2024 YIJC JC2 Prelim Exam H1 Physics Paper 2 Solution

1	(a)	1. <u>Ini</u>	tial speed or velocity is zero	B1	
		2. (no	on-zero magnitude of) acceleration is constant (uniform) and in a straight line	B1	
	(b)	(i)	(i) magnitude of acceleration at $t = 8.0$ s is less than that at $t = 14.0$ s (due to gradient)		
			direction of acceleration at $t = 8.0$ s is <u>opposite</u> that at $t = 14.0$ s (due to sign of	B1	
			gradient)		
		(ii)	$a = \text{gradient}$ or $a = (v-u)/t$ or $a = \Delta v/\Delta t$		
			<a>= (0- (-10)) / 16	C1	
			$a = 0.625 \text{ m s}^{-2}$	A1	
		(iii)	Net displacement (final position) from X = area under v-t graph		
			$s = \frac{1}{2} (-10)(4) + \frac{1}{2} (20)(8)$	C1	
			= - 20 + 80		
			= 60 m	A1	

2	(a)	The p <u>conse</u>	rinciple of conservation of momentum states that <u>the total momentum of a system is</u> erved throughout a collision if there is <u>no net external force acting on the system</u> .	B1
	(b)	(i)	$(\rightarrow +ve)$, assume v is to the right. 0.100(2.0) + 0.200(0) = 0.100(v) + 0.200(1.3) $v = -0.60 \text{ m s}^{-1} (2sf)$ Magnitude = 0.60 m s ⁻¹ Since v is negative, the direction is to the <u>left</u> .	C1 A1 B1
		(ii)	relative speed of approach = $2.0 - (0)$ = 2.0 m s^{-1} relative speed of separation = $1.3 - (-0.6)$ = 1.9 m s^{-1} Since the relative speed of approach is not equal to the relative speed of separation, the collision is <u>inelastic</u> .	M1 M1 A1
			OR total initial KE = $\frac{1}{2}(0.100)(2.0)^2 + \frac{1}{2}(0.200)(0)^2$ = 0.20 J total final KE = $\frac{1}{2}(0.100)(0.6)^2 + \frac{1}{2}(0.200)(1.3)^2$ = 0.187 J (3sf) Since the total initial kinetic energy is not equal to the total final kinetic energy, the collision is <u>inelastic</u> .	(M1) (M1) (A1)

(c)	By Newton's third law, the force that block A exerts on block B is equal in magnitude and	
	opposite in direction to the force that block B exerts on block A.	M1
	By Newton's second law, the (net) force (on block A) is the rate of change of momentum	
	(of block A.)	M1
	Hence, the rate of change of momentum of block A is equal in magnitude and opposite in	
	direction to the rate of change of momentum of block B.	A1

·		1			
3	(a)	(i)	The sum of forces in all directions is zero, and	B1	
			The sum of moments about any axis is zero.	B1	
		<i>(</i>)		D 4	
		(11)	laking moments about B, the weight of the table top exerts an anticlockwise	B1	
			moment.		
			In order for the table to be in equilibrium, there must be an upward vertical	B1	
			(frictional) component of force acting at the hinge to produce a clockwise moment		
			<u>about B</u> which is equal to the anticlockwise moment of the weight of the table top.		
			OR		
			If there is only a norizontal normal contact force at hinge A, there will be no moment	(B1)	
			provided by this force and the table will not be in equilibrium.		
	(b)	Takin	g moments about A,		
		(130)	$(0.30) = (T \sin 20^{\circ})(0.60)$	C1	
			T = 190 N (3 sf)	A1	
	(c)	F _{vertical}	$+(190\sin 20^{\circ})=130$	C1	
			$F_{vertical} = 65.02 \text{ N}$		
		E	$= 190 \cos 20^{\circ}$	•	
		• horzoni	= 1785 N	C1	
		<i>F</i> = √	$65.02^2 + 178.5^2$		
		=19	90 N (3sf)	AI	
		tanA	<i>F_{vertical}</i> _65.02		
		$\frac{1}{F_{horizontal}} = \frac{1}{178.5}$			
		θ	= 20.0° (3sf)	A1	

4	(a)	The <u>n</u>	et loss of the gravitational potential energy of the system is converted to the gain in	B1			
		kinetic energy of the system.					
		or					
		Gain	in KE of blocks = Loss in GPE of 4.0 kg block – Gain in GPE of 2.0 kg block				
		Not accepted:					
		The GPE of the block/s is converted to KE of the blocks. (mention of net loss is not stated)					
		due to	the fact that the blocks are travelling in opposite directions.				
	(b)	(i)	To be at the same height, 4.0 kg block will descend by 10.0 cm while the 2.0 kg				
			block will rise by <u>0.10 m</u> .	B1			

		3	
	(ii)	Loss in GPE for 4.0 kg block = (4.0)(9.81)(0.100) = 3.92 J	C1
		Gain in GPE for 2.0 kg block = (2.0)(9.81)(0.100) = 1.96 J	
		Gain in KE = Net loss of GPE = 3.92 – 1.96 = 1.96 J	M1
		$\frac{1}{2}(2.0 + 4.0) v^2 = 1.96$	
		$\rightarrow v = 0.81 \text{ m s}^{-1}$	A1

5	(a)	(i)	$I = \frac{ne}{t}$ $\frac{n}{t} = \frac{15}{1.6 \times 10^{-19}}$ $= 9.38 \times 10^{19} \text{ electrons per second (3sf)}$	C1 A1
		(ii)	$R = \frac{\rho l}{A} = \frac{\left(1.72 \times 10^{-8}\right)(3.0)}{\pi \left(\frac{1.63 \times 10^{-3}}{2}\right)^2}$ = 0.0247 \Omega (3sf)	C1 A1
		(iii)	V = IR = (15)(0.0247) = 0.371 V (3sf)	B1
		(iv)	efficiency = $\frac{P_{useful}}{P_{supplied}} = \frac{V_{appliance}I}{V_{wire}I} = \frac{12.0 - 0.371}{12.0}$ = 96.9% (3sf)	C1 A1
	(b)		Temperature increase, the <u>lattice ions vibrate more,</u> causing more frequency of collision. This <u>impedes the flow of electrons</u> . <u>Resistivity</u> of the wire <u>increases</u> .	M1 M1 A1

			4	
6	(a)		$V = \sqrt{\frac{2F}{c_D \rho A}}$	
			$=\sqrt{\frac{2(78000)}{(2.1)(1030)(14.7)}}$	C1
			$v = 2.215 \text{ m s}^{-1}$	A1
			$\frac{\Delta v}{v} = \frac{1}{2} \left(\frac{\Delta F}{F} + \frac{\Delta c_D}{c_D} + \frac{\Delta \rho}{\rho} + \frac{\Delta A}{A} \right)$ = $\frac{1}{2} \left(\frac{1}{100} + \frac{0.1}{2.1} + \frac{20}{1030} + \frac{0.3}{14.7} \right)$ $\Delta v = 0.1 \text{ m s}^{-1}$ $v = (2.2 \pm 0.1) \text{ m s}^{-1}$	C1
			[minus 1m for wrong sf]	<i>/</i> · · ·
	(b)	(i)	Since the boat is moving with constant velocity, it experiences no acceleration and <u>the net force on it is zero</u> . Thus, the motor provides <u>a forward force and the boat also experience a drag</u>	B1 B1
			force. The magnitude of these two forces are equal but opposite in direction, resulting in net force of zero.	
		(ii)	Using at least 2 sets of value, When $m = 200 \text{ kg}$, $P = 0.6 \text{ kW}$, $P/m = 3 \text{ W kg}^{-1}$ When $m = 300 \text{ kg}$, $P = 1.9 \text{ kW}$, $P/m = 6.3 \text{ W kg}^{-1}$	M1
			If power is proportional to the total mass, $P/m = k$ where k is a constant Since <u>P/m is not a constant</u> , P is not proportional to m	A1
		(iii)1.	Point plotted correctly (0.69,0.69) $10^{(P/KW)}$ $10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	C1
		(iii) 2 .	Best fit straight line drawn	B1
			<u>Linearising the equation</u> $(\ln P) = n(\ln v) + \ln k$ Since the <u>plotted points follow a straight line</u> trend, ln <i>P</i> and ln <i>v</i> have a linear relationship and therefore the proposed relationship is supported.	B1

		5	
	(iii)3.	n = gradient of graph = $\frac{1.65 - (-0.5)}{1.2 - 0.12} = 2.0$	B1
		Accepted range: 1.9 – 2.1	ы
	(iv)	P = Fv	
		1900 = F(2.5)	C1
		<i>F</i> = 760 N	A1
(e)		Total energy generated from 1.1 litres of fuel = $32 \times 1.1 = 35.2 \text{ MJ}$	C1
		Distance travelled for $1h = 2.5 \times 3600 = 9000 \text{ m}$	
		Total work done by the forward force = 760 x 9000 = 6.84 MJ	C1
		Efficiency = 6.84/35.2 x 100% = 19 %	A1

r	1		6	1
		(ii)	The centripetal force is provided by the gravitation force.	D4
			$F = \frac{GMm}{r^2} = mr\omega^2 \implies GM = r^3\omega^2$	БІ
			$(2.07 \cdot 40^{-11})(5.08 \cdot 40^{24}) = 3(2\pi)^2$	
			$(6.67 \times 10^{-6})(5.98 \times 10^{-6}) = \Gamma^{2}\left(\frac{1}{24 \times 3600}\right)$	N/4
			$r = 4.23 \times 10^7 \text{ m}$	
			altitude – $r R = 3.59 \times 10^7$ m	A1
	(c)	(i)	The centripetal force is provided by the magnetic force which acts perpendicular to the	B1
			velocity of the positive ion.	
			$\frac{mv^2}{mv^2} = Bqv$	
			r	IVIT
			$r = \frac{mv}{r}$	
			Bq	A0
		(ii)	Since v, q and B are all constants,	
			$r \propto m$	
			$\frac{r_{14}}{r_{14}} = \frac{14u}{1.17} = 1.17$	
			r_{12} 12 <i>u</i>	Δ1
		(iii)	The separation = $d_{14}-d_{12} = 2.5 \times 10^{-2}$ m	B1
		. ,		
			Since $d = 2r$	
			$r_{14}-r_{12} = 1.25 \times 10^{-2} \text{ m}$	
			solving for recently and rec	C1
			$r_{14} = 0.0875 \text{ m}$	01
			$r_{12} = 0.0750 \text{ m}$	
			$r = \frac{m_{14}v}{m_{14}v}$	
			$P_{14} = Bq$	
				М1
			$0.0875 = \frac{(14 \times 1.67 \times 10^{-27})(v)}{(1200)}$	
			$(0.500)(1.60 \times 10^{-19})$	A1
		<i>(</i> ,)	$v = 2.99 \times 10^5 \text{ m s}^{-1}$	
		(17)	At the velocity selector, $E_{-} = E_{-}$	
			$r_{\rm E} = r_{\rm B}$ Fa = Bay	
			E/B = V	
			$E = B v = (0.500)(2.99 \times 10^5)$	
			$= 1.50 \times 10^5 \text{ V m}^{-1}$	A1

	(v)	Vertically downwards	B1
		$\begin{bmatrix} \text{lon} \\ \text{source} \end{bmatrix} \xrightarrow{\text{detector}} \\ B = 0.500 \\ C \\$	
	(vi)	rig. 7.4	
	(VI)	V = 1/2 111 V V(1.60x10 ⁻¹⁹) - 1/2 (14x1.67x10 ⁻²⁷)(2.90x10 ⁵) ²	M1
		V = 6530 V	
		ECF allowed	AI

8	(a)	(i)	Fission is the <u>splitting of a</u> heavy <u>nucleus into of two or more lighter nuclei</u> , with a release of energy.	B1
		(ii)	X – 92 Y - 36	B1 B1
		(iii)1.	Nuclear binding energy per nucleon is the <u>average energy absorbed by each</u> <u>nucleon to separate into</u> its constituent <u>free/unbound protons and neutrons</u> .	B1
		(iii)2.	BE of U = $235(7.6 \times 10^6) = 1.786 \times 10^9 \text{ eV}$	M1
			BE of Ba = $141(8.3 \times 10^6) = 1.1703 \times 10^9 \text{ eV}$	
			BE of Kr = $92(8.5 \times 10^6) = 0.782 \times 10^9 \text{ eV}$	
			[1 m for any of the calculation for BE of individual species]	
			$\Delta E = BE_{\text{products}} - BE_{\text{reactants}}$	
			$= 1.1703 \times 10^9 + 0.782 \times 10^9 - 1.786 \times 10^9$	M1
			$= 0.1663 \times 10^9 \text{ eV}$	
			$= 0.1663 \times 10^9 \times 1.6 \times 10^{-19}$ J [1m for correct conversion]	M1
			$= 2.66 \times 10^{-11} \text{ J}$	AU
		(iii)3.	no, of reactions per unit time = $\frac{\text{total energy produced per unit time}}{1000 \text{ m}^{-1}}$	
	energy produced per reaction	energy produced per reaction		
			$=\frac{6.4 \times 10^9}{2.00 \times 10^{-11}}$	C1
			2.66×10^{-11}	A1
			= 2.41×10 S	
		(iii)4.	1 reaction requires 1 uranium-235 nucleus	
			no. of U-235 = $60 \times 60 \times 2.41 \times 10^{20} (= 8.676 \times 10^{20})$	C1
			total mass of U-235 = 8.76 × 10 ²⁰ (235) (1.66 × 10 ⁻²⁷)	
			$= 3.42 \times 10^{-4} \text{ kg}$	A1

8						
	(b)	(i)	Resistance of thermistor = $0.6 \pm 0.1 \text{ k}\Omega$	B1		
			$R_{bottom} = \left(\frac{1}{R_t} + \frac{1}{3000}\right)^{-1} = \left(\frac{1}{600} + \frac{1}{3000}\right)^{-1}$	C1		
			$(=500 \Omega)$			
			By potential divider rule,			
			$V_t = \frac{R_{bottom}}{R_{bottom}} V = \frac{500}{500 + 1500} (5)$	C1		
			= 1.25 V	A1		
		(ii)	Resistance changes more for the same temperature change at lower temperatures	M1		
			than at higher temperatures. The circuit provides a more precise reading at lower temperatures.	A1		
		(iii)	At lower temp, the resistance of the thermistor is high, so the potential difference is			
			higher. At higher temp, the resistance of the thermistor is low, so the potential difference is			
			lower.			
			As the decrease in resistance per unit rise in temperature is higher for lower temp,			
			the <u>decrease in potential difference</u> per unit temperature is faster for lower temp. And the decrease in potential difference per unit temperature is lower for higher temperature.			
			potential difference 0 0 temperature			
			Decreasing trend Decreasing gradient	M1 A1		