1 A cuboid has a base area of $(7 + 4\sqrt{5})$ cm² and a volume of $(16 + 18\sqrt{5})$ cm³. Find, without using a calculator, the height of the cuboid, in cm, in the form $(a + b\sqrt{5})$, where a and b are integers.

[3]

$$h = \frac{16 + 18\sqrt{5}}{7 + 4\sqrt{5}} \times \frac{7 - 4\sqrt{5}}{7 - 4\sqrt{5}}$$
$$= \frac{112 - 64\sqrt{5} + 126\sqrt{5} - 360}{-31}$$
$$= 8 - 2\sqrt{5}$$

2024_4-G3 / 5-G2_PRELIMS_ ADDITIONAL MATHEMATICS _PAPER 1

2 The curve 5x - xy = 20 and the line x - 2y - 3 = 0 intersects at the points A and B. Find the y -coordinate of A and of B.

sub x = 2y + 3 into first equation,

5(2y+3) - y(2y+3) = 20

 $2y^2 - 7y + 5 = 0$

(2y-5)(y-1) = 0 or by quadratic formula

 $y = 2.5 \ or \ 1$

[3]

3 (a) Express $12x - 13 - 3x^2$ in the form $a(x + b)^2 + c$ and hence state the coordinates of the turning point of the curve $y = 12x - 13 - 3x^2$. [4]

$$-3(x^{2} - 4x) - 13 \qquad \text{or} \quad -3(x^{2} - 4x + \frac{13}{3}) - \dots -$$
$$= -3[(x - 2)^{2} - 4] - 13 \qquad \text{or} \quad = -3[(x - 2)^{2} - 4 + \frac{13}{3}]$$
$$= -3(x - 2)^{2} - 1$$

Turning point (2, -1)

(b) State the range of k such that y = k will intersect the curve $y = 12x - 13 - 3x^2$. [1]

 $k \leq -1$

4 Integrate $\frac{4}{5x+1} - \frac{6}{x^3}$ with respect to x.

$$\int \frac{4}{5x+1} - 6x^{-3}dx = \frac{4\ln(5x+1)}{5} + \frac{3}{x^2} + c$$

5 Express $\frac{7x^2 - 17x + 1}{(x^2 + 1)(2 - 3x)}$ in partial fractions. $\frac{Ax + B}{x^2 + 1} + \frac{C}{2 - 3x}$ M1 $7x^2 - 17x + 1 = (Ax + B)(2 - 3x) + C(x^2 + 1)$ A = -4, B = 3 C = -5 $\frac{3-4x}{x^2+1} - \frac{5}{2-3x}$ ------- [5]

6 Given that $x^5 + ax^3 + bx^2 - 3 \equiv (x^2 - 1)Q(x) - x - 2$, where Q(x) is a polynomial. (a) State the degree of Q(x). [1]

Degree of Q(x) = 3

(b) Show that a = -2 and b = 1.

Sub x = 1, a + b = -1 -----equation

Sub x = -1, -a + b = 3 -----equation

Solve simultaneous equations,

a = -2 and b = 1 -----

(c) Find the polynomial Q(x).

 $Q(x)(x^2 - 1) = x^5 - 2x^3 + x^2 - 3 + x + 2$

 $Q(x) = (x^5 - 2x^3 + x^2 - 3 + x + 2) \div (x^2 - 1) - - -$

By long division or comparing terms,

 $Q(x) = x^3 - x + 1$

[3]

[3]

The sketch above shows part of the graph of $y = a \sin\left(\frac{x}{b}\right) + c$, where x is in degrees.

(a) Explain why c = 1.

7

amplitude is 3. So the maximum value of y is 4, 3+c = 4, means that c = 1. for showing how to get c

- (b) State the value of *b*.
 - b = 2.
- (c) Find the value of m and explain how you get it.

The period is 720°. -----

Hence m = 180 + 720 = 900

[2]

[1]

[2]

8 The figure shows the curve $y = x^2$ and the point R(1,0). The variable point P(p,0) moves along the x axis and PQ is vertical. p is decreasing at the rate of 1.2 units per second.

(a) Show that he area of the triangle *PQR*, *A* units², is $A = \frac{1}{2}p^2 - \frac{1}{2}p^3$. [2] getting y coordinate of $Q = p^2$ ----

$$A = \frac{1}{2}(1-p)(p^2)$$

= $\frac{1}{2}p^2 - \frac{1}{2}p^3$ (Shown)

(b) Find the rate at which A is increasing at the instant when p = -7 units.

$$\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt}$$

[4]

 $\frac{dA}{dt} = p - \frac{3}{2}p^2 - \dots$ $\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt} - \dots$ When p = -7, $\frac{dA}{dt} = -80.5 \times -1.2$ = 96.6 unit² per second

9 From a rectangular piece of metal of width 2m and length 6m, two squares of side x m and two rectangles of sides x m and (x + y) m are removed as shown. The metal is then folded about the dotted lines. To give a closed box with height x m.

(a) Show that the volume of the box, $V \text{ m}^3$, is given by $V = 2x^3 - 8x^2 + 6x$. [3]

Length = y, breadth = 2-2x , height = x $x + y + x + y = 6 - - \rightarrow y = 3 - x$ V = xy(2 - 2x)

$$= x(3-x)(2-2x)$$

= 2x³ - 8x² + 6x (shown) - - - -

(b) Given that *x* can vary, find the stationary value of *V*.

$$\frac{dv}{dx} = 6x^2 - 16x + 6 - dx$$

$$\frac{dv}{dx} = 0 \to 6x^2 - 16x + 6 = 0$$

Solve using quadratic formula (you need to show working)

$$x = 2.215 (reject) or 0.4514$$

Stationary value of $V = 1.26 \text{ m}^3$

(c) Shows that this value of V is the maximum.Show either by first or second derivative test

[2]

10 The diagram shows a triangle ABC with vertices at A(0, 6), B(8, 15) and C(20, k).

[4]

(a) Given that AB = BC, find the value of k.

Since AB = BC, it means $8^2 + 9^2 = 12^2 + (15 - k)^2 - (15 - k)^2 = 1$ (15 - k) = 1 or (k - 15) = -1

k = 14 -----

 $M_{AC} = \frac{2}{5} , so M_{BD} = -\frac{5}{2}$ Midpoint of AC = (10, 10) -----Find Equation of BD : $y = -\frac{5}{2}x + 35$ Get D (14, 0)

(c) Hence, find the area of the kite *ABCD*.

Shoelace method or sum of area of triangles -----

Area of kite ABCD = 174 units²-----

2024_4-G3 / 5-G2_PRELIMS_ ADDITIONAL MATHEMATICS _PAPER 1

[2]

11 (a) Prove the identity $\cot \theta + \frac{\sin \theta}{1 + \cos \theta} = \csc \theta$.

$$LHS = \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta}$$
$$= \frac{\cos\theta + \Box \cos^2\theta + \sin^2\theta}{\sin\theta(1+\cos\theta)}$$
$$= \frac{\cos\theta + 1}{\sin\theta(1+\cos\theta)}$$
$$= \frac{1}{\sin\theta}$$
$$= \cos \theta$$

(**b**) Hence solve the equation $\cot 3\theta + \frac{\sin 3\theta}{1 + \cos 3\theta} = -2$ for $-90^\circ \le \theta \le 90^\circ$. [4]

 $cosec \ 3\theta = -2$ -----M1 $sin \ 3\theta = -0.5$ Basic angle = 30

 $3\theta = -30, -150, 210$ $\theta = -10, -50, 70$ ------

12 (a) Solve
$$6^{2x-1} = 4^x \times 5$$

$$\frac{6^{2x}}{6} = 4^{x} \times 5$$

$$\frac{36^{x}}{4^{x}} = 30$$

$$9^{x} = 30$$

$$x = \log_{9} 30 \text{ or } 1.548$$

(b) Given that $\log_x 3 = p$, express $\log_3 \frac{27}{x}$ in terms of p.

$$\log_3 27 - \log_3 x$$

=3 - $\frac{1}{p}$ ------

[4]

Solve the equation $\lg x - 1 = \lg(x - 1)$ (c)

$$\lg x - \lg 10 = \lg(x - 1)$$
$$\frac{x}{10} = x - 1$$
$$x = \frac{10}{9}$$

2024_4-G3 / 5-G2_PRELIMS_ ADDITIONAL MATHEMATICS _PAPER 1

3	1

(a) Show that the *x* coordinate of *A* is $-\ln 2$.

when $y = 0, e^{-3x} = 8$ --- $-3x = \ln 8$ $x = -\frac{1}{3}\ln 8$ --- $x = -\ln 8^{1/3}$ $x = -\ln 2$ -----

(b) The normal to the curve at *B* meets the *x* axis at *C*. Find the coordinates of *C*. [4]

$$\frac{dy}{dx} = 3e^{-3x} - --$$

At B, x = 0, so dy/dx = 3-----Find Gradient of normal at B = -1/3

Find B (0, 7) -----

Equation of normal : $y = -\frac{1}{3}x + 7$

So C (21, 0) -----

[3]

Area of OAB = $\int_{-\ln 2}^{0} 8 - e^{-3x} dx$ = $\left[8x + \frac{e^{-3x}}{3}\right]_{-\ln 2}^{0}$ ------= $8\ln 2 - \frac{7}{3}$ -------

Area of triangle OBC = 0.5 x 21 x 7 = 73.5 -----

Area of shaded region = 76.7 units² -----

The diagram shows a circle, centre O, with diameter AB. The point C lies on the circle. The tangent to the circle at A meets BC extended at D. The tangent to the circle at C meets the line AD at E.

(a) Prove that triangles *EOA* and *EOC* are congruent.

[3]

AE = CE (tangents from external point are equal) AO = OC (radius) OE = OE (common side) -----

Hence triangle EOA is congruent to triangle EOC (SSS) ------

(b) Prove that triangles *ADC* and *BAC* are similar.

Angle ACB = 90 (angle in a semi circle) Angle DCA = 90 (sum of angles on a straight line) Hence angle ACB = angle DCA (A) -----Angle CAD = Angle CBA (A) (angles in alternate segment/ tangent chord theorem) ----

Hence triangles ADC and BAC are similar. (AA) ------

(c) Hence prove that $AC^2 = CD \times BC$.

Since they are similar , $\frac{AC}{BC} = \frac{DC}{AC}$ ----

 $AB^2 = BC \times DC$ ------

- End of Paper -