Victoria School 2024 Secondary 4 Chemistry Prelim Answer Scheme

<u>Paper 1</u>

1	2	3	4	5	6	7	8	9	10
С	D	В	В	В	А	С	А	С	D
11	12	13	14	15	16	17	18	19	20
D	В	А	В	С	С	С	D	D	D
21	22	23	24	25	26	27	28	29	30
В	А	D	С	D	В	С	С	D	В
31	32	33	34	35	36	37	38	39	40
A	А	D	D	А	С	В	С	D	С

Paper 2 Section A

Qn	Suggested answers	Mark
A1	2 Across: <u>fluoride</u>	1
	3 Down: addition	1
	4 Down: <u>alloy</u>	1
	5 Down: sublimation	1
	6 Down: <u>fixed</u>	1
A2a	Sodium: The indicator would turn from green to purple REJECT: Blue	1
	Carbon: The indicator would turn from <u>green</u> to <u>orange</u> REJECT: Red	I
A2b	$2\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2
	[1m] – cation [1m] – anion	
A2c	$4Na + O_2 \rightarrow 2Na_2O$	
	No of moles of sodium= 2.30 / 23 = 0.100 mol	
	4mol Na \equiv 2mol Na ₂ O 0.100mol Na \equiv 0.05 mol Na ₂ O	
	Theoretical yield of Na ₂ O = 0.0500 mol x 62 = 3.10 g	1
	$4Na + O_2 \rightarrow 2Na_2O$	

Qn	Suggested answers	Mark
	Mass gained = 94.82 – 94.50 = 0.32g	
	No of moles of oxygen = 0.32 / 16+16 = <u>0.01 mol</u>	1
	1mol $O_2 \equiv 2mol Na_2O$ 0.0100mol $O_2 \equiv 0.0200$ mol Na_2O	
	Actual Yield = 0.0200 x 62 = 1.24 g	
	Percentage Yield = 1.24 / 3.10 x 100% = <u>40.0 %</u>	1
A3ai	Bond breaking absorbs energy, hence is <u>endothermic</u> . Bond forming releases energy, hence is <u>exothermic</u> .	1
	Since more energy is released than absorbed, the reaction is exothermic.	1
	OR	1
	The <u>energy</u> <u>absorbed when breaking the bonds in 1 mole of carbon monoxide</u> <u>and 1 mole of chlorine</u> is	
	less than the energy released when forming the bonds in 1 mole of phosgene, hence making it an exothermic reaction.	1
A3aii	The oxidation state of chlorine decreased from 0 in Cl₂ to -1 in COCl₂ . This is reduction .	1
	The oxidation state of carbon increased from +2 in CO to +4 in COC <i>l</i> ₂ . This is oxidation .	1
	Since oxidation and reduction occurs at the same time, this is a redox reaction. (Must state but no marks)	
A3b	At –128 °C, molecules are packed tightly and <u>very close together</u> in a <u>regular/orderly</u> manner and they can only <u>vibrate about their fixed positions</u> .	1
	(As temperature decreases, the molecules move faster and faster) and begin to settle in fixed positions. At −108 °C, the phosgene molecules are packed <u>closely</u> together in a <u>disorderly manner</u> and they are able to <u>slide over each other</u> .	1
A4a	• Catalysts can be regenerated/are not consumed at the end of a reaction .	4
	• Thus they can be (reused), so they only need to be purchased once	1
	• small amount need to be used.	1
A4b	In pellet form, there is a <u>higher surface area</u> (per unit volume).	4
	Higher frequency of effective collisions between reacting particles (and the	1
	catalyst), leading to <u>a faster reaction rate.</u>	1

Qn			Suggested a	answers		Mark
	Any 4 carbon	straight chain w	rith 2 -NH ₂ grou	ps that is not o	n the terminal carbons.	
Аба	Mass in 100	74.1	H 8.60	17.2	-	
	g/g No of	74.1	8.60 / 1	17.3/14	-	
	moles/mol	= 6.175	= 8.60	= 1.236	-	1
	Mole Ratio	6.175 / 1.236 ≈ 5.00	8.60 / 1.236 ≈ 7	1.236 / 1.236 = 1		
	Empirical Formula		C₅H ₇ N			1
	Molecular For n = Relative m = 162 / 81 = 2	mula = nC₅H ₇ N iolecular mass /	[/] relative formula	a mass		
	Molecular For	mula = C ₁₀ H ₁₄ N	2			1
A6b	Concentration Volume = 2 cr Number of mo = Concentratio = 0.123 mol/dr Molar mass of Mass = numbe = 0.000246 m = 0.03985 g	= 0.123 mol/dn n ³ = 2/1000 dm ³ les on x Volume m ³ x 0.002 dm ³ f nicotine = 162 er of moles x mo ol x 162 g/mol	n ³ ^s = 0.002 dm ³ = 0.000246 mo g/mol olar mass	I		1
	= 39.9 mg (to	3sf) (convert g f	to mg)			1
A6c	When a cigarette is smoked, <u>carbon monoxide is inhaled by the smoker and the people around them</u> . Carbon monoxide <u>bonds readily and irreversibly</u> with haemoglobin to form carboxyhaemoglobin/stable compound. This reduces the amount of haemoglobin available to transport oxygen/results in less O2 transported around the body, leading to fatigue/dizziness, and eventually death.				1	
						1
A6(d)(i)	step number		description			1
	2	Soak the grou	nd tobacco in th solvent.	ne ethanol		
	4	Separate the nic solid plant m	cotine-rich solut aterial using pro	ion from the ocess A .	1	
					-	

Qn		Suggested answers	1	Mark
	5	Obtain nicotine from the mixture of ethanol and nicotine using process B .		
	3	Stir the mixture to enhance the extraction of nicotine into the solvent.		
	1	Grind the dried tobacco leaves into a fine powder.		
A6(d)(ii)	Process A Process B	: filtration 3: Fractional Distillation		1
A7a	T. F. T. T			Anv
	.,.,.,.			one wrong minus
A7bi	Immiscib	le in water and less dense than water,		1
	<u>preventin</u>	i <u>g entry of air/oxygen for the respiration</u> by larv	ae.	1
A7bii	Kerosene overcome	has a higher M _r , hence there are <u>Thus more ene</u> e the stronger intermolecular forces of attraction	rgy is needed to on.	1
	It is <u>less v</u>	<u>/olatil</u> e, so it does not <u>evaporate away easily co</u>	mpared to petrol	1
A8ai	To preven	t the bot reactive sodium metal and bot chlorine a	as from reacting and	1
Adai	reforming	a back sodium chloride.		
A8aii	<u>No</u> . Hydro	ogen gas will be produced instead of sodium n	netal.	1
	The electr	olyte produced will be <u>sodium hydroxide instead</u>	d of sodium chloride.	
A8b	$Cu \rightarrow Cu^2$	²⁺ + 2e ⁻		1 1
	<u>Copper lo</u> preferentia	ses electrons more readily than chloride ions ally discharged, forming copper(II) ions instead of	, hence it will be chlorine gas	1
A8c	<u>No</u> . The li chlorine.	tmus paper <u>must be bleached in order to</u> confirr	n the presence of	1
A8di	<u>colourles</u>	s solution turns brown		1
A8dii	<u>chlorine i</u> iodide	s more reactive than iodine and it can displace	iodine from potassium	1
A 0a	Motolo V	and V are more reactive then metal W		1
Аза	wetais <u>A a</u>	and i are more reactive than metal w.		
	Metal <u>W i</u> s	s more reactive than metal Z.		1
A9b	1. Weigh a	a piece of metal X.		
	2. Half fill	a test tube with water and stopper with a delivery	tube.	
	3. Place n	netal X in another test tube. Connect this test-tube	to the one with water.	
				1

Qn	Suggested answers	Mark
	4. <u>Heat the test tube of water until steam</u> is formed and allow the steam to pass over the heated metal X.	
	5. Stop heating when there is colour change observed/after 5 minutes.	1
	Weigh the resulting solid after heating [method] when it has cooled down.	
	7. Repeat Steps 1 to 6 with metal Y.	1
	8. <u>Compare</u> the change in mass for both metals.	1
	9. The more reactive metal will have a higher change in mass after 5 mins.	•
	method: measure volume of gas after 10 minutes/ observe colour change of the solid before and after heating	
A10a	Across period 2 the melting points of the fluoride compounds decreases	1
A10bi	GeF ₄	1
A10bii	No. The number of F atoms that bond to the halogens should be 1 however, for	1
	Cl, Br and I, they can form more than one compound, which have <u>varying number of</u> <u>F atoms that are bonded to them</u> .	1
	Or give any counter example: i.e. The number of F atoms that bond to the halogens should be 1, but ClF_3 has 3 F atoms bonded to Cl .	
A10biii	The number of compounds formed between a halogen and fluorine is equal to the period number of the halogen minus 1 .	1
	Or The <u>number of compounds formed between a halogen and fluorine</u> is always an odd number.	
	or The number of compounds formed between a halogen and fluorine increases by 1 as you go down the group.	
A10biv	CIF ₃ , BrF ₃ , BrF ₅ , IF ₃ , IF ₅ , IF _{7.} /Compounds that have more than 1 bond with fluorine.	1
	These compounds have <u>more than 8 valence electrons in their outershell</u> Or They do not have a fully filled/noble gas configuration.	1
A10c	Neon and argon has fully-filled/completely filled valence/outermost electron shells so they are unable to react with fluorine to form compounds.	1
A10d	SAt ₂ or At ₂ S	1
	Astatine is in the same group as fluorine / also has 7 valence electrons or	1
	Astatine atom has 7 valence electrons and will share 1 electron each with 2 sulfur atoms which only has 6 valence electrons.	
A10e	×× •• ××	2
	× F × O × F ×	
	[1m] – bonding electrons	
L		

Paper 2 Section B

	Suggested answers	Mark
EITHER B11a	Number of moles of nitrogen gas required = 11.7 / 24 = 0.4875 mol	1
	Mole ratio of NaN_3 : $N_2 = 2$: 3	
	Number of moles of sodium azide required = $(0.4875 / 3) \times 2 = 0.325$ mol	1
	Mass of sodium azide required = $0.325 \times (23 + 3(14))$	
	= 21.125 g = 21.1 g (to 3 s.f.)	1
B11bi	To produce more nitrogen so that bag will inflate more quickly	1
B11bii	$K_2O + Na_2O + 2SiO_2 \to K_2SiO_3 + Na_2SiO_3.$	1
B11ci	Precipitation	1
B11cii	$Pb^{2+}(aq) + 2N_3(aq) \rightarrow Pb(N_3)_2(s)$	2
B11ciii	Add excess lead(II) carbonate to dilute nitric acid.	
	Filter the mixture to obtain lead(II) nitrate as the filtrate	1
	Heat to saturated, then cool and crystalise.	
	Filter the mixture and wash the residue with a small amount of cold distilled water to remove impurities and dry between sheets of filter paper	
	water to remove impundes and dry between sneets of inter paper.	1
OR	Water contributes/loses a hydrogen ion AND methylamine gains/accepts	1
OR B11a	Water contributes/loses a hydrogen ion AND methylamine gains/accepts the hydrogen ion	1
OR B11a B11b	Water <u>contributes/loses a hydrogen ion</u> AND <u>methylamine gains/accepts</u> <u>the hydrogen ion</u> . Accept any pH value from 8 – 12	1
OR B11a B11b	Water <u>contributes/loses a hydrogen ion</u> AND <u>methylamine gains/accepts</u> <u>the hydrogen ion</u> . Accept any pH value from 8 – 12 <u>Sodium hydroxide is a strong base/alkali but methylamine is a weak</u> <u>base/alkali Hones the concentration of hydroxide ions is higher in codium</u>	1 1 1
OR B11a B11b	Water <u>contributes/loses a hydrogen ion</u> AND <u>methylamine gains/accepts</u> <u>the hydrogen ion</u> . Accept any pH value from 8 – 12 <u>Sodium hydroxide is a strong base/alkali but methylamine is a weak</u> <u>base/alkali</u> . Hence, the <u>concentration of hydroxide ions is higher in sodium</u> hydroxide than methylamine.	1 1 1
OR B11a B11b	Water <u>contributes/loses a hydrogen ion</u> AND <u>methylamine gains/accepts</u> <u>the hydrogen ion</u> . Accept any pH value from 8 – 12 <u>Sodium hydroxide is a strong base/alkali but methylamine is a weak</u> <u>base/alkali</u> . Hence, the <u>concentration of hydroxide ions is higher in sodium</u> <u>hydroxide than methylamine</u> . (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide)	1
OR B11a B11b B11ci	Water contributes/loses a hydrogen ionAND methylamine gains/acceptsthe hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide) $2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$	1 1 1 1
OR B11a B11b B11ci B11cii	Water contributes/loses a hydrogen ionAND methylamine gains/acceptsthe hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide)2CH_3NH2 + H2SO4 \rightarrow (CH3NH3)2SO4Methylamine, water, potassium chloride	1 1 1 1 1 1
OR B11a B11b B11ci B11cii B11di	Water contributes/loses a hydrogen ionAND methylamine gains/acceptsthe hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide) $2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$ Methylamine, water, potassium chlorideGreen precipitate formed.	1 1 1 1 1 1
OR B11a B11b B11ci B11cii B11di B11dii	Water contributes/loses a hydrogen ion AND methylamine gains/accepts the hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide)2CH ₃ NH ₂ + H ₂ SO ₄ \rightarrow (CH ₃ NH ₃) ₂ SO ₄ Methylamine, water, potassium chlorideGreen precipitate formed.Fe ²⁺ (aq) + 2OH ⁻ (aq) \rightarrow Fe(OH) ₂ (s)	1 1 1 1 1 1 2
OR B11a B11b B11ci B11cii B11di B11dii	Water contributes/loses a hydrogen ion the hydrogen ion.AND methylamine gains/accepts the hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide) $2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$ Methylamine, water, potassium chlorideGreen precipitate formed. $Fe^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s)$ $[1m] - ionic equation;$ $[1m] - state symbols$	1 1 1 1 1 1 2
OR B11a B11b B11ci B11cii B11dii B11dii	Water contributes/loses a hydrogen ionAND methylamine gains/accepts the hydrogen ion.Accept any pH value from 8 – 12Sodium hydroxide is a strong base/alkali but methylamine is a weak base/alkali. Hence, the concentration of hydroxide ions is higher in sodium hydroxide than methylamine. (OR concentration of hydroxide ions is lower in methylamine than sodium hydroxide) $2CH_3NH_2 + H_2SO_4 \rightarrow (CH_3NH_3)_2SO_4$ Methylamine, water, potassium chlorideGreen precipitate formed. $Fe^{2+}(aq) + 2OH^-(aq) \rightarrow Fe(OH)_2(s)$ $[1m] - ionic equation;$ $[1m] - state symbolsGreen solution turns reddish brown/brown/orange/ yellow.$	1 1 1 1 1 2