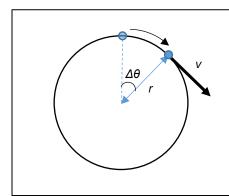
Circular Motion

Uniform Circular Motion



- Direction of *v* changes
 - By Newton's 2nd law, there is a F_{net}
- No change in v magnitude
 - F_{net} is directed perpendicular to v, towards centre of circle

$$\sum F = F_c = m\alpha$$

$$F_c = \frac{mv^2}{r}, \text{ or }$$

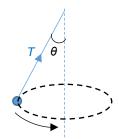
$$F_c = mr\omega^2,$$

$$v = r\omega,$$

$$\omega = \frac{\Delta\theta}{t} = \frac{2\pi}{T} = 2\pi f$$

Examples of Circular Motions

Conical

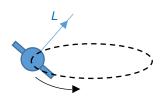


$$F_c = T \sin \theta = \frac{mv^2}{r}$$

$$T\cos\theta = mg$$

$$\tan \theta = \frac{v^2}{rg}$$

Airplane

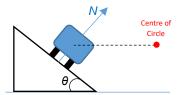


$$F_c = L \sin \theta = \frac{mv^2}{r}$$

$$L\cos\theta = mg$$

$$tan\theta = \frac{v^2}{rg}$$

Banked Road



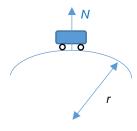
$$F_c = N\cos(90^\circ - \theta)$$

$$F_c = N \sin \theta = \frac{mv^2}{r}$$

$$N\cos\theta = mg$$

$$\tan \theta = \frac{v^2}{rg}$$

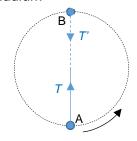
Car on Hump



$$F_c = mg - N = \frac{mv^2}{r}$$

To find max v, $N \rightarrow 0$

Pendulum



At A,
$$F_c = T - mg = \frac{mv^2}{r}$$

At B,
$$F_c = T' + mg = \frac{mv'^2}{r}$$

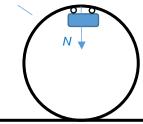
To find min v at B, $T' \rightarrow 0$ To find max v, T max at A

$$F_c = N \sin \theta = \frac{mv^2}{r}$$

$$N\cos\theta = mg$$

$$\tan \theta = \frac{v^2}{rg}$$

Roller Coaster/Loop-a-loop



$$F_c = N + mg = \frac{mv^2}{r}$$

To find min v at top, $N \rightarrow 0$

See Gravitational Field summary for more examples