{-26} \text{ kg}}{1.66 \times 10^{-27}} = 40 \text{ u (or 39.5 u)}$	A1
5cii	Since the ions are of the same isotope, they all have the same mass regardless of the	B1
	paths undertaken.	
	Using the equation in answer to (b)(i) , the radius of the path is inversely proportional to	B1
	q (or state equation for r)	
	Llense, the issue is noth A hour thrise the change some read to issue is noth D	
	Hence, the ions in path A have thrice the charge compared to ions in path B.	B1
6a	two nuclei of low nucleon number join / combine together to form one larger nucleus	M1
	with release of energy.	A1
6b	Energy released = Binding energy of products – Binding energy of reactants	C1
	binding energy of Z = [(1.25 + 1.81) × 10 ⁻¹⁰] − 2.94 × 10 ⁻¹¹ □	C1
	$(=2.77 \times 10^{-10} \text{ J})$	
	nucleon number of $Z = 93 + 139 + 2 - 1$	C1
	(= 233)	0.
	Binding energy per nucleon of Z = $(2.77 \times 10^{-10}) / (233 \times 1.60 \times 10^{-13})$	
	= 7.43 MeV	A1
6ci	sketch: line with negative gradient starting at (0, 1.0 N_0) and extending to $t = 30$ days	B1
	exponential curve, extending from $t = 0$ to $t = 30$ days, with gradient of steadily	
	decreasing magnitude	B1
	line passing through (0, 1.0 N_0), (10, 0.5 N_0) and (20, 0.25 N_0)	
		B1
6cii	Short range in tissue / high ionisation energy.	B1
7ai	By Newton's 2 nd Law, rotating blades pushes air and causes it to undergo a rate of	B1
	change in momentum downwards giving rise to a downward force.	
	From Newton's 3 rd Law, the air exerts an upward force of the same magnitude on the	B1
	blades/helicopter.	

		1
	When this <u>upward force equals the weight of the helicopter</u> , <u>resultant force (of helicopter)</u> is zero (and hence it can remain stationary vertically)	B1
7aii1	Area = $\pi r^2 = \pi (0.70)^2$ = 1.539 m ²	C1
	$= 1.539 \text{ m}^2$	C1
	Volume of air per second = $1.539 \times 4.0 = 6.156 \text{ m}^3 \text{ s}^{-1}$	
	Mass per second = volume per second x density	M1
	$= 6.156 \times 1.2$ = 7.387 kg s ⁻¹	A0
	$= 7.367 \text{ kg s}^{-1}$	70
70:0	Data of abando of momentum dm/dt y valuatity 7.4×4.0	<u> </u>
7aii2	Rate of change of momentum = dm/dt x velocity = 7.4 x 4.0 = 29.6 \approx 30 N	C1 A1
		///
7aiii	$F_{net} = 0$	
	Mg – Force on helicopter by air = 0	~
	Mg = Force on helicopter by air = 29.6 N M = 29.6 / 9.81	C1
	= 3.0 kg	A1
7bi	Drag forces/ air resistance/ resistive forces <u>increases</u> with speed of the car At higher constant speed, there is <u>greater work done</u> against drag forces/ air	B1
	resistance/ resistive forces	B1
	hence, higher power is required	
		A0
7bii	$v = 60 \times (1000 / 3600) = 16.67 \text{ m s}^{-1}$	C1
	Effective power = $F_{driving} \times v$ 22 × 10 ³ = $F_{driving} \times 16.67$	U1
	$F_{driving} = 1320 \text{ N}$	A1
		5.4
	Since the car is at <u>constant speed</u> , total resistive force = $F_{driving}$ = 1320 N	B1
7biii	Total momentum before = total momentum after	
1.	$m \ge 60 - 2m \ge 60 = (m + 2m) V$	C1
	$V = -20 \text{ km h}^{-1}$	
	Speed = 20 km h^{-1}	A1
		,,,,
2.	During collision, force on car and truck is the same (by Newton's 3rd Law)	B1
	but since car has smaller mass, acceleration of car is greater than the acceleration of	B1
	the truck.	
	(For the same mass), force by seatbelt on car driver is greater.	B1
8ai	Horizontal component of tension / spring force provides centripetal acceleration	B1
	Weight of sphere is (now) equal to the vertical component of tension / spring force	M1
	OR horizontal and vertical components of tension / spring force combine to give a	
	greater tension in spring	
	Greater tension/spring force so greater extension / since extension is proportional to	A1
	spring force	171

8aii1	Radius, $r = 10.8 \sin 27^\circ = 4.903 \text{ cm}$	A1
	≈ 4.9 cm	
8aii2	$F_{spring} \cos \theta = mg \ OR \ sum of vertical forces = 0$	B1
	$F_{spring} = \frac{mg}{\cos\theta} = \frac{0.29 \times 9.81}{\cos 27^{\circ}} = 3.19 \text{ N}$	A1
	$F_{spring} \approx 3.2 \text{ N} \text{ (shown)}$	
		A0
8aii3	$k = \frac{\Delta F_{spring}}{\Delta x} = \frac{3.2 - (0.29 \times 9.81)}{(10.8 - 8.5)}$	C1
	$k = 0.15 \mathrm{Ncm^{-1}}$	A1
8aiii 1	$a_{\star} = \frac{F_{spring} \sin \theta}{1} = \frac{3.2 \times \sin 27^{\circ}}{1}$	C1
	$a_c = \frac{F_{spring} \sin \theta}{m} = \frac{3.2 \times \sin 27^\circ}{0.29}$ $a_c = 5.0 \text{ m s}^{-2}$	A1
8aiii 2	$a_c = r\omega^2 = r \left(\frac{2\pi}{T}\right)^2$ $T = 2\pi \times \sqrt{(0.049 / 5.0)} = 0.62 \mathrm{s}$	C1
	$T = 2\pi \times \sqrt{(0.049 / 5.0)} = 0.62 \mathrm{s}$	A1
8bi	The <u>gravitational force</u> acting on the stars (which provides centripetal force) is <u>always</u> <u>perpendicular</u> to the velocity of the stars.	A1
8bii	The gravitational force between the stars provides/is the centripetal force	M1
	By <u>Newton's third law</u> , the gravitational force acting on the stars have the same magnitude.	A1
8biii	Centripetal acceleration changes the direction but not the speed/magnitude of velocity OR	B1
	Work done by the centripetal force is zero	
8biv	$v = \frac{2\pi r}{T} = \frac{2\pi}{T} \left(\frac{d}{2}\right)$	
	$v = \frac{2\pi}{4.0 \times 365 \times 24 \times 60 \times 60} \left(\frac{2.8 \times 10^8 \times 10^3}{2}\right)$	C1
	$v = 6973 \approx 7.0 \text{ x } 10^3 \text{ m s}^{-1}$	A1
8bv	(Gravitational force provides centripetal force)	
	$\frac{G \times M \times M}{d^2} = \frac{Mv^2}{\binom{d}{2}}$	
		C1
	$M = \frac{2v^2d}{G} = \frac{2 \times 6973^2 \times 2.8 \times 10^8 \times 10^3}{6.67 \times 10^{-11}}$ M = 4.1 x 10 ²⁹ kg	A1