
ANDERSON JUNIOR COLLEGE 2008 H1 Chemistry Paper 2 Section A

- **1** (a) $\text{Li}(g) \rightarrow \text{Li}^+(g) + e$
 - (b) (i) 519; 494; 418
 - (ii) Down the group, first IE decreases because increase in shielding effect outweighs increase in nuclear charge Attraction between nucleus and valence electron decreases.
 - (c) (i) Na⁺H⁻ is <u>ionic</u> compound whereas HF is <u>simple covalent</u> molecule because difference in electronegativity between atoms is high in NaH and low in HF
 - (ii) $\begin{bmatrix} Na \end{bmatrix}^+ \begin{bmatrix} H^* \end{bmatrix}^ H^*F^\bullet$ NaH H^*F^\bullet HF
- 2 (a) (i) Substitution; with catalyst Fe or FeBr₃
 - (ii) Heat with acidified KMnO₄; methybenzene decolourises purple KMnO₄; benzene no change; $C_6H_5CH_3 + 3 [O] \rightarrow C_6H_5CO_2H + H_2O$
 - (b) (i) $C_6H_6 + 3O_2 \rightarrow 3C + 3CO + 3H_2O$
 - (ii) $\Delta H_c(C_6H_6) = -3276 \text{ kJ mol}^{-1}$ $\Delta H_f = 6(-393) + 3(-286) - (-3276) = + 60 \text{ kJ mol}^{-1}$
 - (iii)

methylbenzene is at a lower energy level than benzene; methylbenzene more stable than benzene

(c) unburnt hydrocarbons; carbon monoxide

3 (a) (i) $[H^+] = = 0.02 \text{ mol dm}^{-3}$

- $pH = -log_{10}[H^+] = -log_{10}(0.02) = 1.70$
- (ii) The acid is so dilute that H⁺ from dissociation of H₂O cannot be ignored. [H⁺] = $1.0 \times 10^{-8} + 1.0 \times 10^{-7} = 1.1 \times 10^{-7} \text{ mol dm}^{-3} \Rightarrow \text{pH} = 6.96$
- (b) **A** acids are H_2SO_4 and $H_2NO_3^+$ stronger acid is H_2SO_4 High $K_c \Rightarrow$ eqm lies to the right; tendency for H_2SO_4 to lose H^+ is higher
 - **B** acids are CH_3CONH_2 and NH_4^+ stronger acid is NH_4^+ Low $K_c \Rightarrow$ eqm lies to the left; tendency for NH_4^+ to lose H^+ is higher
- (c) (i) NaCl pH 7 ; Al₂Cl₆ pH 3 4 ; SiCl₄ pH 2
 - (ii) NaCl merely dissolves to give Na^+ (aq) and Cl^- (aq);

 $\begin{array}{l} \text{Al}_2\text{Cl}_6 \text{ undergoes partial hydrolysis} \\ \text{Al}_2\text{Cl}_6 + \text{aq} \rightarrow 2 \text{ Al}^{3+}(\text{aq}) + 6\text{Cl}^{-}(\text{aq}) \\ \left[\text{Al}(\text{H}_2\text{O})_6\right]^{3+} \Leftrightarrow \left[\text{Al}(\text{H}_2\text{O})_5(\text{OH})\right]^{2+} + \text{H}^+; \end{array}$

SiC/₄ undergoes strong hydrolysis. SiCl₄ + $2H_2O \rightarrow SiO_2 + 4HCI$

4 (a) (i) 8 CO + 17
$$H_2 \rightarrow C_8 H_{18} + 8 H_2 O$$

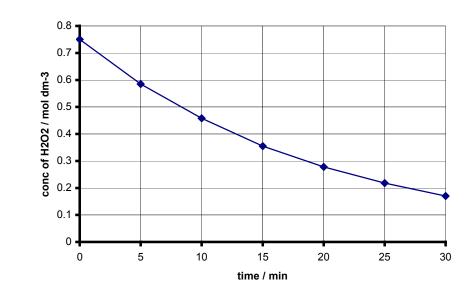
- (ii) $\Delta H = [8(1074) + 17(436)] [7(350) + 18(410) + 16(460)]$ = -1186 kJ mol⁻¹
- (b) (i) $K_c = \frac{[H_2][CO]}{[H_2O]}$ Unit of K_c is mol dm⁻³
 - K_c increases when temperature increases implies that forward reaction is favoured at high temperature. Hence gasification of coal is an endothermic process.
 - (iii) C (s) + H₂O (g) → H₂ (g) + CO (g) Low pressure favours the forward reaction which is accompanied by an increase of gaseous molecules. Hence low pressure increases the yeild of synthesis gas (H₂ & CO)
- (c) The steam will react with CO and thus reduces its concentration in the synthesis gas. At the same time, H_2 concentration in the synthesis gas is increased by the reaction.
- (d) Production of CO₂ leads to global warming.
- (e) Abundant supply of coal relative to crude oil reserves / Coal is cheaper compared to volatile and unpredictable crude oil prices.

Section **B**

5 (a) Na₂O is giant ionic with strong ionic bonds between Na⁺ and O²⁻ ions. Dissolves readily in water to give a stong alkali Na₂O + H₂O \rightarrow 2NaOH

 SiO_2 is is giant molecular with strong covalent bonds between Si and O atoms. It is insoluble in water.

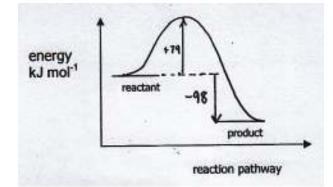
 P_4O_{10} is simple covalent with weak intermolecular forces of attractions. It dissolves readily in water to given a strong acid. P_4O_{10} + $6H_2O$ \rightarrow $4H_3PO_4$


- (b) (i) GeO_2 high melting point \Rightarrow giant ionic SeO_2 low melting point \Rightarrow simple covalent
 - (ii) GeO₂ amphoteric oxide With NaOH: GeO₂ + 2OH⁻ + 2H₂O \rightarrow Ge(OH)₆²⁻ With HCI : GeO₂ + 4HCI \rightarrow GeCl₄ + 2H₂O

(c) (i) Amt of Cl in 0.10 g SOCl₂ = $(0.10 \div 119.1) \times 2 = 0.00168 \text{ mol}$ Amt of Cl in 0.10 g SO₂Cl₂ = $(0.10 \div 135.1) \times 2 = 0.00148 \text{ mol}$

mole of Cl⁻ formed = mole of AgCl = $0.240 \div 143.5 = 0.00167$ mol Oxochloride is SOCl₂

- (ii) Other than HCl, SOCl₂ gives H_2SO_3 / SO₂Cl₂ gives H_2SO_4
- (d) (from alcohols) e.g. CH₃CH₂OH (from carboxylic acids) e.g. CH₃COOH
- (e) elimination of HCI; NaOH in alcohol


6 (a) (i)

- (ii) measure 2 successive half lives $\rightarrow t_{\frac{1}{2}}$ constant (13.5 to 14.5 min) \rightarrow reaction 1st order w.r.t. H₂O₂ rate = k[H₂O₂]
- (iii) draw tangent at t = 0 initial rate = 0.0355 to 0.0385 mol dm⁻³ min⁻¹ k = initial rate ÷ [H₂O₂] = 0.0480 to 0.0510 min⁻¹
- (iv) Name any one : $MnO_2 / Fe^{3+} / Pt$ etc

(b) (i)

(ii)

(ii) value of k increases since rate increases without increase in concentration of reactant

- (c) (i) concentration increase causes molecules to be closer together
 - Increased collision rate
 - temperature increase causes kinetic energy to increase
 - more molecules will possess energy equal to or exceeding activation energy

6 (d) (i) $H_2O_2 \rightarrow O_2 + 2H^+ + 2e$ $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$ $5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$ mole of H_2O_2 used = 50/1000 x 0.0100 = 5 x 10⁻⁴ mol mole of MnO_4^- needed = 2/5 x 5 x 10⁻⁴ = 2 x 10⁻⁴ mol

volume of $MnO_4^- = 2 \times 10^{-4} / 0.02 = 0.01 \text{ dm}^3 = 10 \text{ cm}^3$

(ii) In this titration, 1 mol $H_2O_2 \equiv 1$ mole O_2 mole O_2 produced = 5 x 10⁻⁴ mol volume of O_2 at room conditions = 5 x 10⁻⁴ x 24 dm³ = <u>12 cm³</u>

(e)
$$CH_3$$

 $|$
 CH_3 — $C = O CO_2$

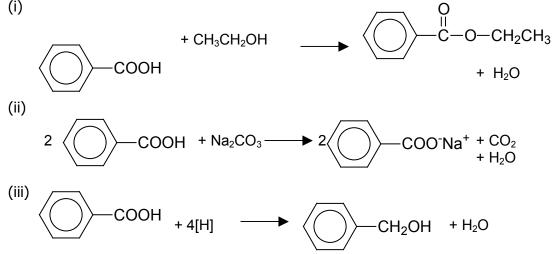
7 (a) (i) 2-bromobutane (ii)

(b) (i)

$$\begin{array}{c} \mathsf{CH}_3\\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_2 \\ \mathsf{Br} \\ \mathsf{Br} \\ \mathsf{Br} \end{array}$$

$$CH_3CH_2CH_2CH_2Br$$

(ii)
$$CH_3CH_2 - C - CH_3$$


oxidiation

- (iii) Yellow precipitate formed.
 CHI₃ and CH₃CH₂COO⁻Na⁺
- (c) (i) Boiling point: Compound E < Compound F < Compound A lowest highest

E is non-polar with weak van der Waals's forces between molecules.F and A are polar with stronger dipole-dipole attraction b/w molecules.A has more electrons than F. Van der Waals' forces stronger in A than in F.

(ii) CFCs lead to the depletion of the ozone layer.

7 (d) (i)

(e) 2,2-dichlorobutanoic acid has 2 highly <u>electronegative CI atoms</u> to exert <u>electron-</u> <u>withdrawing</u> effect on the –COO⁻ ion / COOH group.

The negative charge becomes more delocalized and the ion becomes more stable. / The dissociation 2,2-dichlorobutanoic acid is more favoured.

Hence 2,2-dichlorobutanoic acid is a stronger acid.

(f) (i) Add 2,4-dinitrophenylhydrazine to both compounds.

Compound S will give a yellow/orange precipitate but Tamoxifen will not.

(ii)

Percentage mass of C = $\frac{26(12.0)}{26(12.0) + 31(1.0) + 14.0 + 16.0} \times 100\%$

$$=\frac{312}{373}\times100\%$$

= 83.6 %

1	В	7	D	13	А	19	D	25	С
2	D	8	В	14	В	20	С	26	В
3	С	9	D	15	С	21	В	27	В
4	В	10	С	16	D	22	D	28	D
5	Α	11	Α	17	С	23	С	29	С
6	А	12	С	18	А	24	А	30	А

Paper 1 (MCQ) Answers