	\equiv
12	 ž.

Catholic Junior College JC2 Preliminary Examinations Higher 2

CANDIDATE NAME

MARK SCHEME

CLASS

PHYSICS

Paper 3 Longer Structured Questions

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name and class in the spaces at the top of this page. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. Answer **all** questions.

Section A

Answer all questions.

Section B Answer one question only.

You are advised to spend one and a half hours on Section A and half an hour on Section B.

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXA	MINER'S USE
SECTION A	
Q1	/ 8
Q2	/9
Q3	/ 8
Q4	/ 12
Q5	/7
Q6	/ 8
Q7	/ 8
SECTION B	
Q8	/ 20
Q9	/ 20
PAPER 3	/ 80
PAPER 2	/ 80
PAPER 1	/ 30
PAPER 4	/ 55
TOTAL (WEIGHTED)	%

DATA

speed of light in free space	С	=	3.00 x 10 ⁸ m s ⁻¹
permeability of free space	μ_0	=	4π x 10 ⁻⁷ H m ⁻¹
permittivity of free space	<i>E</i> 0	=	8.85 x 10 ⁻¹² F m ⁻¹
			(1/(36π)) x 10 ⁻⁹ F m ⁻¹
elementary charge	е	=	1.60 x 10 ⁻¹⁹ C
the Planck constant	h	=	6.63 x 10 ⁻³⁴ J s
unified atomic mass constant	и	=	1.66 x 10 ⁻²⁷ kg
rest mass of electron	m _e	=	9.11 x 10 ⁻³¹ kg
rest mass of proton	<i>m</i> _P	=	1.67 x 10 ⁻²⁷ kg
molar gas constant	R	=	8.31 J K ⁻¹ mol ⁻¹
the Avogadro constant	NA	=	6.02 x 10 ²³ mol ⁻¹
the Boltzmann constant	k	=	1.38 x 10 ⁻²³ mol ⁻¹
gravitational constant	G	=	6.67 x 10 ⁻¹¹ N m ² kg ⁻²
acceleration of free fall	g	=	9.81 m s ⁻²

FORMULAE

uniformly accelerated motion	S V ²	=	u t + ½ a t² u² + 2as
work done on / by a gas	W	=	р∆V
hydrostatic pressure	р	=	hogh
gravitational potential	ϕ	=	$-\frac{Gm}{r}$
temperature	T/K	=	<i>T</i> / °C + 273.15
pressure of an ideal gas	p	=	$\frac{1}{3}\frac{Nm}{V}\langle C^2 \rangle$
mean translational kinetic energy of an ideal gas molecule	E	=	$\frac{3}{2}kT$
displacement of particle in s.h.m.	x	=	$x_0 \sin \omega t$
velocity of particle in s.h.m.	V	=	$v_0 \cos \omega t$
		=	$\pm \omega \sqrt{{\boldsymbol{x}_0}^2 - {\boldsymbol{x}}^2}$
electric current	Ι	=	Anvq
resistors in series	R	=	$R_1 + R_2 +$
resistors in parallel	1/R	=	$1/R_1 + 1/R_2 + \dots$
electric potential	V	=	$\frac{Q}{4\pi\varepsilon_{o}r}$
alternating current / voltage	x	=	x₀ sin ωt
magnetic flux density due to a long straight wire	В	=	$\frac{\mu_o I}{2\pi d}$
magnetic flux density due to a flat circular coil	В	=	$\frac{\mu_o NI}{2r}$
magnetic flux density due to a long solenoid	В	=	µ _o nI
radioactive decay	x	=	$x_0 \exp(-\lambda t)$
decay constant	λ	=	$\frac{\ln 2}{t_{\frac{1}{2}}}$

Section A

Answer all questions in the spaces provided.

		$\frac{\theta}{20.0 \text{ N}} = \frac{F_A}{30.0 \text{ N}}$ Use cosine rule (and/or sine rule) to solve, $F_A = 17.8 \text{ N}$ $(\theta = 40.1^\circ)$	[M1] [A1]
	(ii)	Explain why angles ϕ and θ cannot be 90° at the same time.	
			[0]
	L2	When both angles are 90° at the same time, both F_A and F_B are horizontal and	[2]
		there is no vertical component of force.	
		There must be a <u>vertically upward force that is equal in magnitude and</u>	B1
		opposite in direction to the object & s weight.	
		to maintain <u>vertical</u> <u>equilibrium</u>.	B1
 (6)	A	iform motel and AD is freely nivered at and A as illustrated in Fig. 1.2. The ana	
(0)	susp	bended by a light spring. The other end of the spring is supported at Z.	
	The	rod is in equilibrium.	
		A Contraction of the second se	
		Fig. 1.2	
	The	spring is now aligned vertically along YB so that the angle between the rod an	d the
	sprin	ig is no longer 90°. The rod remains in equilibrium in the same position.	
	sprir Expl	ng is no longer 90°. The rod remains in equilibrium in the same position. ain why the spring force increases.	

		[0]
		[3]
L2	The total clockwise moment about the pivot A due to the rod's weight is unchanged.	B1
	If the spring is aligned vertically along YB, the perpendicular distance of the line of action of the spring force from pivot A will decrease .	B 1
	Therefore, the spring force must increase to maintain the same total anticlockwise moment about the pivot.	B1
	L2	

```
[Total: 8]
```

2	Two	spheres A an	d B approach each other a	as illustrated in Fig. 2.1.
		Before collision	A 7.40 m s ⁻¹ 0.500 kg	9.60 m s ⁻¹ B 0.350 kg
		After collision	A	$(B) \xrightarrow{10.4 \text{ m s}^{-1}}$
				Fig. 2.1
	Sph Sph	ere A has a m ere B has a m	ass of 0.500 kg and moves ass of 0.350 kg and moves	s to the right with a speed of 7.40 m s ⁻¹ . s to the left with a speed of 9.60 m s ⁻¹ .
	The	spheres collid	e and are in contact for a t	ime of 0.400 s.
	Sph	ere B reverses	s its direction of motion and	d moves off with a speed of 10.4 m s ⁻¹ .
	(a)	Using mome rest at the sa	ntum consideration, expla me instant.	in quantitatively why spheres A and B cannot be at
	1			

		[2]
L2	Take right as positive direction. Total initial momentum of A and B = $(0.500)(+7.40) + (0.350)(-9.60)$ = $+0.34$ kg m s ⁻¹	
	<u>No net external force acts on system of A and B</u> , therefore <u>total</u> momentum is <u>conserved</u> at all times and <u>always equal to</u> the <u>total initial</u> momentum.	M1
	Total initial momentum equals 0.34 kg m s ⁻¹ to the right, which is non-zero. Therefore both A and B cannot be at rest at the same time.	M1 A0
(b)	For the time during the collision, calculate the average force between the spheres.	
	· · · ·	
 12	average force =N	[2]
LZ	Take right as positive direction.	
	Considering sphere B's rate of change in momentum,	
	Average force $= \Delta p = 0.350(10.4 - (-9.60))$	M1
	= 175 N (i.e. to the right)	Δ1
	*Mark for magnitude only.	~'
(c)	Use your answer in (b) to determine the magnitude of the velocity of sphere A afte collision. Explain your working.	e <mark>r</mark> the
	magnitude of velocity = m s ⁻¹	[3]
L2	Take right as positive direction.	
	By Newton's 3 rd Law, the force experienced by A is equal in magnitude and opposite in direction to the force experienced by B: Average force on A = -17.5 N	B1
	Average force $= \frac{\Delta p}{\Delta t}$	
	(Average force on A) $\mathbf{x} \Delta t = \Delta p \ of A$	
	$(-17.5) \ge 0.400 = 0.500(V_A - 7.40)$	M1
	$V_A = -6.60 \ m \ s^{-1}$ (i. e. to the left)	A1
	B1 mark: Explanation of working (sign convention is clearly defined; application of Newton's 3 rd law)	
	M1 mark: Calculation (equation used and substitution of values are clear and correct)	
	A1 mark: Correct answer for magnitude of velocity of A.	
		1

(d)	By considering quantitatively the relative speeds of approach and of separation of the spheres, deduce whether the collision is elastic or inelastic.	e two
		[2]
L2	Take right as positive direction.	
	Relative speed of approach = $U_A - U_B = 7.40 - (-9.60) = 17.0 \text{ m s}^{-1}$ Relative speed of separation = $V_B - V_A = 10.4 - (-6.60) = 17.0 \text{ m s}^{-1}$	M1
	Since the relative speed of approach is equal to the relative speed of separation, it implies that total kinetic energy before and after the collision is unchanged, hence it is an elastic collision.	A 1
	 Allow ECF from previous part. Calculation of relative speeds considered positive & negative directions of velocities. 	
	Conclusion based on comparison of calculated relative speeds.	

[Total: 9]

	mass of one mole of copper is 63.5 g.	
	Show that the number density of charge carriers in copper is 8.49 x 10 ²⁸ m ⁻³ .	
		[3]
L2	Volume of per mole of copper = mass per mole / density = $(63.5 \times 10^{-3}) / 8960$ = 7.0871 x 10 ⁻⁶ m ³	M1
	Number of conduction (mobile) electrons per mole of copper = 1 electron per atom x number of atoms per mole = 1 electron per atom x Avogadro's constant = 1 x $(6.02 \times 10^{23}) = 6.02 \times 10^{23}$	M1
	Number density of charge carriers = $6.02 \times 10^{23} / 7.0871 \times 10^{-6}$ = $8.49 \times 10^{28} \text{ m}^{-3}$ (shown)	M1 A0
	L2	Show that the number density of charge carriers in copper is $8.49 \times 10^{28} \text{ m}^{-3}$.L2Volume of per mole of copper = mass per mole / density = (63.5 $\times 10^{-3}$) / 8960 = 7.0871 $\times 10^{-6} \text{ m}^3$ Number of conduction (mobile) electrons per mole of copper = 1 electron per atom x number of atoms per mole = 1 electron per atom x Avogadro's constant = 1 $\times (6.02 \times 10^{23}) = 6.02 \times 10^{23}$ Number density of charge carriers = $6.02 \times 10^{23} / 7.0871 \times 10^{-6}$ = $8.49 \times 10^{28} \text{ m}^{-3}$ (shown)

	Net force = ma	
	$a = -\frac{k}{2}x$ [Shown]	
	m ^m	
	Presentation 2:	
	At Equilibrium position, no net force	
	Spring force = Weight	
	$kx_o = mg$ where x_o : spring extension at Equilibrium position —(1)	
	Take direction downwards as positive.	
	At displacement x (downwards) below the Equilibrium position,	
	Net force = - (New Spring force) + Weight	
	$= -k(x_{o} + x) + mg$ (2)	
	Sub (1) into (2): Net force = $-k(x_0 + x) + kx_0 = -kx$	
	By Newton's 2 nd law of motion,	
	Net force = ma	
	$-\mathbf{k}\mathbf{x} = \mathbf{m}\mathbf{a}$	
	Marks scheme:	
	1 mark: use of Hooke's Law, F = kx 1 mark: how Negative sign arise is clear from sign convention	M1
	1 mark: use of Newton's 2 nd law	M1 M1
		A0
(h)	The mass undergoes simple hermonic essillations described by the equation in (a)	
	The mass undergoes simple harmonic oscillations described by the equation in (a)	
	Show that the period T of the oscillations of the mass is given by:	
	$\tau \circ \overline{m}$	
	$I = 2\pi \sqrt{\frac{k}{k}}$	
		[2]
L2	Compare with the SHM equation: $a = -\omega^2 x$	M1
	$\omega^2 = \frac{m}{m}$	
	$(2\pi)^2$ k	
	$\left(\frac{-\pi}{T}\right) = \frac{\pi}{m}$	M1
	$T = 2\pi \sqrt{\frac{m}{k}}$ [Shown]	A0
	· · ·	+
(c)	Ten oscillations are timed using a stopwatch. The data for the mass and the time,	together with t
	uncertainties, are snown in Table 4.1.	
	Table 4.1	
	time for 10 oscillations / s 7.2 ± 0.2	
	m/g 120 ± 1%	

	Determine the value of k together with its actual uncertainty. Give your answer to	o an appropria
	number of significant figures.	
	$k = + Nm^{-1}$	[3]
 L2	$T = \frac{t}{10}$	[0]
	$T = \frac{7.2 s}{10} = 0.72 s$	
	$\frac{\Delta T}{T} = \frac{\Delta t}{t} = \frac{0.2}{7.2}$	
	Making k the subject in the equation from (b),	
	$k = \frac{4\pi^2 m}{T^2} = \frac{4\pi^2 (0.120 \ kg)}{(0.72 \ s)^2} = 9.1385 \ N \ m^{-1}$	M1
	$\frac{\Delta k}{k} = \frac{\Delta m}{m} + 2\frac{\Delta T}{T} = \frac{1}{100} + 2\left(\frac{0.2}{7.2}\right) = 0.065556$	M1
	$\Delta k = 0.065556 \text{ k} = 0.065556 (9.1385) = 0.6 \text{ N m}^{-1}$ (1 sig. fig.)	
	(k $\pm \Delta k$) = (<u>9.1 \pm 0.6) N m⁻¹</u> (Round off k to the same precision as Δk)	A1
 (d)	Calculate the total energy of oscillations of the spring-mass system.	
	total energy =J	[2]
L2	Total energy of oscillations = Maximum KE = $\frac{1}{2}$ m v_0^2 = $\frac{1}{2}$ m $(\omega x_0)^2$ = $\frac{1}{2}$ m $\omega^2 x_0^2$	
	$= \frac{1}{2} (0.120 \text{ kg}) \left(\frac{2\pi}{0.72 \text{ s}}\right)^2 (0.16 \text{ m})^2$	C1
	= 0.11697 = <u>0.12 J</u>	A1
 (e)	On Fig. 4.2, sketch a graph to show the variation with time of the kinetic energy of the	mass
(6)	for one complete oscillation, starting from the time of release. Label the axes with v obtained from (c) and (d).	alues

[Total: 12]

	$x'_{arbitrary}$ units 2 -1 -2 $\Delta t = 37$ units $\Delta t = 37$ units	
	-3 -4 Period, T = 44 units	
	$\frac{\Delta\varphi}{360^{\circ}} = \frac{\Delta t}{T}$	M 1
	$\frac{\Delta\varphi}{360^{\circ}} = \frac{37}{44}$	A 1
	$\Delta \varphi = \frac{37}{44} x360^{\circ} = 302.73^{\circ}$ Phase difference = <u>303° (or 300°).</u>	
	OR $\frac{\Delta \varphi}{360^{\circ}} = \frac{7}{44}$ $\Delta \varphi = \frac{7}{44} x 360^{\circ} = 57.3^{\circ}$ Phase difference = <u>57.3^{\circ} (or 57^{\circ})</u>	
(b)	Dark fringes and bright fringes are both formed on the screen	
	Use Fig. 5.2 to determine, for the bright fringe and the dark fringe closest to point F ratio $\frac{\text{intensity of light at the bright fringe}}{\text{intensity of light at the dark fringe}}$	P, the
	ratio =	[3]
L2	At a bright fringe, the waves arrive in phase , undergoing constructive interference . Thus the resultant amplitude = $3.4 \pm 0.6 = 4.0$ units At a dark fringe, the waves arrive in antiphase (180° out of phase) , undergoing destructive interference . Thus the resultant amplitude = $3.4 \pm 0.6 = 2.8$ units	C1

	(Since we are considering the dark and bright fringes closest to P, assume that the amplitudes of the waves from A and B do not differ significantly from those arriving at P) [Recall that when <u>slits are not infinitely small</u> , single slit diffraction effects causes the double slit bright fringes to be non-uniform in intensity. If the bright fringes are close, the difference in intensity is less.]	
	The intensity of a wave <i>I</i> is directly proportional to the square of its amplitude A. $\frac{I_{bright}}{I_{dark}} = \left(\frac{A_{bright}}{A_{dark}}\right)^2 = \left(\frac{4.0}{2.8}\right)^2$ $\frac{I_{bright}}{I_{dark}} = 2.0408 = 2.0$	M1 A1
	I _{dark}	
(c)	In an attempt to produce brighter fringes, the student widens each of the two slits, ke their separation constant. Fringes are no longer observed.	eping
	Suggest why the fringes are no longer observed.	
		[2]
L3	When the two slits are widened, the light waves passing through each slit will diffract less.	B1
	A smaller degree of diffraction causes the region in which the two waves overlap and interfere to become smaller. If the widths of the slits are too wide, the two waves do not overlap at all and hence no interference occurs. Hence, the fringes are no longer observed.	B1
	Note: As a coherent light beam is used (e.g. laser beam), widening the slits do not cause the waves to be incoherent. Citing incoherence as the reason is not acceptable.	
	[]	otal: 7

6	Two metal plates X and Y are contained in an evacuated container and are connected as shown
	in Fig. 6.1. Metal plate X is then illuminated with monochromatic light.

		[4]	
L2	Part PQ represents the saturation/maximum current. At the current position of O,	[4] B1	
	the potential of X is higher than Y which will create an <u>electric field between</u> them directed towards plate Y.		
	Photoelectrons/electrons are negatively charged and thus will experience an electric force towards plate X which retards their motion. Depending on where O is between E and F, only some or none of the photoelectrons have sufficient kinetic energy to reach plate Y. Hence current measured in the circuit will not be maximum in value.	B1	
	Therefore, for saturation/maximum current to be measured, O would need to be shifted in the region FG / between F and G / to the right of F.	B1	
	This allows for Y to be at higher potential than X. The electric force experienced by the photoelectrons would then act towards Y and accelerate all of the photoelectrons towards Y.	B1	
(b)	Given that the work function energy of X is 1.3 eV and the wavelength of the light is 550 calculate the value of the stopping potential V_{1} .	nm,	
	V ₁ = V	[2]	
L1	$hf = \Phi + KE_{MAX}$ $\frac{hc}{\lambda} = \Phi + eV_S$ $(6.63 \times 10^{-34})(3.00 \times 10^8)$		
	$\frac{(0.00 \times 10^{-9})(0.00 \times 10^{-9})}{550 \times 10^{-9}} = (1.3)(1.60 \times 10^{-19}) + (1.60 \times 10^{-19})V_s$	M1	
	$V_1 = V_s = 0.96023 = 0.96 V$	A1	
(c)	Describe the changes, if any, to the intensity and frequency of the incident monochron light that the student made to obtain graphs B and C if the same metal plate X is used	natic	
	graph B:		
	graph C:		

		[2]
L2	Graph B has a smaller maximum current and a larger stopping potential than graph A. The larger stopping potential indicates that an <u>incident light of higher frequency</u> (or shorter wavelength) is used.	B1
	Intensity of the light is unchanged or lesser or greater (but increase in Intensity not as much as increase in frequency).	
	Graph C has a smaller maximum current but has the same stopping potential as graph A. Since stopping potential is the same, the <u>frequency (or wavelength) of the incident light must be unchanged</u> . The smaller maximum current is due to a <u>lower intensity</u> of light used.	B1

[Total: 8]

7	(a)	The decay of radioactive nuclei is said to be <i>random</i> and <i>spontaneous</i> .					
		Explain what is meant by the radioactive decay is random and spontaneous.					
		randam					
		spontaneous:					
			[2]				
	L1	Random: It is impossible to predict which particular <u>radioactive</u> <u>nucleus</u> in a given sample will decay next and when it will decay, even though <u>any nucleus</u> has a constant probability of decay per unit time.	B1				
		* Reference to 'nucleus' is required.					
		* Full definition, including mention that any nucleus has a constant probability of decay per unit time, is necessary for full credit.					
		Spontaneous: The decay occurs without external stimuli and the rate of decay is unaffected by environmental factors such as temperature and pressure.	B1				
	(b)	A Geiger-Müller counter was used to measure the count rate <i>C</i> of a radioactive source several years. The readings were recorded and used to obtain the graph in Fig. 7.1.	over				

[Turn over

		[1]
L3	Measure the count rate for a longer period of time, in the process, averaging out the random fluctuations.	B1
	OR	
	Use a sample with greater number of radioactive nuclei to increase the measured count rate, thereby reducing the percentage error in the counting.	
(ii)	the background radiation.	
		[1]
12	First measure the background radiation count rate in the absence of the	R1
	sample Then subtract the background radiation count rate from the	51
	measured count rate in the presence of the sample	
	in the process of the sample.	
II	I ITo	otal: 81
	[13	

Answer one question from this Section in the spaces provided.

L2	The	e electrons will move in a parabolic path.	B1				
	Ele <u>upv</u> the	Electrons in a uniform electric field will experience a <u>constant</u> <u>electric force</u> <u>upwards</u> towards the positively charged plates throughout its motion . Therefore, the electrons will <u>accelerate uniformly upwards</u> .					
	As t unc	As there is no horizontal force on the electrons, the horizontal velocity will remain E unchanged.					
 (a)	Λ.	iniform magnetic field is subacquently applied to the region in between the pe					
(C)	cha sele	A uniform magnetic field is subsequently applied to the region in between the para charged plates such that only electrons with specific velocity pass through the veloc selector undeflected.					
	(i)	State the direction of the magnetic field.	n				
			[4]				
 L1		(Perpendicular and) into the page.	B1				
 		(cipertaleataria) <u>inte ine page</u> i					
	(ii)	Calculate the magnetic flux density in the velocity selector if the electrons that undeflected have a speed of 3.25×10^6 m s ⁻¹ after passing through the fields.	at are				
		magnetic flux density =	[3]				
L2	The electric field in between the two parallel plates,						
		$E = \frac{\Delta V}{d} = \frac{1500}{16 \times 10^{-3}} = 93750 \mathrm{N} \mathrm{C}^{-1}$	C1				
By Newton's second law, as the magnetic force is equal in magnitu electric force on the undeflected electrons, $Bqv = qE$		By Newton's second law, as the magnetic force is equal in magnitude to the electric force on the undeflected electrons, $Bqv = qE$					
		E 93750 0.028846	M1				
		$B = \frac{1}{v} = \frac{1}{3.25 \times 10^6} = 0.028846$					
		$B = 2.88 \times 10^{-2} \text{ T}$	A1				
 (d)	At the mass separator, the electrons then enter a region of uniform magnetic field set up a large solenoid.						
	The 3.5	e solenoid has 120 turns for every 15 cm of the solenoid. The current in the solen A.	oid is				
	(i)	Calculate the magnitude of the magnetic flux density R at the centre of the solenoi	d due				
	(7)	to the current of 3.5 A.					
		<i>B</i> =T	[2]				
L1		The magnetic flux density at the centre of the solenoid,					
		$B = \mu_0 n I = 4\pi \times 10^{-7} \left(\frac{120}{15 \times 10^{-2}} \right) 3.5$	M1				
		$B = 3.5186 \times 10^{-3} = 3.52 \times 10^{-3}$ T	A1				
	(ii)	Inside the dashed region on Fig. 8.4, sketch the magnetic field pattern due to the cuin the solenoid.	urrent				

			[3]
L2		As the electrons are <u>charged</u> and <u>enters the uniform magnetic field</u> perpendicularly, there is a <u>magnetic force</u> that is <u>always</u> perpendicular to both the <u>electrons' velocity and the field</u> .	B 1
		As the magnetic force is always perpendicular to the electrons' velocity, the force continuously <u>changes the electrons' velocity direction but not the velocity</u> <u>magnitude</u> .	B1
		The <u>magnetic force will be constant at constant speed</u> , and provides for the centripetal force of the electrons, causing the electrons to travel in a circular path of <u>constant radius</u> .	B1
	(iv)	In usual application, charged particles of different masses enter the mass sepa	arator
		instead of just electrons.	
		Suggest how the uniform magnetic field can separate the charged particles by ma	ass.
1.0		A - the second state of th	[2]
L3		As the magnetic force provides for the centripetal force, $Bqv = \frac{mv^2}{r}$ $r = \frac{mv}{Bq}$	
		thus, when the charged particles of the same speed v (after passing through the velocity selector all the particles have same speed) move in the same uniform magnetic flux density B, the radius r of the circular path of the charged particles is proportional to the mass m but inversely proportional to the charge q (proportional to the mass-to-charge) ratio.	B1
		Different charged particles have <u>different mass-to-charge ratio</u> , thus separated by moving in circular path with various respective radius.	B1
	11	[Tot	al: 20]

(ii)	Use Fig. 9.3 to determine the mass of the planet.	
	mass = kg	[2]
L2	Using $x = 3.0 \times 10^3$ km with its corresponding potential $\phi = -0.30 \times 10^6$ J (or any other coordinates).	
	CM	
	$\phi = -\frac{GM}{x}$	
	$-0.30 \times 10^6 = -\frac{(6.67 \times 10^{-11})(M)}{(M)}$	M1
	$3.0 x 10^3 x 10^3$	
	M=1.3493 x 10^{22} =1.35 x 10^{22} kg	A1
(iii)	A moon of the planet has a circular orbit of radius 3.0 x 10 ³ km. The period	of its
	orbit is 3.44 x 10 ⁴ s.	
	Calculate the centripetal acceleration of the moon.	
	centripetal acceleration = m s ⁻²	[2]
L2		
	a = $r\omega^2 = r(\frac{2\pi}{T})^2 = 3.0 x 10^3 x 10^3 (\frac{2\pi}{3.44 x 10^4})^2$	111
	$a = 0.10008 = 0.100 \text{ m s}^{-2}$	A1
	Evaluin why the gravitational field strength at the position of the mean bas the s	0000
(1V)	magnitude and same direction as the centripetal acceleration of the moon.	ame
		[0]
12	Gravitational field strength α is defined as the gravitational force E_{α} per	[3] B1
	unit mass, hence F_g = mass of moon x g .	2.
	By Newton's second law of motion, centripetal force F_c = mass of moon	B1
	x centripetal acceleration <i>a</i> _c .	
1 1	As gravitational force $E_{\rm r}$ provides the centripetal force $E_{\rm r}$ for the moon	B1
	to orbit the planet, g is of the same magnitude and same direction as a_c .	
(v)	to orbit the planet, g is of the same magnitude and same direction as a_c . The mass of the moon is 1.52 x 10 ²¹ kg.	
(v)	to orbit the planet, g is of the same magnitude and same direction as a_c . The mass of the moon is 1.52 x 10^{21} kg.	

		total energy =J	[3]
	L2	Gravitational potential energy $= -\frac{GMm}{r}$ $= -\frac{(6.67 x 10^{-11})(1.3493 x 10^{22})(1.52 x 10^{21})}{3.0 x 10^3 x 10^3}$ $= -4.5599 x 10^{26} J$ Kinetic energy	M1
		$= \frac{1}{2}mv^{2} = \frac{1}{2}(1.52 x 10^{21})(r\omega)^{2}$ = $\frac{1}{2}(1.52 x 10^{21})\left((3.0 x 10^{3} x 10^{3})(\frac{2\pi}{3.44 x 10^{4}})\right)^{2}$ = 2.28191 x 10 ²⁶ J	M 1
		Total energy = Gravitational potential energy + Kinetic energy = $-4.5599 x 10^{26} + 2.28191 x 10^{26} = -2.28 x 10^{26} J$	A1
		OR	
		Derive to show that $KE = \frac{1}{2} \frac{GMm}{r}$	
		Total energy = KE + GPE = $\frac{1}{2} \frac{GMm}{r} + \left(-\frac{GMm}{r}\right)$ = $-\frac{1}{2} \frac{GMm}{r}$ = $-\frac{1}{2} \frac{(6.67 \times 10^{-11})(1.3493 \times 10^{22})(1.52 \times 10^{21})}{3.0 \times 10^3 \times 10^3}$ = $-2.27995 \times 10^{26} J$ = $-2.28 \times 10^{26} J$	
(d)	State	and explain one similarity and one difference in the variations in the electric pote	ntial
. ,	<mark>and g</mark>	ravitational potential shown in Fig. 9.1 and Fig. 9.3 respectively.	
	simila	ırity:	<u></u>
	differe	ence:	
L1	Simila are ir	arity: The magnitudes of both electric potential and gravitational potential nversely proportional to the distance from the centre of the object.	[2] B1
	Differ elect charg	ence: Gravitational potential is always negative for any mass, whereas ric potential is positive for a positive charge (and negative for a negative ge).	B1
 		[Tot	al: 20]

END OF PAPER

BLANK PAGE