Photosynthesis ($6CO_2 + 6H_2O \Rightarrow C_6H_{12}O_6 + 6O_2$)

Light Dependent Reactions (on thylakoid membrane)

* Primary pigment: special chl a mlc, P680 & P700. P680 is found in the reaction centre (RC) of Photosystem II (PSII) & P700 in Photosystem I (PS I) * Accessory pigments: other chl a, chl b mlcs & carotenoids (fd in the light harvesting complex (LHC)

Non-cyclic photophosphorylation

* When a photon of **light** is **absorbed** by an **accessory pigment** molecule in the **light harvesting complex (LHC)** of PS II, one of its electrons is excited to a higher energy level. As the excited electron drops to its ground state, the energy released is passed on to the next pigment molecule. This **resonance transfer of energy** continues until **P680**, the **special chlorophyll a** molecule in the **reaction centre (RC)** is reached.

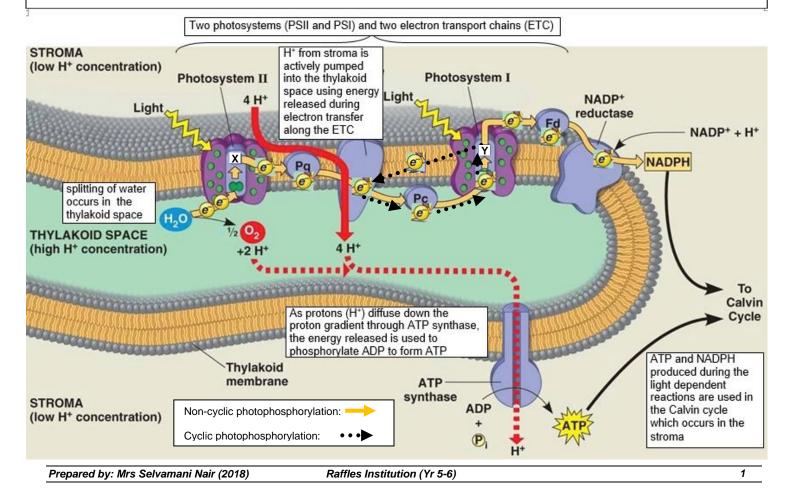
* When **P680** absorbs the energy from the accessory pigments of the light harvesting apparatus, it loses an **electron**, leaving an **electron hole** in PSII. The displaced electron is accepted by a **primary electron acceptor (X**) in the reaction centre.

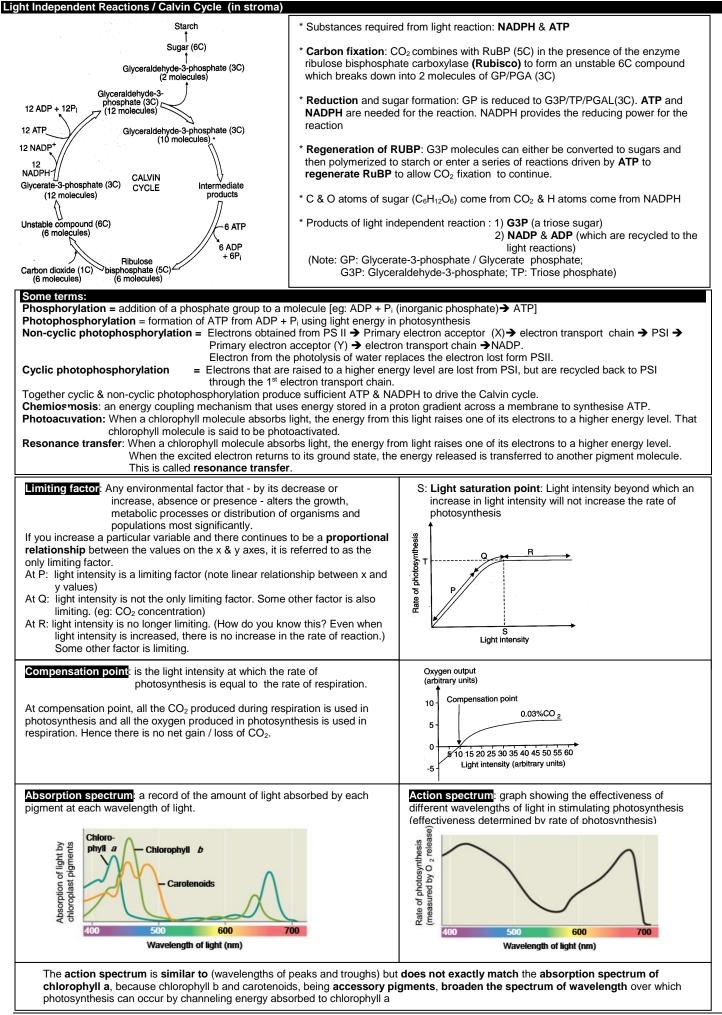
* The electron hole in PSII is filled by an electron released from the **splitting of water** in an enzyme-catalysed reaction in the thylakoid space. During the splitting of water, the H⁺ released contributes to a high concentration of H⁺ in the thylakoid space while the O atom combines with another O atom, forming **molecular oxygen (O₂)** as a **by-product**

* The electron from the **primary e** acceptor (X) is then passed down a series of increasingly electronegative electron carriers (of the 1st ETC) losing energy during the transfer. The energy lost during this electron flow is used to actively pump H* from the stroma to the thylakoid space, generating a proton gradient across the membrane. Chemiosmosis occurs when H* diffuse down the proton gradient back into the stroma via ATP synthase, & ADP is phosphorylated to ATP.

* Meanwhile, PSI loses an electron in a manner similar to PSII. When **P700** absorbs the energy from the accessory pigments in the light harvesting apparatus, it **loses an electron**, leaving an **electron hole** in PSI. The displaced electron is accepted by a **primary electron acceptor (Y)** in the reaction centre. The electron hole in PSI is filled by the displaced electron from PSII when it reaches the end of the first electron transport chain.

* The electron from the **primary electron acceptor (Y)** is then is passed down a series of electron carriers of a 2nd ETC. (Energy is not released during electron transfer down this 2nd ETC.). The electron is finally accepted by **NADP** (the final electron acceptor) which is **reduced** to **NADPH** (NADP+e⁻+H⁺→NADPH) by **NADP reductase** which is found on the thylakoid membrane.

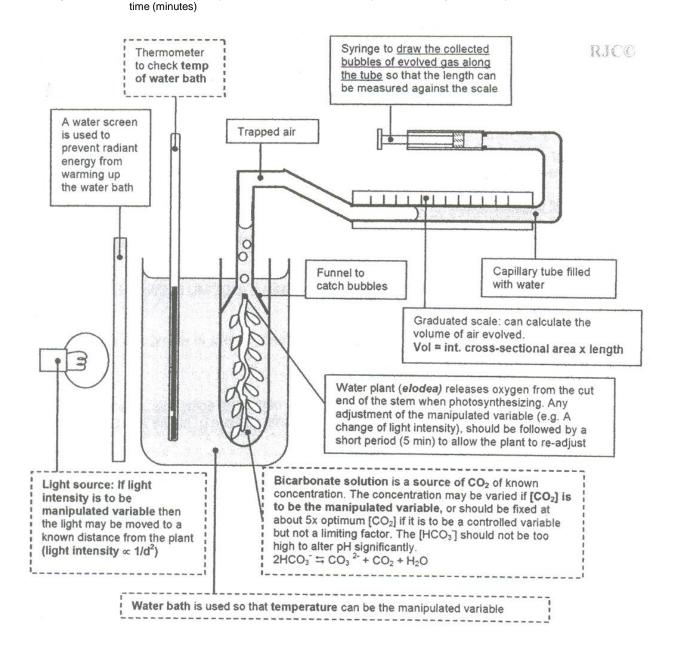

* The ATP & NADPH produced during non-cyclic photophosphorylation will be used in the Calvin cycle.


Cyclic photophosphorylation

* In <u>cyclic photophosphorylation</u>, electrons displaced from **P700 of PSI** & accepted by the primary electron acceptor Y are transferred to the **middle** of the 1st ETC. The electron is transported down the ETC & is finally recycled back to PSI.

* Energy lost during electron transfer is coupled to the formation of ATP in a manner similar to non-cyclic photophosphorylation.

* Only PSI is involved & only ATP is produced during cyclic photophosphorylation. NADPH is not produced. The ATP produced is used in the Calvin cycle.



Raffles Institution (Yr 5-6)

3 KEY Factors Affecting The Rate Of Photosynthesis

1) light intensity 2) CO₂ concentration 3) temperature (other factors which may limit rate of photosynthesis include chlorophyll or oxygen concentration, specific inhibitors like herbicides, water, pollution etc.) Below is the setup to measure **rate of oxygen evolution by a water plant during photosynthesis**. Only 1 limiting factor should be tested at a time.

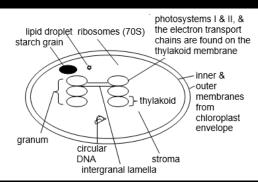
Rate of Photosynthesis is proportional to the volume of gas evolved. Since bubbles of evolved gas are collected over a fixed duration of time, Rate of Photosynthesis = $\frac{\text{collected volume (mm^3)}}{\text{collected volume (mm^3)}} = \frac{\text{mm}^3 \text{ of evolved } O_2/\text{min}}{\text{min}}$ (at a known temperature, t°C)

Prepared by: Mrs Selvamani Nair (2018)

Distinguish between Light-Dependent and Light-Independent Reactions

Feature	Light-Dependent Reaction	Light-Independent Reaction/ Calvin Cycle
Location	Thylakoid (thylakoid space, thylakoid membrane) & stroma	Stroma
	Requires light for photoactivation/ photoexcitation of electrons (both) and photolysis of water (non-cyclic photophosphorylation only)	Does not require light
Conditions	Less enzyme-dependent	More enzyme-dependent
	Requires enzymes for photolysis of water and NADP ⁺ reductase for reduction of NADP (non-cyclic photophosphorylation only)	Requires RuBisCO for carbon fixation
Reactions involved	Cyclic and non-cyclic photophosphorylation	Carbon fixation
	Photoactivation	Reduction
	Photophosphorylation (including chemiosmosis)	Regeneration of RuBP
	Photolysis (non-cyclic only)	
	 Reduction of NADP⁺ (non-cyclic only) 	
Reactants	H ₂ O, NADP ⁺ , ADP, P _i	NADPH, ATP, CO ₂
Products	(NADPH, ATP)	G3P, (NADP ⁺ , ADP)
By-products	O ₂	-

Compare Non-cyclic and Cyclic Photophosphorylation


Features	Non-Cyclic Photophosphorylation	Cyclic Photophosphorylation
Similarities	 <u>Energy lost</u> from the flow of electrons along an ETC is used to <u>actively pump</u> H⁺ across membrane to generate a proton gradient <u>ADP is phosphorylated to ATP</u> via ATP synthase using energy directly from the flow of protons down their gradient via <u>chemiosmosis</u> Both processes take place on <u>membranes</u> 	
Conditions Calvin cycle requires 9 ATP & 6 NADPH → NADPH may be oxidized back but ATP insufficient	When both ATP and NADPH are required (too much NADP ⁺)	When only ATP is required (i.e. when NADP ⁺ concentration is limiting, e.g. when there is a high NADPH to NADP ⁺ ratio)
Pathway of electrons	One direction from water through two ETC to NADP ⁺ via 2 photosystems	Cyclical passing from PSI to ETC back to PSI
Photosystems involved	PSII and PSI	PSI only
First electron donor	Water	P700 in PSI (no photolysis of water)
Last electron acceptor	NADP ⁺	P700 in PSI
Products	ATP, NADPH, O ₂	ATP only
High [H⁺] in thylakoid space	Active transport of H ⁺ ions by electron carriers of ETC; Photolysis of water $(H_2O \rightarrow 2e^- + 2H^+ + \frac{1}{2}O_2)$	Active transport of H ⁺ ions by electron carriers of ETC only

Describe the role of NADP in photosynthesis

1) NADP⁺ is a coenzyme which carries both protons and high energy electrons

- 2) NADP⁺ is the final electron acceptor in the non-cyclic light dependent reaction in the thylakoid membrane
- 3) Electrons carried in reduced NADP (NADPH) are used in the Calvin cycle in the stroma of the chloroplast to reduce glycerate phosphate (GP) to glyceraldehyde-3-phosphate (G3P)
- 4) When GP is reduced to G3P, NADP is regenerated to carry out its role as an electron carrier from the light dependent reactions

Structure of chloroplast

Some Questions:

- Q: What contributes to high H⁺ concentration in the thylakoid space?
 - 1) proton pump (which actively pumps H⁺ into the thylakoid space)
 - 2) photolysis of water (catalysed by enzymes on inner thylakoid membrane)
 - 3) **lack of permeability** of thylakoid membrane to H⁺ (due to its hydrophobic core)
 - 4) reduction of NADP to NADPH occurs in the stroma & hence reduces the H⁺ concentration in the stroma thereby ensuring the steepness of the H⁺ gradient across the membrane

Q: Describe the function of the thylakoid membrane in photophosphorylation.

- 1) Provides a large surface area to embed many photosynthetic pigments for light absorption
- 2) Maintains the sequential arrangement of the electron carriers of electron transport chain for the flow of electrons
- 3) Maintains proton gradient for ATP synthesis since the hydrophobic core of the membrane is impermeable to protons and this is essential for chemiosmosis
- 4) Allows of many **ATP synthase to be embedded** so ATP can be produced as protons flow down their gradient via **chemiosmosis** from thylakoid space to stroma