

RAFFLES INSTITUTION H2 Mathematics 9758 2023 Year 6 Term 3 Revision 10 (Summary and Tutorial)

Topic: Functions

Summary for Functions

Relations and Functions

- The set of inputs of a function is known as the **domain** while the corresponding set of outputs is known as the **range**.
- To define a function completely, both the rule <u>and</u> domain must be specified.
- The range of a function can be obtaining by looking at its graph (y-values).
- If a function is such that no two elements in the given domain have the same output, it is a **one-one function**.
- To check if a function is one-one, we use horizontal lines to check.

If function is one-one, such as $f: x \mapsto x^2, x > 2$, we write since every horizontal line y = k, $k \in [4, \infty)$, cuts the graph of f at one and only one point, f is a one-one function. Note that $[4, \infty)$ is the range of f.

If function is NOT one-one, such as $f: x \mapsto x^2, x \in \mathbb{R}$, we choose a specific line y = k where k is a value in range of f. In this case, we can write since the horizontal line y = 1 cuts the graph of f at more than one point, f is not a one-one function

Inverse Functions

- Given a function f, the **inverse function** f^{-1} exists if and only if f is one-one.
- To define f^{-1} , you must find the rule and domain.
- To find the rule of f^{-1} , let y = f(x) and make x the subject, i.e $x = f^{-1}(y)$.

Example to find the rule of inverse of $g: x \mapsto 1 + e^{-x}$, $x \in \mathbb{R}$

Let $y = 1 + e^{-x}$ and make x the subject to get $x = -\ln(y-1)$.

• To find domain of f^{-1} , use the result: $D_{f^{-1}} = R_{f}$

Note also that $R_{f^{-1}} = D_f$.

• The graphs of y = f(x) and $y = f^{-1}(x)$ are reflections of each other in the line y = x.

Composite Functions

- Given 2 functions f and g, the composite function gf exists if and only if $R_f \subseteq D_g$.
- To define gf, you must find the rule and domain.
- To find the rule of gf, find f(x) first, then find g(f(x)).
- To find domain of gf, use the result: $D_{gf} = D_{f}$
- In general, $fg \neq gf$. i.e. composition of functions is not commutative.
- The composite function ff, if it exists, is written as f^2 , i.e. $f^2(x) = ff(x) = f(f(x))$.
 - Useful results: (i) $\text{ff}^{-1}(x) = x$, where $x \in D_{f^{-1}}$. (ii) $f^{-1}f(x) = x$, where $x \in D_{f}$.
- To find the range of gf, use either

(1)
$$R_{gf} = R_g$$
 restricted to R_f

or (2) sketch the graph of y = gf(x) over D_{gf} and find R_{gf} .

Example

Find the range of the composite gf given that the functions f and g are defined as follows:

$$f: x \mapsto x-2, \quad x \ge 3, \\ g: x \mapsto \sqrt{x}, \quad x \ge 0.$$

Method 1

Sketch the graphs of the functions f and g on separate diagrams.

For the composite function gf, f is first applied to each $x \in D_f$ to find the image f(x), and then the rule for g is applied to f(x) to obtain the image g(f(x)). i.e. gf(x) = g(f(x)).

Consequently, we can obtain the range of gf as the range of g whose domain is restricted range of f, i.e $[3, \infty) \xrightarrow{f} [1, \infty) \xrightarrow{g} [1, \infty)$. Thus $R_{gf} = [1, \infty)$.

Method 2 Find the function gf followed by sketching its graph to find the range. $gf(x) = g[f(x)] = \sqrt{x-2}, \quad D_{gf} = D_f = [3, \infty)$ From sketch, $R_{gf} = [1, \infty)$.

Revision Tutorial Questions

Source of Question: EJC/Y5 Promo/2018/Q3

1 The function f is defined by
$$f: x \mapsto \ln|1-2x|, x \in \mathbb{R}, x \neq \frac{1}{2}$$
.

(i) Explain why f does not have an inverse.

The function g is now defined by $g: x \mapsto \ln |1-2x|$, x > a where a is a real constant.

- (ii) State the minimum value of a such that g^{-1} exists.
- (iii) Using the value of a stated in (ii), define g^{-1} in a similar form and state the range of g^{-1} . [4]

[(ii)
$$a = \frac{1}{2}$$
 (iii) $g^{-1} : x \mapsto \frac{1}{2}(e^x + 1), x \in \mathbb{R}$; $R_{g^{-1}} = \left(\frac{1}{2}, \infty\right)$

[1]

[1]

Source of Question: NJC/Y5 Promo/2018/Q10

2 The functions g and h are defined by

$$g: x \mapsto \frac{8x}{x^2 + 2}, \qquad x \ge k,$$

$$h: x \mapsto \frac{1}{4} (x - 2)^2, \qquad 0 \le x \le 4.$$

(i) Find the smallest exact value of k such that g^{-1} exists. [2]

Use k = 2 for the remainder of this question.

- (ii) Find the exact range of g. [1]
- (iii) Sketch the graphs of

$$y = g(x), y = g^{-1}(x) \text{ and } y = gg^{-1}(x)$$

on the same diagram.

- Hence find the exact solution of $g^{-1}(x) = g(x)$. [6]
- (iv) Show that hg exists and determine the range of hg. [3]

[(i)
$$k = \sqrt{2}$$
 (ii) $\left(0, \frac{8}{3}\right]$ (iii) $x = \sqrt{6}$ (iv) $[0, 1)$]

2(i)
[2]

$$y = \frac{8x}{x^2 + 2}$$

$$g'(x) = \frac{8(x^2 + 2) - 8x(2x)}{(x^2 + 2)^2} = \frac{16 - 8x^2}{(x^2 + 2)^2}$$
For maximum point of $y = g(x)$, $g'(x) = 0$.

$$16 - 8x^2 = 0$$

$$x = \pm \sqrt{2}$$
From the graph, it is a one-one function if $x \ge \sqrt{2}$, so the smallest exact value of k is $\sqrt{2}$.
2(ii)
[1]

$$g(2) = \frac{16}{2^2 + 2} = \frac{8}{3}$$
, so the range of g is $\left(0, \frac{8}{3}\right]$ as observed from the graph in (i).

- Source of Question: MI/Promo/PU2/2017/Q6 3 A function f is defined by $f(x) = 4 (3-x)^2$ for $x \in \mathbb{R}$.
 - Show that f^{-1} does not exist. (i)
 - If the domain of f is restricted to $x \le k$, state the largest exact value of k for which the (ii) function f^{-1} exists. [1]

[1]

- (iii) Using the domain defined in part (ii), find f^{-1} and its range. [3]
- (iv) Solve the equation $f(x) = f^{-1}(x)$ exactly. [3]

[(ii)
$$k = 3$$
 (iii) $f^{-1}(x) = 3 - \sqrt{4 - x}, x \in (-\infty, 4]$; $R_{f^{-1}} = (-\infty, 3]$ (iv) $x = \frac{5 - \sqrt{5}}{2}$]

3(i) [1]	URANITAL FLUATI HUTU KEHL KHULHN FIF ALC MAXIMUM $Y_1=Y-(3-X)^2$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
	Since the horizontal line $y = 1$ intersects the graph of $y = f(x)$ more than once, f is not
	one-one. Hence, f^{-1} does not exist.
	Alternatively, since $f(1) = 0 = f(4)$, f is not one-one and does not have an inverse.
3(ii)	<i>k</i> = 3
[1]	
3(iii)	Let $y = 4 - (3 - x)^2$
[3]	$3 - x = \pm \sqrt{4 - y}$
	$x = 3 \mp \sqrt{4 - y}$
	Since $x \le 3$, $x = 3 - \sqrt{4 - y}$
	Hence, $f^{-1}(x) = 3 - \sqrt{4 - x}, x \in (-\infty, 4].$
	So $R_{f^{-1}} = D_f = (-\infty, 3]$
3(iv)	We may solve $f(x) = x$ instead of $f(x) = f^{-1}(x)$.
[3]	$4 - \left(3 - x\right)^2 = x$
	$x^2 - 5x + 5 = 0$
	$x = \frac{5 \pm \sqrt{25 - 4(5)}}{2} = \frac{5 - \sqrt{5}}{2} \text{ or } \frac{5 + \sqrt{5}}{2} \text{ (rejected :: } x \le 3)$

Source of Question: NYJC/Prelim/2017/01/Q7

4 The functions f and g are defined by

$$f: x \mapsto e^{-x^2}, \quad x \in \mathbb{R}, \ x < 0,$$

g:
$$x \mapsto \frac{1}{x+3}$$
, $x \in \mathbb{R}$, $x \neq -3$.

- (i) Show that g^{-1} exists, and define g^{-1} in a similar form. [2]
- (ii) State the solution set for $gg^{-1}(x) = x$. [1]
- (iii) Explain why fg^{-1} does not exist. [1]

Let the function h be defined by

$$h: x \mapsto g(x), x \in \mathbb{R}, x < k$$

where k is a real constant.

- (iv) Given that $f h^{-1}$ exists, state the maximum value of k. [1]
- (v) For the value of k found in (iv),
 - (a) find the exact range of $f h^{-1}$, [2]
 - **(b)** solve $h(x) = h^{-1}(x)$. [2]

[(i)
$$g^{-1}: x \mapsto \frac{1}{x} - 3, x \in \mathbb{R}, x \neq 0$$
 (ii) $\{x \in \mathbb{R} \mid x \neq 0\}$ (iv) $k = -3$
(v)(a) $R_{fh^{-1}} = (0, e^{-9})$ (v)(b) $x = -3.30$]

	$g^{-1}: x \mapsto \frac{1}{2} - 3, x \in \mathbb{R}, \ x \neq 0$
	x
4 (**)	
4(11) [1]	$\{x \in \mathbb{R} \mid x \neq 0\}$
4(m) [1]	$\mathbf{R}_{\mathbf{g}^{-1}} = \mathbf{D}_{\mathbf{g}} = \mathbb{R} \setminus \{-3\}, \mathbf{D}_{\mathbf{f}} = \mathbb{R}^{-}.$
[1]	Since $R_{g^{-1}} \not\subset D_f$, fg^{-1} does not exist.
4(iv)	k = -3
[1]	
4(v)(a)	v
[2]	~ †
	$\mathcal{X} \uparrow$
	(0,1) $y = f(x)$
	$y = h^{-1}(x)$ $y = -5$
	From sketch, we have $(-\infty, 0) \xrightarrow{\Pi^+} (-\infty, -3) \xrightarrow{\Pi^-} (0, e^{-9})$
	$R_{fh^{-1}} = (0, e^{-9})$
4(v)(b)	$\mathbf{h}(x) = \mathbf{h}^{-1}(x)$
[2]	$\mathbf{h}(x) = x$
	1
	$\frac{1}{x+3} = x$
	$x^2 + 3x - 1 = 0$
	Since $x < -3$, $x = -3.30$ (3sf)

Source of Question: ACJC/Y5 Promo/2017/Q11

5 (a) The function f is defined by

$$\mathbf{f}: x \mapsto \left| e^{x^2} - 2 \right|, \ x \in \mathbb{R}.$$

If the domain of f is restricted to $k \le x \le 0$,

- (i) state the least value of k for which the function f^{-1} exists, [1]
- (ii) find $f^{-1}(x)$, stating the domain of f^{-1} . [3]
- (b) The functions g and h are defined by

$$g: x \mapsto \begin{cases} \sin^{-1} x & \text{for } -1 < x \le 1, \\ \pi \left(1 - \frac{x}{2} \right) & \text{for } 1 < x \le 3, \end{cases}$$
$$h: x \mapsto 2x, \text{ for } -\frac{\sqrt{3}}{4} \le x \le 1.$$

(i) Show that the composite function gh exists and find its range, giving all values in terms of π. [3]

It is given that g(x+4) = g(x) for all real values of x.

(ii) Evaluate
$$g(17)$$
. [2]

(iii) Sketch the graph of
$$y = g(x)$$
 for $-1 \le x \le 5.5$. [3]

[(a)(i)
$$k = -\sqrt{\ln 2}$$
 (a)(ii) $f^{-1}(x) = -\sqrt{\ln(2-x)}$; $D_{f^{-1}} = [0,1]$
(b)(i) $R_{gh} = \left[-\frac{\pi}{3}, \frac{\pi}{2}\right]$ (b)(ii) $\frac{\pi}{2}$]

5(a)(i) [1]	$y = f(x)$ $y = f(x)$ $-\sqrt{\ln 2} 0 \sqrt{\ln 2}$ $f^{-1} \text{ exists if least value of } k \text{ is } -\sqrt{\ln 2}.$
5(a)(ii) [3]	If the domain of f is restricted to $-\sqrt{\ln 2} \le x \le 0$, let $y = -\left(e^{x^2} - 2\right)$ $e^{x^2} = 2 - y$ $x^2 = \ln(2 - y)$ $x = \pm \sqrt{\ln(2 - y)}$ Since $-\sqrt{\ln 2} \le x \le 0$, $\therefore x = -\sqrt{\ln(2 - y)}$ $f^{-1}(x) = -\sqrt{\ln(2 - x)}, \ 0 \le x \le 1$. Note: $D_{f^{-1}} = R_f = [0,1]$
5(b)(i) [3] 5(b)(ii)	$R_{h} = \left[-\frac{\sqrt{3}}{2}, 2\right] , D_{g} = (-1, 3]$ Since $R_{h} \subseteq D_{g}$, \therefore gh exist. So $R_{gh} = \left[-\frac{\pi}{3}, \frac{\pi}{2}\right]$.
[2]	Since $g(x+4) = g(x)$,

	g(17) = g(13)	i.e. when $x = 13$
	=g(9)	
	=g(5)	
	=g(1) $=$ sin	$n^{-1}(1) = \frac{\pi}{2}$
5(b)(iii)	Ľ	
[3]	Ť	y = g(x)
	-1 0 $-\frac{\pi}{2}$	$\begin{array}{c c} & & & \\ \hline \\ 1 & 2 \\ 1 & 2 \\ \end{array}$

Source of Question: TPJC/Prelim/2017/01/Q3

6 A function f is defined by $f: x \mapsto (x-k)^2$, x < k where k > 5.

(i) Find $f^{-1}(x)$ and state the domain of f^{-1} .

The diagram above shows the curve with equation y = g(x), where $-2 \le x \le 2$. The curve crosses the *x*-axis at x = -2, x = -1, x = 1 and x = 2, and has turning points at (-1.5, -1), (0, 4) and (1.5, -1).

- (ii) Explain why the composite function fg exists. [2]
- (iii) Find in terms of k,
 - (a) the value of fg(-1), [1]
 - (b) range of fg. [2]

$$[(i) f^{-1}(x) = -\sqrt{x} + k , D_{f^{-1}} = [0,1] \quad (iii)(a) k^{2} \quad (iii)(b) \left[(4-k)^{2}, (1+k)^{2} \right]]$$

Solution:

6(i) [3]	Let $y = (x-k)^2$ $x-k = \pm \sqrt{y}$ $x = -\sqrt{y} + k$ (:: $x < k$) $f^{-1}(x) = -\sqrt{x} + k$
	$D_{f^{-1}} = (0, \ \infty)$
6(ii) [2]	$R_{g} = [-1, 4], D_{f} = (-\infty, k)$
	Since $k > 5$, $R_g \subseteq D_f$. Thus fg exists.
6(iii)(a) [1]	$fg(-1) = f(0) = k^2$

[3]

6(iii)(b) Using $R_g = [-1, 4]$, and the fact that f is a strictly decreasing function in the given domain, $R_{fg} = [(4-k)^2, (-1-k)^2]$ $= [(4-k)^2, (1+k)^2]$

Source of Question: HCI/Promo/2018/Q6

7 The function f is defined by

$$f: x \mapsto \frac{x}{ax-1}$$
, for $x \in \mathbb{R}$, $-\frac{1}{a} \le x < \frac{1}{a}$,

where *a* is a positive constant.

- (i) Sketch the curve y = f(x), stating the equation of the asymptote and the coordinates of the end-point. [2]
- (ii) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]
- (iii) Sketch the curve $y = f^{-1}(x)$ on the same diagram as the curve y = f(x) in part (i). Hence obtain the range of values of x for which $f(x) = f^{-1}(x)$ in terms of a. [2]

The function g is defined by

$$g: x \mapsto \left(x - \frac{1}{3a}\right)^2 - \frac{1}{9a^2} \text{ for } x \in \mathbb{R}, x < \frac{1}{a}.$$

(iv) Show that the composite function gf exists, and find the range of gf in terms of a.

 $[(ii) f^{-1}(x) = \frac{x}{ax-1}; D_{f^{-1}} = \left(-\infty, \frac{1}{2a}\right] \quad (iii) -\frac{1}{a} \le x \le \frac{1}{2a} \quad (iv) \left[-\frac{1}{9a^2}, \infty\right]]$

[2]

Solution:

7(iv)
[2] Since
$$\frac{1}{2a} < \frac{1}{a}$$
, $R_{\rm f} = \left(-\infty, \frac{1}{2a}\right]$ is a subset of $D_{\rm g} = \left(-\infty, \frac{1}{a}\right)$.
Therefore gf exists.
From the given expression of $g(x)$, the graph of $y = g(x)$ is a
quadratic graph with minimum point $\left(\frac{1}{3a}, -\frac{1}{9a^2}\right)$
 $y = g(x)$
 $\begin{pmatrix} 1 \\ 3a \end{pmatrix}, -\frac{1}{9a^2} \end{pmatrix}$
 $\begin{pmatrix} \frac{1}{2a}, \frac{1}{3a^2} \\ \frac{1}{2a} \end{pmatrix}$
 $\begin{pmatrix} \frac{1}{2a}, -\frac{1}{9a^2} \\ \frac{1}{3a}, -\frac{1}{9a^2} \end{pmatrix}$
 $R_{\rm f} = \left(-\infty, \frac{1}{2a}\right] \xrightarrow{g} \left[-\frac{1}{9a^2}, \infty\right)$
 $\therefore R_{\rm gf} = \left[-\frac{1}{9a^2}, \infty\right)$

Source of Question: SRJC JC2 Mid-Year CT 9758/2018/01/Q2

8 The functions f and g are defined by

$$f: x \mapsto 2\cos\left(x + \frac{\pi}{4}\right), \quad -\pi \le x \le \pi,$$
$$g: x \mapsto (x-1)^2 + a, \quad -3 < x \le 2 \text{ and } -1 < a < 0.$$

- (i) Explain why f does not have an inverse.
- (ii) Explain why the composite function fg does not exist. Given that the composite function gf exists, find gf in similar form and find its range in terms of *a*. [4]
- (iii) The function f has an inverse if the domain is restricted to -π ≤ x ≤ p. State the largest possible exact value of p. [1]

$$[(ii) gf: x \mapsto \left[2\cos\left(x + \frac{\pi}{4}\right) - 1 \right]^2 + a, \ -\pi \le x \le \pi \ ; \ R_{gf} = [a, 9 + a] \quad (iii) \ p = -\frac{\pi}{4}]$$

[1]

80)
11
Since
$$f\left(-\frac{3\pi}{4}\right) = f\left(\frac{\pi}{4}\right) = 0$$
, f is not 1-1 and hence f does not
have an inverse.
Alternatively,
 $y = 2\cos\left(x + \frac{\pi}{4}\right)$
 $-\pi$
 $-\frac{3\pi}{4}$
 $-\frac{\pi}{4}$
 $-\frac{\pi}{4$

Source of Question: SAJC/Prelim/2017/01/Q3

9 It is given that

$$f(x) = \begin{cases} b\sqrt{1 - \frac{x^2}{a^2}} & \text{for } -a < x \le a \\ -a\sqrt{1 - \frac{(x - 2a)^2}{a^2}} & \text{for } a < x \le 3a \end{cases}$$

and that f(x+4a) = f(x) for all real values of *x*, where *a* and *b* are real constants and 0 < a < b.

- (i) Sketch the graph of y = f(x) for $-a \le x \le 8a$. [3]
- (ii) Use the substitution $x = a \cos \theta$ to find the exact value of $\int_{3a}^{4a} f(x) dx$ in terms of a, b and π . [5]

[(ii)
$$\frac{\pi}{4}ab$$
]

9(ii) [5]	$\int_{3a}^{4a} \mathbf{f}(x) \mathrm{d}x$		
[-]	$= \int_{-a}^{0} b \sqrt{1 - \frac{x^2}{a^2}} \mathrm{d}x$		
$=b\int_{\pi}^{\frac{\pi}{2}}\sqrt{1-\frac{a^{2}\cos^{2}\theta}{a^{2}}}(-a\sin\theta)\mathrm{d}\theta$			
	$=ab\int_{\frac{\pi}{2}}^{\pi}\sin^2\theta \mathrm{d}\theta$		
	$=ab\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1-\cos 2\theta}{2} \mathrm{d}\theta$		
	$=\frac{ab}{2}\left[\theta - \frac{\sin 2\theta}{2}\right]_{\frac{\pi}{2}}^{\pi}$		
	$=\frac{ab}{2}\left[\pi-\frac{\pi}{2}\right]$		
	$=\frac{\pi}{4}ab$		

Source of Question: HCI/Prelim/2017/01/Q1

10 The *floor function*, denoted by |x|, is the greatest integer less than or equal to x. For

example, $\lfloor -2.1 \rfloor = -3$ and $\lfloor 3.5 \rfloor = 3$.

The function f is defined by

$$f(x) = \begin{cases} \lfloor x \rfloor & \text{for } x \in \mathbb{R}, \ -1 \le x < 2, \\ 0 & \text{for } x \in \mathbb{R}, \ 2 \le x < 3, \end{cases}$$

where |x| denotes the greatest integer less than or equal to x.

It is given that f(x) = f(x+4).

- (i) Find the values of f(-1.2) and f(3.6). [2]
- (ii) Sketch the graph of y = f(x) for $-2 \le x < 4$. [2]

(iii) Hence evaluate
$$\int_{-2}^{4} f(x) dx$$
. [1]

$$[(i) f(-1.2) = 0, f(3.6) = -1 (iii) -1]$$

10(i) [2]	f(-1.2) = f(2.8) = 0 f(3.6) = f(-0.4) = -1	
10(ii) [2]	$\begin{array}{c} & & y \\ & & & & \\ \hline -2 & -1 & 0 \\ & & & \\ \bullet & & -1 \end{array} \begin{array}{c} y \\ & & & \\ \bullet & & \\ \bullet & & \\ \end{array}} x$	
10(iii) [1]	$\int_{-2}^{4} f(x) dx = -1 + 1 - 1 = -1$	