1	(a)	\$1000		
	(b)	$-\frac{1}{3}x^2 + 2x + 1$		
		$=-\frac{1}{3}\left[x^2-6x-3\right]$		
		$= -\frac{1}{3} \left[\left(x - 3 \right)^2 - \left(3 \right)^2 \right] + 1$	 	
		$= -\frac{1}{3}(x-3)^2 + 3 + 1$		
		$-\frac{1}{3}(x-3)^2+4$		
	(c)	3 months or August	 	
		\$4000		
2	(a)	$f(x) = ax^3 + 2bx^2 - 34x + 12$		
		f(3) = 0		
		$a(3)^3 + 2b(3)^2 - 34(3) + 12 = 0$		
		27a + 18b = 90		
		3a + 2b = 10(1)		
		f(-1) = 32		
		$a(-1)^3 + 2b(-1)^2 - 34(-1) + 12 = 0$		
		-a + 2b = -14(2)		
		Solving (1), (2)		
		a = 6		
		<i>b</i> = -4		
	(b)	$y = kx - 9 \qquad(1)$		
		$x = \sqrt{y - 3x} \qquad(2)$		
		Sub. (1) into (2):		
		$x = \sqrt{(kx - 9) - 3x}$		
		$x^2 = kx - 9 - 3x$		
		$x^2 - (k - 3)x + 9 = 0$		
		For the line to intersect the curve at two distinct points,		

		$b^2 - 4ac > 0$	
		$[-(k-3)]^2 - 4(1)(9) > 0$	
		$k^2 - 6k + 9 - 36 > 0$	
		$k^2 - 6k - 27 > 0$	
		(k+3)(k-9) > 0	
		$\therefore k < -3 \text{ or } k > 9$	
3	(a)	$\frac{2\cos^2\theta - \sin\theta\cos\theta + 1}{2}$	
	(u)	$\sin^2 \theta$	
		$=\frac{2\cos^2\theta}{1-\cos^2\theta} - \frac{\sin\theta\cos\theta}{1-\cos^2\theta} + \frac{1}{1-\cos^2\theta}$	
		$\sin^2\theta$ $\sin^2\theta$ $\sin^2\theta$	
		$= 2\cot^2\theta - \cot\theta + \csc^2\theta$	
		$=2\cot^2\theta - \cot\theta + (1 + \cot^2\theta)$	
		$=3\cot^2\theta - \cot\theta + 1$	
		Alternative Method	
		$2\cos^2\theta - \sin\theta\cos\theta + \cos^2\theta + \sin^2\theta$	
		$\overline{\sin^2 \theta}$	
		$3\cos^2\theta - \sin\theta\cos\theta + \sin^2\theta$	
		$\sin^2 \theta$	
		$\frac{3\cos^2\theta}{1-\cos^2\theta} - \frac{\sin\theta\cos\theta}{\sin\theta} + \frac{\sin^2\theta}{\sin^2\theta}$	
		$\sin^2\theta$ $\sin^2\theta$ $\sin^2\theta$	
		$=3\cot^2\theta - \cot\theta + 1$	
	(b)	$3\cot^2\theta - \cot\theta + 1 = 1$	
		$3\cot^2\theta - \cot\theta = 0$	
		$\cot\theta \left(3\cot\theta - 1\right) = 0$	
		$\cot \theta = 0$ or $\cot \theta = \frac{1}{3}$	
		$\cos\theta$	
		$\frac{1}{\sin\theta} = 0$	
		$\cos\theta = 0, \theta = -\frac{\pi}{2}, \frac{\pi}{2}$	
		When $\tan \theta = 3$, basic $\angle = 1.249$	
		$\theta = -1.89$, 1.25	
		$\theta = -1.89, -\frac{\pi}{2}, 1.25, \frac{\pi}{2}$	

4	(a)	$V = \frac{1}{3}\pi r^2 (h+4) - \frac{1}{3}\pi (1)^2 (4)$	
		Using similar triangles	
		$\underline{4} = \underline{1}$	
		<u>4+h</u> r	
		$r = \frac{1}{4}(h+4)$	
		$\therefore V = \frac{1}{3}\pi \left(\frac{h+4}{4}\right)^2 (h+4) - \frac{4\pi}{3}$	
		$=\frac{1}{3}\pi \left(\frac{1}{4}\right)^{2} (h+4)^{2} (h+4) - \frac{4\pi}{3}$	
		$=\frac{\pi}{48}(h+4)^{3}-\frac{4\pi}{3}$	
	(b)	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\pi}{16} \left(h+4\right)^2$	
		Using chain rule	
		$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$	
		$5-2 = \frac{\pi}{16} (h+4)^2 \times \frac{dh}{h}$	
		$\frac{16}{\pi}$ $\frac{dt}{dt}$	
		When $h = 8$, $3 = \frac{\pi}{16} (8+4)^2 \times \frac{dn}{dt}$	
		$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{3\pi} \mathrm{cm/s}$	
5	(a)	$\sqrt{(3-0)^{2} + (9-k)^{2}} = \sqrt{(3-h)^{2} + (9-6)^{2}}$	
		$3^{2} + (9-k)^{2} = (3-h)^{2} + 3^{2}$	
		$\left(9-k\right)^2 = \left(3-h\right)^2$	
		$9-k=\pm (3-h)$	
		9-k=3-h or $9-k=-(3-h)$	
		$h-k=3-9 \qquad \qquad 9+3=h+k$	
		h-k = -6 (reject) $h+k = 12$ (shown)	
		Since $h-k>0$	

	(b)	$\left(\frac{0+7}{2},\frac{5+6}{2}\right)$	
		$= \left(\frac{7}{11}\right)$	
		$9 - \frac{11}{2}$	
		$\frac{2}{2}, \frac{7}{7} = -7$	
		Gradient of $QS = \frac{S-2}{2}$	
		Equation of QS: $y - \frac{11}{2} = -7\left(x - \frac{7}{2}\right)$	
		y = -7x + 30(1)	
		Sub (1) into $21y = 7x - 8$	
		21(-7x+30) = 7x-8	
		$x = 4\frac{1}{7}$	
		Subst. $x = 4\frac{1}{7}$ into (1) : $y = 1$	
		$S\left(4\frac{1}{7},1\right)$	
	(c)	$\frac{1}{2}\begin{vmatrix}3 & 0 & 4\frac{1}{7} & 7 & 3\\9 & 5 & 1 & 6 & 9\end{vmatrix}$ Area =	
		$=. \\ \frac{1}{2} \left\{ \left[(3)(5) + 0 + \left(4\frac{1}{7}\right)(6) + (7)(9) \right] - \left[0 + (5)\left(4\frac{1}{7}\right) + (1)(7) + (6)(3) \right] \right\} $	
		$=\frac{1}{2}\left(\frac{720}{7} - \frac{320}{7}\right)$	
		$=28\frac{4}{7}$ or 28.6 (3sf)	
6	(a)	Given that $AE = EB$ and $CF = FB$, <u>E is the midpoint of</u> AB and E is midpoint EB	
		Hence by mid-point theorem, AC and EF are parallel	
	(b)	angle AED = angle DCE (tangent chord theorem)	
		angle DCE = angle CEF	

Anglo-Chinese School (Barker Road)

(alternate angles, AC is parallel to EF) Hence angle *AED* = angle *CEF* In triangle AED and triangle CEF (c) Let angle CFE = xAngle CDE = 180 - x (angles in opposite segment) Angle $ADE = \frac{180 - (180 - x)}{x} = x$ (adjacent angles on a a straight line) Angle *CFE* = Angle *ADE* or Angle *CFE* = Angle *ADE* (exterior angle of cyclic quadrilateral) or angle DAE = angle FEB (corresponding angles, ACparallel *EF*) Angle *FEB* = angle *ECF* (tangent chord theorem) Angle DAE = angle ECFFrom part (a) angle *AED* = angle *CEF* Triangle AED is similar to triangle CEF (AA similarity) 7 (a) $\lg V = \lg pq^t$ $\lg V = \lg p + t \lg q$ $\lg V = \lg qt + \lg p$ 0 10 20 30 40 t V8 000 17 500 38 000 83 000 190 000 $\lg V$ 3.90 4.24 4.58 4.92 5.28 Plot a straight line graph of $\lg V$ against *t*. $\lg V$ intercept: $\lg p = 3.90$ $p = 10^{3.90}$ (b) p = 7940 (to 3 s.f.) Gradient: $\lg q = \frac{5.3 - 4.06}{35 - 5} = 0.041333$

5.3-4.06

= 1.10 (3s.f)

 $q = 10^{-35-5}$

(c)	$V = pq^t$			
	$10^6 = 10^{3.90} \left(10^{0.041333t} \right)$	+ 		
	$\frac{10^6}{200} = 10^{0.041333t}$	+		
	10 ^{3.90}			
	$\lg \frac{10^{\circ}}{10^{3.90}} = 0.041333t$			
	t = 50.81 years			
	1970 + 50.81 = 2020	 		
(d)	2020 is <u>outside range</u> of values in the initial table. House prices may not grow in the same way after 2010. 2020 would be using extrapolation, so is <u>not likely to be</u> reliable.			
(2)	$\log_{-}(4-r^2) - \log_{-}(r-1) = 1$			
(a)	$\frac{\log_3(1-x-1)}{\log_{\sqrt{3}}(x-1)-1}$			
	$\frac{4-x^2>0}{(x-2)(x-2)=0}$			
	(x-2)(x+2) < 0			
	-2 < x < 2			
	x-1>0			
	x > 1	ļ		
	-2 < x < 2 and $x > 1$			
	1 < x < 2			
(b)	$\log_3(4-x^2) - \log_{\sqrt{3}}(x-1) = 1$			
	$\log_{3}(4-x^{2}) - \frac{\log_{3}(x-1)}{\log_{3}\sqrt{3}} = 1$			
	$\log_3(4-x^2) - \log_3(x-1)^2 = 1$			
	$\log_3 \frac{(4-x^2)}{(x-1)^2} = 1$			
	$\frac{\left(4-x^2\right)}{\left(x-1\right)^2} = 3$			
	$4x^2 - 6x - 1 = 0$			
	$x = \frac{6 \pm \sqrt{36 - 4(-4)}}{8}$			
	(c) (d) (a)	(c) $V = pq^{i}$ $10^{6} = 10^{3:90} (10^{0.041333t})$ $\frac{10^{6}}{10^{3:90}} = 10^{0.041333t}$ $lg \frac{10^{6}}{10^{3:90}} = 0.041333t$ t = 50.81 years 1970 + 50.81 = 2020 (d) 2020 is <u>outside range</u> of values in the initial table. House prices may not grow in the same way after 2010. 2020 would be using extrapolation, so is <u>not likely to be</u> reliable. (a) $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $4-x^{2} > 0$ (x-2)(x+2) < 0 -2 < x < 2 x-1 > 0 x > 1 1 < x < 2 (b) $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{3}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{3}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{3}(x-1)^{2} = 1$ $\log_{3}(4-x^{2}) = \log_{3}(x-1)^{2} = 1$ $\log_{3}(4-x^{2}) = 1$ $\frac{(4-x^{2})}{(x-1)^{2}} = 3$ $4x^{2} - 6x - 1 = 0$ $x = \frac{6 \pm \sqrt{36 - 4(-4)}}{8}$	(c) $V = pq'$ $10^{6} = 10^{3.90} (10^{0.041333t})$ $\frac{10^{2}}{10^{3.90}} = 10^{0.041333t}$ $lg \frac{10^{6}}{10^{3.90}} = 0.041333t$ t = 50.81 years 1970 + 50.81 = 2020 (d) 2020 is <u>outside range</u> of values in the initial table. House prices may not grow in the same way after 2010. 2020 would be using extrapolation, so is <u>not likely to be</u> reliable. (a) $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $4-x^{2} > 0$ (x-2)(x+2) < 0 -2 < x < 2 x-1 > 0 x > 1 1 < x < 2 (b) $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{\sqrt{3}}(x-1) = 1$ $\log_{3}(4-x^{2}) - \log_{3}(x-1)^{2} = 1$ $\log_{3}(4-x^{2}) - \log_{3}(x-1)^{2} = 1$ $\log_{3}(\frac{4-x^{2}}{(x-1)^{2}} = 1$ $\frac{(4-x^{2})}{(x-1)^{2}} = 3$ $4x^{2} - 6x - 1 = 0$ $x = \frac{6\pm\sqrt{36-4(-4)}}{8}$	(c) $V = pq'$ $10^6 = 10^{3.06} (10^{0.04133s})$ $\frac{10^6}{10^{3.06}} = 10^{0.04133s}$ $1g \frac{10^6}{10^{3.06}} = 0.041333t$ $t = 50.81_{years}$ 1970 + 50.81 = 2020 (d) 2020 soutide range of values in the initial table. House prices may not grow in the same way after 2010. 2020 would be using extrapolation, so is <u>not likely to be</u> reliable. (a) $\log_1(4 - x^2) - \log_{\sqrt{3}}(x - 1) = 1$ $4 - x^2 > 0$ (x - 2)(x + 2) < 0 -2 < x < 2 x - 1 > 0 x > 1 1 < x < 2 (b) $\log_3(4 - x^2) - \log_{\sqrt{3}}(x - 1) = 1$ $\log_3(4 - x^2) - \log_{\sqrt{3}}(x - 1)^2 = 1$ $\log_3(4 - x^2) = 3$ $4x^2 - 6x - 1 = 0$ $x = \frac{6 \pm \sqrt{36 - 4(-4)}}{8}$

	<i>x</i> = 1.65	or	-0.151(rejected)		

9	(a)	$h = \frac{400}{\pi r^2}$		
		Total surface area $= 2\pi r^2 + 2\pi rh$		
		$=2\pi r^2+2\pi r\left(\frac{400}{\pi r^2}\right)$		
		$=2\pi r^2 + \frac{800}{r}$		
		$C = 0.03 \left(2\pi r^2 \right) + 0.025 \left(\frac{800}{r} \right)$		
		$=\frac{3}{50}\pi r^{2} + \frac{20}{r}$		
	(b)	$\frac{dC}{dr} = \frac{3}{25}\pi r - \frac{20}{r^2}$		
		For stationary cost	ļ	
		$\frac{\mathrm{d}C}{\mathrm{d}r} = 0$		
		$\frac{3}{25}\pi r - \frac{20}{r^2} = 0$		
		$\frac{3}{25}\pi r = \frac{20}{r^2}$		
		$r^3 = \frac{500}{3\pi}$		
		<i>r</i> = 3.7575		
		r = 3.76 (3s.f)		
	ļ			
	(c)	$\frac{\mathrm{d}^2 C}{\mathrm{d}r^2} = \frac{3}{25}\pi + \frac{40}{r^3}$		
		When $r^3 = \frac{500}{3\pi}$, $\frac{d^2C}{dr^2} = 1.13097 > 0$		
		Since the cost is minimum, the company should choose <i>r</i> found in (b).		

10	(a)	$y = 3\sin\frac{x}{2}$			
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\left(\frac{1}{2}\right)\cos\frac{x}{2}$			
		$=\frac{3}{2}\cos\frac{x}{2}$			
		$\frac{2}{\operatorname{At} x = \frac{4\pi}{2}},$			
		$\frac{dy}{dx} = \frac{3}{2}\cos\frac{2\pi}{3}$			
		$=-\frac{3}{4}$ (gradient of tangent)			
		$=\frac{4}{3}$			
		At $x = \frac{4\pi}{2}$, $y = \frac{3\sqrt{3}}{2}$			
		Eqn of normal:			
		$\frac{3\sqrt{3}}{2} = \frac{4}{3} \left(\frac{4\pi}{3}\right) + c$			
		$y = \frac{4}{3}x - \frac{16\pi}{9} + \frac{3\sqrt{3}}{2}$			
		y = 0			
		$\frac{16\pi}{9} - \frac{3\sqrt{3}}{2} = \frac{4}{3}x$			
		$x = \frac{3}{4}\left(\frac{16\pi}{9} - \frac{3\sqrt{3}}{2}\right)$			
		$x = \frac{4\pi}{3} - \frac{9\sqrt{3}}{8}$			
		$Q(\frac{4\pi}{3} - \frac{9\sqrt{3}}{8}, 0)$			
		Shaded area			
	(b)	$= \int_{0}^{\frac{4\pi}{3}} 3\sin\frac{x}{2} dx - \frac{1}{2} \times \frac{3\sqrt{3}}{2} \times \frac{9\sqrt{3}}{8}$			
		$= \left[-6\cos\frac{x}{2} \right]^{\frac{4\pi}{3}} - 2\frac{17}{22}$			
		$\frac{2}{3} = -6\cos\frac{2\pi}{3} - (-6\cos 0) - 2\frac{17}{32}$			
L	L	5 52	<u> </u>	<u> </u>	L

[
		$=3+6-2\frac{17}{32}$
		$=6\frac{15}{32}$ or 6.47 units ²
11	(a)	At B , $v = 0$
		$10e^{-0.1t} - 5 = 0$
		$e^{-0.1t} = \frac{1}{2}$
		$-0.1t = \ln\frac{1}{2}$
		$0.1t = \ln 2$
		$t = 10 \ln 2$
	(b)	$s = \int v dt$
		$= \int 10e^{-0.1t} - 5 dt$
		$=-100e^{-0.1t}-5t+c$
		when $t = 0$, $s = 0$, $4 c = 100$
		$s = -100e^{-0.1t} - 5t + 100$
		when $t = 10 \ln 2$,
		$s = -100e^{-\ln 2} - 50\ln 2 + 100$
		=-15.3m
		Distance $AB = 15.3 \text{ m}$
		Alternative Method:
		Distance $AB = \int_0^{10\ln 2} (10e^{-0.1t} - 5) dt$
		$= \left[-100e^{-0.1t} - 5t \right]_{0}^{10\ln 2}$
		$=(-100e^{-\ln 2}-50\ln 2)-(-100-0)$
		$=-50-50 \ln 2+100$
		= 15.3 m (3s.f)
	(c)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -e^{-0.1t}$
		When $t = 3$, $a = -e^3 = -0.741 \text{ m/s}^2(3 \text{ s.f})$
	(d)	$s = -100e^{-0.1t} - 5t + 100$

 when $t = 15$, $s = -100e^{-0.1(15)} - 5(15) + 100 = 2.69$ m		
 01/(6)	 	
 when $t = 16$, $s = -100e^{-0.1(10)} - 5(16) + 100 = -0.1897m$	 	
 Since the displacement changes from positive 2.69m at $t = 15$ to negative 0.1897 m at $t = 16$,		
4 the particle was at <i>A</i> again during the sixteenth second.		