(b) Given that $\log_4 xy = 7$ and $\frac{\log_4 x}{\log_4 y} = -8$, find the value of $\log_4 y$. Hence, evaluate $\log_4 \frac{2x}{y^3}$.

$$\begin{bmatrix} \log_{4} y = -1, \\ \log_{4} \frac{2x}{y^{3}} = 11.5 \end{bmatrix}$$

- 2. The population of polar bears in the arctic is given by the formula $N = 8000(2+3e^{-\frac{t}{50}})$, where t is measured in years. Find
 - (i) the initial population,

[1]

[40000]

(ii) the population after 50 years,

[1]

[24800]

(iii) the least number of years it would take the population to exceed 20 000,

[3]

[sugoP]

- (iv) the rate at which the polar bears is decreasing when t = 10,
- ^[2]

(v) From the formula $N = 8000(2+3e^{-\frac{1}{50}})$, explain why the population of the polar bears can never fall below 16000. [2]

(vi) Sketch the population-time curve in the grid below.

Population

Time (years)

CHS Preliminary Examination 2021

3. Given that the expression $2x^3 + ax^2 + bx - 6$ is divisible by $(x^2 - 2)$, find the value of a and of b.

Hence,

(i) solve the equation
$$2x^3 + ax^2 + bx - 6 = 0$$
, for the exact value(s) of x,

$$\left[x=\pm\sqrt{2},-\frac{3}{2}\right]$$

(ii) solve the equation
$$2 + ay + by^2 - 6y^3 = 0$$
.

[2]
$$y = \pm \frac{5}{2}, -\frac{2}{3}$$

CHS Preliminary Examination 2021

[4]

[0°,60°,120°,500,160]

(b) Find all the angles between 0 and 6 for which $2 \tan y (\tan y + 1) = 3(2 - \sec^2 y)$.

[4]

[0.540, 2.36, 3.68, 5.50, 31, 74]

CHS Preliminary Examination 2021

- 5. (a) Given that $\cos A = -\frac{3}{5}$ where $\pi < A < \frac{3\pi}{2}$. Find, without using a calculator, the value of
 - (i) $\sin(\pi A)$,

[1]

[-4]

(ii) cot A,

[1]

[]

(iii) $\cos \frac{A}{2}$.

[2]

[-흝]

(b) Prove the identity
$$\frac{2 - \sec^2 x}{\sec^2 x + 2 \tan x} = \frac{\cos x - \sin x}{\cos x + \sin x}$$

[41

CHS Preliminary Examination 2021

8 .	Two points A and B have coordinates $(1, 2)$ and $(-3, 6)$ respectively. A point $P(x, y)$ is such that AP and BP are perpendicular.		
	(a)	Show that P lies on the circumference of a circle.	[2]
	Find (b)	the coordinates of the centre of the circle and the radius of the circle,	[4] [C(-1,4) [R=252
	(c)	the equation of the circle.	[1]
	(d)	Explain why the tangents to the circle at A and B are parallel.	[2]

CHS Preliminary Examination 2021

[3]

(b) Find the coordinates of the stationary point(s) of the curve $y = xe^{-2x}$ and determine the nature of the stationary point(s).

[6]
[Max (1/2, 1/2)]

CHS Preliminary Examination 2021

- A particle A moves in a straight line, so that, t seconds after leaving a fixed point P, its velocity, v_A ms⁻¹, is given by $v_A = 2t 6$.
 - (a) Find the distance travelled by the particle A before it comes to instantaneous rest.

[3]

[9m]

CHS Preliminary Examination 2021

A second particle B moves along the same horizontal line as A, and starts from Q, a point 8 m away from P, at the same instant that A begins to move. Particle B moves with a velocity of 5 ms⁻¹ and decelerates at 1 ms⁻².

(b) Calculate the distance between particle A and particle B when A comes to instantaneous rest. [3]

[27.5m]

[TURN OVER

CHS Preliminary Examination 2021

(c) Find the time during the interval $0 \le t \le 5$ when the distance between particle A and particle B is at its maximum. Calculate this maximum distance.

[3]

(d) Find the range of values of t for which both particles are moving in the same direction.

[1]

END OF PAPER

CHS Preliminary Examination 2021

