

CHEMISTRY DEPARTMENT OF SCIENCE

A Methodist Institution Founded in 1886

Name:	()	Class:	SEC 3	
	 •	•			

CHEMICAL CALCULATIONS (EXTENSIONS) - ASSIGNMENT

Mu	ltiple	e-Choice Que	stions [20 I	Marks]				TOT	TAL SCO	ORE	/ 30
Wr	ite i	n your selecte	ed answer i	for the mu	ıltiple-choi	ce qu	estions	s in the bo.	xes pro	vided.	
	1	2	3	4	5		6	7	8	9	10
1	1	12	13	14	15	1	6	17	18	19	20
1.	 The ratio of the number of atoms in 2 moles of oxygen molecules to the number of atoms in 4 moles of helium is 								toms in 4		
	A	1:1	В	1:2		С	1:4		D	2:1	
2.	Wh	nich of the fol	lowing con	tains the s	same numl	ber of	atoms	s as 25.5 g	ırams of	ammonia?	
	A	2.0 mol of C	O ₂ B	3.0 mol	of He	С	4.0 m	ol of CH ₄	D	6.0 mol of	O ₂
3.	A 0.25 mol sample of an unknown metal ${\bf Q}$ is burnt in oxygen. The oxide formed was found to have a mass of 18 grams.									found to	
	Given that the relative atomic mass of ${\bf Q}$ is 64, what is the oxide formula?										
	A	Q O	В	\mathbf{Q}_2O		С	Q O ₂		D	\mathbf{Q}_2O_2	
4.	0.1	. mol M SO ₄ co	ombines wi	th 5.4 g c	of water to	form	the hy	drate M S0	O₄. n H₂O	. What is n ?	ı
	A	1	В	2		С	3		D	4	
5.	Wh	nich of the fol	lowing con	tains the q	greatest m	ass of	f nitrog	gen for ev	ery 1 g	ram of subs	stance?
	A	(NH ₄) ₃ PO ₄	В	Mg(NO₃)2	С	NH ₃		D	NH ₄ NO ₃	
6. Which of the following contains the greatest mass of nitrogen for o						gen for ev	ery 1 n	nole of subs	tance?		
	A	(NH ₄) ₃ PO ₄	В	Mg(NO ₃)2	С	NΗ ₃		D	NH ₄ NO ₃	

		Percentage composition by mass of a compound can be found from its empirical formula. The empirical formula of a compound can be found from its percentage composition by mass.								
9.		An unknown chloride of phosphorus was found to contain 5.6 g of phosphorus and 32.0 g of chlorine. What is its empirical formula?								
	A	PCl ₃	В	PCl ₅	С	PCl ₆	D	P ₂ Cl ₅		
10.	10. An oxide of sulfur contains 1.5 times the mass of oxygen than sulfur. What is the empirical formula for this oxide?									
	A	SO ₂	В	SO ₃	С	S_2O_3	D	S ₃ O ₂		
11.	11. In an experiment to find the empirical formula of a metallic oxide, a strip of the unknown metal X is first weighed. Next, the strip of X is allowed to react completely in a covered crucible, and the residue allowed to cool. After cooling, the residue is then extracted and weighed.									
	The	e results for the expe	erim	ent are as shown.						
				mass of metal X mass of residue		3.0 grams 5.0 grams				
	Ass	suming that the relat	ive a	atomic mass of X is 3	32, f	ind the empirical for	mula	a of the oxide of X .		
	A	X O	В	X O ₂	С	X ₂ O ₃	D	X ₃ O ₄		
12.	Per	ntane fuel is combus	ted i	n excess oxygen as	shov	vn:				
		C₅H	12 (l) + 8 O ₂ (g) ——	→ 5	5 CO ₂ (g) + 6 H ₂ O	(I)			
What is the total volume of gas remaining if 0.24 grams of pentane is allowed to react with 800 cm ³ of oxygen? Assume that all volumes are measured at room conditions.										
	A	160 cm ³	В	400 cm ³	С	560 cm ³	D	880 cm ³		
13. 2.00 grams of solid calcium carbonate is allowed to react with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid, as shown below. What mass of calcium carbonate remains after the reaction?										
$CaCO_3(g) + 2 HCl(aq) \longrightarrow CaCl_2(g) + H_2O(l) + CO_2(g)$										
	A	0.25 grams	В	0.50 grams	С	1.00 grams	D	1.50 grams		
AI E	VIE	E & CAMCON MOON/2010		DACE S) OE	Л				

7. The empirical formula of an organic molecule was found to be CH_2O . What other information is required in order to find its molecular formula?

C products of combustionD relative molecular mass

A melting and boiling pointsB percentage composition

8. Which of the following statements about empirical formula is **false**?

14. Silver ions react with chloride ions.

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

It is found that 5.0 cm³ of a 0.1 mol/dm³ solution of the chloride of metal **X** requires 10.0 cm³ of 0.1 mol/dm³ silver nitrate for complete reaction.

What is the formula of the chloride?

- A XCI
- **B X**₂Cl
- C XCl₂
- D XCl₄
- 15. Sulfur trioxide, SO₃, is prepared by reacting equal masses of sulfur and oxygen. What percentage of the excess reagent remains unreacted?
 - **A** 25.5 %
- **B** 28.8 %
- **C** 31.1 %
- **D** 33.3 %
- 16. 48.0 g of impure carbon combusts in an excess of oxygen to form 21.8 dm³ of carbon dioxide, measured at room temperature and pressure. What is the percentage purity of the carbon?
 - **A** 30.3 %
- **B** 22.7 %
- C 45.4 %
- **D** 53.8 %
- 17. A solution is made up by dissolving 1.25 g of impure sodium hydroxide in water and making it up to 250 cm³ of solution. 25.0 cm³ of this solution is neutralized by 30.0 cm³ of 0.100 mol/dm³ HCl. What is the percentage purity of the sodium hydroxide?
 - **A** 9.60 %
- **B** 26.0 %
- **C** 48.0 %
- **D** 96.0 %
- 18. 0.2 mol of aqueous magnesium chloride was mixed with an excess of aqueous silver nitrate in a beaker. 36.6 grams of precipitate was formed.

What is the percentage yield for this reaction?

- **A** 63.8 %
- **B** 78.4 %
- **C** 85.0 %
- **D** 89.7 %
- 19. The conversion of ethene to ethanol can be represented as follows:

Which reaction, A, B, C or D, has the greatest percentage yield?

20. The first step in the *Ostwald Process* for producing nitric acid is as follows:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO } (g) + 6 \text{ H}_2\text{O } (g)$$

If 150 g of ammonia reacts with 150 g of oxygen gas to give 87 g of nitric oxide, what is the percentage yield for this reaction?

- **A** 33 %
- **B** 49 %
- **C** 77 %
- **D** 100 %

Structured Questions [10 Marks]

21.	An	16.0 g sample of an unknown oxide of phosphorus contains 9.0 grams of oxygen by mass	
	(a)	By showing appropriate working, find the empirical formula of this oxide.	[2]
	(b)	Given that relative formula mass of the oxide is 284, find its molecular formula.	[2]
	(c)	Would you expect this phosphorus oxide to have a high or low boiling point? Explain how arrived at your answer.	you [3]
22.	hea	the industrial extraction of iron, haematite, an iron ore mainly consisting of iron(III) oxidated in the presence of carbon monoxide, as shown. $Fe_2O_3 (s) + 3 CO (g) \longrightarrow 2 Fe (I) + 3 CO_2 (g)$	de, is
		0.00 kg sample of haematite reacts with excess carbon monoxide produce 3.50 kg of iron. culate the percentage purity of the haematite.	[3]