
Hwa Chong Institution        

 H2 Computing 

 

 

1 

 

8.3 Big-O Notation 
 

After learning all the searching and sorting algorithms, we need to analyze their performance 

so that we know which one to choose for a particular problem. The performance can be 

quantified in terms of time and space complexity, i.e. how much runtime and how large 

memory space each algorithm takes.  

 

However, the running time for a searching algorithm definitely increases with the size of the 

list to be searched and also depending on some condition of the list (e.g. whether it has been 

sorted). So the common practice is that we study how the time cost changes with respect to its 

input size n in the worst case performance, and this is called Big-O Notation. Before moving 

onto searching and sorting algorithms, let’s look at the Big-O Notation for some simple 

programs.  

 

 

Constant Complexity: O(1) 

Complexity of the program remains constant regardless of the input size.  

 

 

 

 

 

 

 

 

 

Linear Complexity: O(n) 

The time cost grows linearly and proportionally with the input size.  

 

 

 

 

 

 

 

 

 

Quadratic Complexity: O(n2) 

 

 

 

 

 

 

 

 

 

Clearly, linear search requires O(n) comparisons of the items in the list. Binary search halves 

the list in each iteration, so it requires O(log n) comparisons. But don’t forget that binary 

def get_last(List): 
 return List[-1] 

def get_sum(List): 

 total = 0 
 for item in List: 

  total = total + item 
 return total 

def multi_table(n): 

#generate the multiplication table   
    for i in range(1, n + 1): 
        for j in range(1, n + 1): 
            print( i * j, end = ' ') 
        print() 



Hwa Chong Institution        

 H2 Computing 

 

 

2 

 

search requires input to be an ordered list. For hash table, in ideal circumstances without 

collision, we found the item in one step, i.e. O(1). When collision occurs, it requires O(n). 

Hence a good hash function is very important. On the other hand, hash table may require 

more spaces as well. Each searching algorithm has its own pros and cons.  

 

Sorting algorithms are more complicated and the nested loops makes both bubble sort and 

insertion sort quadratic complexity with O(n2). This is not a problem with small data sets, but 

with hundreds or thousands of elements, this becomes very significant. 

 

Bubble sort does perform better for partially sorted lists because it is able to detect when a list 

is sorted and does not continue making unnecessary passes through the list. As a general sorting 

scheme, however, it is very inefficient because of the large number of interchanges that it 

requires. In fact, it is the least efficient of the sorting schemes. 

 

Insertion sort also is too inefficient to be used as a general-purpose sorting scheme. However, 

the low overhead that it requires makes it better than bubble sort.   

 

While Quick sort partitions and usually makes less comparisons than Bubble sort and Insertion 

sort, in the worst case scenario the time complexity is still O(n2). 

 

Merge sort has a time complexity of O( n log n ) and is a very efficient general-purpose sorting 

schemes and especially for large lists. 

 

In summary: 

 

Algorithm Time Complexity 

(worst case) 

Linear search O(n) 

Binary search O(log n) 

Hash Table search O(n) 

 

Algorithm Time Complexity 

(worst case) 

Bubble sort O(n2) 

Insertion sort O(n2) 

Quick sort O(n2) 

Merge sort O(n log n) 

 


