
1	2	3	4	5	6	7	8	9	10
С	В	D	Α	В	С	Α	В	В	В
11	12	13	14	15	16	17	18	19	20
D	В	С	D	В	Α	D	С	С	C
21	22	23	24	25	26	27	28	29	30
С	В	С	D	D	В	D	В	С	D
31	32	33	34	35	36	37	38	39	40
С	Α	Α	В	В	В	В	Α	D	D

SAJC Prelim 2015 H2 Chemistry Paper 1 Worked Solutions

1	The mass percentage of magnesium in a mixture of magnesium chloride ($M_r = 95.3$) and						
	magnesium nitrate (M_r = 148.3) was found to be 21.25%. What mass of magnesium chloride						
	is present in 323 g of the mixture?						
	Α	151 g					
	В	165 g					
	C	<mark>172 g</mark>					
	D	181 g					
		3/95.3)(x) + (24.3/148.3)(1 - x) = 0.2125					
		ing for x, $x = 0.5338$					
	Mass	s of magnesium chloride = $0.5338 \times 323 = 172g$					
2	Whic	ch conversion results in a loss of electrons for the underlined species?					
	Α	$\underline{NO_3}$ to $\underline{NO_2}$ (+5 to +4)					
	B	<u>NO₂ to NO₃ (+3 to +5)</u> (+3 to +5)					
		A loss of electrons results in an increase in oxidation state.					
	С	$\underline{S}_2 O_8^{2^-}$ to $\underline{S} O_4^{2^-}$ (+7 to +6)					
	D	$\underline{S}_4 O_6^{2^-}$ to $\underline{S}_2 O_3^{2^-}$ (+2.5 to +2)					
	D	$\underline{S}_4 O_6^{2^-}$ to $\underline{S}_2 O_3^{2^-}$ (+2.5 to +2)					

3			•	shows Gas Y deviating more from ideal gas behaviour than re and pressure?
		Gas X	Gas Y	
	Α	HF	HC <i>l</i>	
				between HCl molecules are weaker than the hydrogen bonds so HCl possesses less significant IMF and is more ideal.
	В	H ₂ O	H ₂	
				between H_2 molecules are weaker than the hydrogen bonds s, so H_2 possesses less significant IMF and is more ideal.
	С	I ₂	Br ₂	
		between I2	molecules,	between Br_2 molecules are weaker than the id-id interactions as Br_2 has a smaller electron cloud, so Br_2 possesses less
		significant	IMF and is m	ore ideal.
	D	Significant O_2	IMF and is m	ore ideal.
	D	O ₂ The pd-pd	NO ₂	ore ideal. Detween NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal.
4		O₂ The pd-pd between O	NO ₂ interactions l 2 molecules,	between NO ₂ molecules are stronger than the id-id interactions
4	Use Whie	O ₂ The pd-pd between O of the Data B	NO ₂ interactions l 2 molecules, Booklet is rele owing shows	between NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal.
4	Use Whie	O ₂ The pd-pd between O of the Data B	NO ₂ interactions l 2 molecules, Booklet is rele owing shows tric field?	between NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal. evant to this question.
4	Use White plac	O ₂ The pd-pd between O of the Data B ch of the follo ed in an elec	NO_2 interactions l 2 molecules, Booklet is relevant owing shows tric field? $1^{3^+} < Zn^{2^+}$	between NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal. evant to this question.
4	Use White plac	O_2 <i>The pd-pd</i> <i>between O</i> <i>of the Data B</i> ch of the following ed in an election $Cl^- < Ru$	NO_2 interactions l 2 molecules, Booklet is relevant owing shows tric field? $1^{3^+} < Zn^{2^+}$	between NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal. evant to this question.
4	Use White plac A B	O_2 <i>The pd-pd</i> <i>between O</i> <i>of the Data E</i> ch of the following ed in an elect $Cl^- < Ru$ $Ru^{3+} < Cl$	NO ₂ interactions l $_2$ molecules, Booklet is relevant owing shows tric field? $1^{3^+} < Zn^{2^+}$ $^- < Zn^{2^+}$	between NO ₂ molecules are stronger than the id-id interactions so NO ₂ possesses more significant IMF and is less ideal. evant to this question.

7	The	behavior of Group II sulfates and hydroxides show different trends down the group.					
1	Group II sulfates become less soluble down the group, while Group II hydroxides become						
	more	e soluble down the group.					
	Whic	ch of the following statements helps to explain this trend?					
	A	Down the group, the magnitude of the lattice energy of Group II hydroxides has a					
		more significant decrease than the magnitude of the sum of hydration energies of the					
		ions.					
	В	Down the group, the magnitude of the lattice energy of Group II sulfates has a more					
		significant decrease than the magnitude of the sum of hydration energies of the ions.					
	С	The hydration energy of the sulfate anion is larger in magnitude than the hydroxide					
		anion.					
	D	The magnitude of the lattice energy of Group II ionic compounds increases down the					
		group.					
	For <i>L</i> more For L	ΔH_{hyd} – LE ΔH_{hyd} , it is also always negative, but a decrease in the magnitude of ΔH_{hyd} leads to a positive / less negative ΔH_{soln} according to the above expression. LE, as it is always negative (exothermic), a decrease in the magnitude of LE leads to a positive / more negative ΔH_{soln} according to the above expression.					
		hydroxides become more soluble down the group, their ΔH_{hyd} has to become more ative, and that can only be explained by answer A.					
		ement B leads to a more negative ΔH_{hyd} and hence increased solubility of the sulfates as to down the group, which contradicts the information in the question.					
	desp	ement C is wrong as hydration energy is proportionate to charge density. Sulfate ion vite having a -2 charge, is also much larger than the hydroxide ion, and has a lower ge density as a result.					
		ement D is wrong as the cation size increases down group II, and since lattice energy is ortionate to $q_+q/(r_++r)$, lattice energy should decrease in magnitude.					

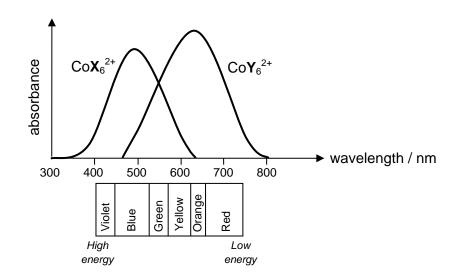
 is very slow, and usually involves the use of a metal salt catalyst to increase its rate. Which of the following is true? A Black phosphorus has a simple molecular structure. Untrue as the question stated black phosphorus has a structure similar to graphite and hence it must have a giant covalent structure. B AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. 	8	Phos	sphorus exists in several allotropes. White phosphorus has the structure P ₄ , while black							
 is very slow, and usually involves the use of a metal salt catalyst to increase its rate. Which of the following is true? A Black phosphorus has a simple molecular structure. Untrue as the question stated black phosphorus has a structure similar to graphite and hence it must have a giant covalent structure. B AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. C AS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to a first initial concentration after 51 minutes? A 20 min 		phosphorus has a structure similar to graphite.								
 Which of the following is true? A Black phosphorus has a simple molecular structure. Untrue as the question stated black phosphorus has a structure similar to graphite and hence it must have a giant covalent structure. B AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. C AS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to a 1/5 of its initial concentration after 51 minutes? A 20 min 		While the transformation of white phosphorus to black phosphorus is spontaneous, the rate								
 A Black phosphorus has a simple molecular structure. Untrue as the question stated black phosphorus has a structure similar to graphite and hence it must have a giant covalent structure. B AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to 1/2 of its initial concentration after 51 minutes? A 20 min 		is ve	ry slow, and usually involves the use of a metal salt catalyst to increase its rate.							
 Untrue as the question stated black phosphorus has a structure similar to graphite and hence it must have a giant covalent structure. AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to the similar concentration after 51 minutes? A 20 min 		Whic	h of the following is true?							
 and hence it must have a giant covalent structure. B ΔH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH must be negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to 1/2 of its initial concentration after 51 minutes? A 20 min 		Α	Black phosphorus has a simple molecular structure.							
 B AH for the transformation of white phosphorus to black phosphorus is less than zero. True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH mustive negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simplicity covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to a first initial concentration after 51 minutes? A 20 min 			Untrue as the question stated black phosphorus has a structure similar to graphite,							
 True because ΔG = ΔH - TΔS, and since ΔS is negative (see statement C), ΔH multiple negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to a 1/5 of its initial concentration after 51 minutes? 			and hence it must have a giant covalent structure.							
 be negative, otherwise the reaction will never be spontaneous. C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to 1/5 of its initial concentration after 51 minutes? A 20 min 		B	ΔH for the transformation of white phosphorus to black phosphorus is less than zero.							
 C ΔS for the transformation of white phosphorus to black phosphorus is greater that zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to 1/5 of its initial concentration after 51 minutes? A 20 min 			True because $\Delta G = \Delta H - T \Delta S$, and since ΔS is negative (see statement C), ΔH must							
Zero. Untrue as the conversion from white phosphorus to black involves merging simple covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			be negative, otherwise the reaction will never be spontaneous.							
Image: Provide the second state of		С	ΔS for the transformation of white phosphorus to black phosphorus is greater than							
o covalent molecules to form a giant covalent molecule. There is a decrease in the number of molecules, hence entropy change is negative. D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			zero.							
Image: number of molecules, hence entropy change is negative. Image: D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Image: Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. Image: P What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? Image: A 20 min			Untrue as the conversion from white phosphorus to black involves merging simple							
D The uncatalysed reaction of transforming white phosphorus to black phosphorus has small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			covalent molecules to form a giant covalent molecule. There is a decrease in the							
 small activation energy. Untrue as the information stated that the rate is very slow without a catalyst, hence must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to 1 of its initial concentration after 51 minutes? A 20 min 20 min 			number of molecules, hence entropy change is negative.							
9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min		D	The uncatalysed reaction of transforming white phosphorus to black phosphorus has a							
must have a large activation energy. 9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			small activation energy.							
9 What is the half-life of a first-order reaction where the concentration of the reactant drops to $\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			Untrue as the information stated that the rate is very slow without a catalyst, hence it							
$\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min			must have a large activation energy.							
$\frac{1}{5}$ of its initial concentration after 51 minutes? A 20 min										
A 20 min	9	Wha	t is the half-life of a first-order reaction where the concentration of the reactant drops to							
A 20 min		1	to initial concentration ofter 51 minutes?							
		5 OT I	IS INITIAL CONCENTRATION ATTER 51 MINUTES?							
B 22 min		Α	20 min							
		B	22 min							

	С	24 min
	D	26 min
10	1/5 = Ig(1/2 n = 2 t _{1/2} =	$[A]_{0}(1/2)^{n} \text{ where n is the no. of half-life}$ $= 1(1/2)^{n}$ $= 1 [g(1/2)$ $= 322$ $51 / 2.322 = 22.0 \text{ min}$ graph below shows the change in rate for an enzyme-catalysed reaction. Rate $I = I = I = I = I = I = I = I = I = I =$
	vvnic	ch of the following statements is incorrect ?
	Α	At low [substrate], the rate is first order with respect to [substrate].
	B	At low [substrate], the reaction slows down due to increasing concentration of the products. It should be: The reaction slows down as the enzyme active sites are gradually occupied by the substrate molecules.
	С	At high [substrate], the rate is constant as all the enzyme active sites are used up.
	D	At high [substrate], increasing [enzyme] increases the rate.

11	A ketone such as propanone can undergo a rearrangement of its atoms to form an enol							
	wher	n dissolved in a non-polar solvent. Enols exist together with their ketone forms in						
	equilibrium.							
		O OH						
	CHa	$-C - CH_3 - CH_3 - CH_3 - CH_2 \qquad \Delta H = +48 \text{ kJ mol}^{-1}$						
	0113							
	Whic	h of the following statements can be determined from the information above?						
	Α	Increasing the temperature results in the shift of the position of equilibrium to the left.						
		Wrong, as the enthalpy change is positive, an increase in temperature would shift the						
		equilibrium to the right.						
	В	The entropy change of the reaction is positive under aqueous conditions.						
		Wrong, as there is no change in the no. of molecules, entropy change is negligible.						
	С	Adding of warm alkaline iodine results in the shift of the position of equilibrium to the						
		right.						
		Wrong, as the iodoform reaction consumes propanone, and the equilibrium should						
		shift left.						
	D	Adding sodium metal results in the shift of the position of equilibrium to the right.						
		Adding social metal results in the shift of the position of equilibrium to the right.						
		Correct, as sodium metal reacts with the alcohol group and the equilibrium shifts right.						
12	Whic	h of the following mixtures will result in a significant pH change when a small amount of						
		is added?						
	Α	20 cm ³ of 1 mol dm ⁻³ H ₂ CO ₃ and 20 cm ³ of 1 mol dm ⁻³ KHCO ₃						
		0.02 mol of H_2CO_3 (weak acid) and 0.02 mol of HCO ₃ ⁻ (basic salt) make a good buffer,						
		since [weak acid] = [basic salt], hence it is able to resist pH changes.						

	B	20 cm ³ of	1 mol dr	n ⁻³ HC/ and 2	20 cm ³ of 1 m	ol dm ⁻³ CH ₃ C	H ₂ NH ₂	
		CH₃CH I 0.02 C -0.02 F 0 <i>The soluti</i> d	2NH2 + 0 -0	H^+ → CH_3CH .02 0 .02 +0. 0 0. consists of C	I₂NH₃ ⁺ .02 .02 ℃H₃CH₂NH₃ ⁺ (acidic salt) ai		ase present to cantly.
	C	NH₄ ⁺ + I 0.02 C -0.01 - F 0.01 <i>0.01 mol</i> o	• OH ⁻ → 0.01 •0.01 0 of NH ₃ (v	NH₃ + H₂O 0 +0.01 0.01 weak base) a		of NH₄⁺ (acidi		a good buffer,
	D	CH₃CH₂ I 0.02 C -0.07 F 0.01 0.01 mol o	2 (2 (1 -(H^+ → CH ₃ Cl 0.01 (0) 0.01 +0. 0 0. 00 <i>CDH (weak a</i>	H₂COOH 0 .01 .01 acid) and 0.0 [°]	1 mol of CH ₃ ($H_3CH_2COO)_2$ CH_2COO^- (bas ble to resist p	sic salt) make a
13	The	table below	shows t Salt K _{sp}	he numerica Pb(OH) ₂ 1.4 x 10 ⁻²⁰	Zn(OH) ₂	e solubility pr ZnCO ₃ 1.4 x 10 ⁻¹¹	oducts for sor Ag ₂ CO ₃ 8.1 x 10 ⁻¹²	ne salts.
	Whic A	ch statement		ect? oluble than 2	Zn(OH)			
		, , , ,			· · ·			
	В	Zn(OH) ₂ is	more s	oluble than Z	InCO ₃ .			

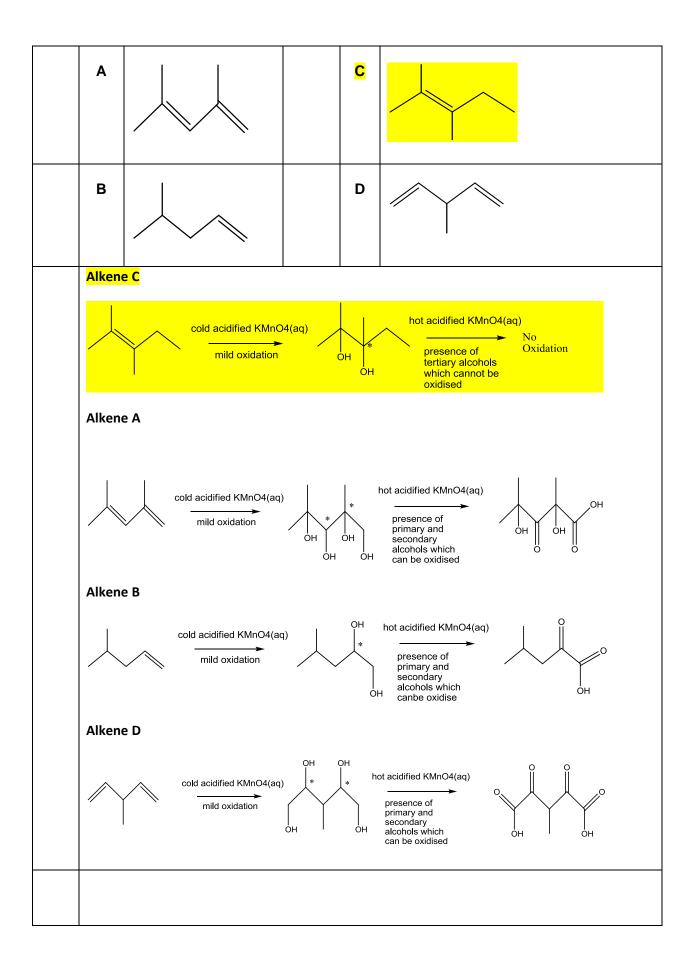
	C	Ad.CO.	is more solubl	e than ZnCO			
	U				3.		
	D	Pb(OH)	2 is more solub	le than Ag ₂ C	O ₃ .		
			_	0-	-		
	Worl	k out solu	bility value of	each salt to c	ompare.		_
		Salt	Pb(OH) ₂	Zn(OH) ₂	ZnCO₃	Ag ₂ CO ₃	
			20	17	11	10	-
		κ _{sp}	1.4 x 10 ⁻²⁰	3.0 x 10 ⁻¹⁷	1.4 x 10	8.1 x 10 ⁻¹²	
	0.0	I l. 1114	4 50 - 40-7	4.00 × 4.0-6	0 74 40-6	1.27 x 10 ⁻⁴	-
	50	lubility	1.52 X 10	1.96 X 10	3.74 X 10	1.27 X 10	
	(Mos	t soluble) Ag ₂ CO ₃ > Zn			(Least solub	
			, ng2003 - ZII				
14	Use	of the Da	ta Booklet is r	elevant to this	question.		
	_				·		
	Pure	copper v	vires when use	ed in electrocl	nemical cells	are partially	submerged in the
	elect	rolyte. W	hich aqueous	electrolyte ca	n be used sı	uch that the co	opper wires do not
	disso	olve?					
	Α	KNO ₃					
		$Cu^{2+} + 2$	2e ⁻ ← <u>Cu</u> 2H ⁺ + e ⁻ ←			E ^o = +0.34 V	
		<u>NO₃ + 2</u>	2H ⁺ + e ⁻	$NO_2 + 2H_2C$)	$E^{\circ} = +0.81 V$	
		$\underline{NO_3} + 3$	3H ⁺ + 2e ⁻ - I0H ⁺ + 8e ⁻ -=	- HNO ₂ + 2F	H₂O	$E^{\circ} = +0.94 V$	
		<u>NO</u> ₃ + 1 E _{cell} > 0	10H + 8e -	$- NH_4' + 3I$	H ₂ O	$E^{\circ} = +0.87 V$	
	В	$K_2S_2O_8$					
			2e ⁻ === <u>Cu</u>			E ^o = +0.34 V	
			2e ⁻ === 25			E ^o = +2.01 V	
		$E_{cell} = 2$.01 – 0.34 = +7	1.67 V > 0			
	<u> </u>		<u>_</u>				
	С	Na ₂ Cr ₂ C	J ₇				
		Cu ²⁺	2e ⁻ - C u			E° = +0.34 V	
			2e <u>Cu</u> + 14H⁺ + 6e				
			- 14n + 6e .33 – 0.34 = +(L - T1.00 V	
		-06/1 1					
1							


	D	Na ₂ S ₄ O ₆
		$\begin{array}{cccc} Cu^{2+} + 2e^{-} & E^{\circ} = +0.34 \ V \\ \underline{S_4 O_6}^{2-} + 2e^{-} & E^{\circ} = +0.09 \ V \\ \overline{E_{cell}} = 0.09 - 0.34 = -0.25 \ V < 0 & => \ Cu \ will \ not \ be \ oxidized/dissolved. \end{array}$
15	molte	g of metal was deposited when 1.602 x 10 ⁴ C of electricity was passed through a en electrolyte.
	Α	TiC/
	B	TiSO₄
	С	Ti ₂ O ₃
	D	TiO ₂
	Mole Ti : e Ti²+ -	s of $Ti = 3.96 / 47.9 = 0.08267 \text{ mol}$ s of $e^{-} = 1.602 \times 10^{4} / 96500 = 0.1660 \text{ mol}$ $e^{-} = 0.08267 : 0.1660 = 1 : 2$ $e^{-} 2e^{-} \rightarrow Ti$ ation state of Ti in the electrolyte is +2.
16		graph below shows the variation in the boiling points for eight consecutive elements in Periodic Table, all with atomic number between 10 and 20. $ \int_{UOD} \int_{UDD} \int_{UOD} \int_{UDD} $
	Whic	h of the following statements is true?

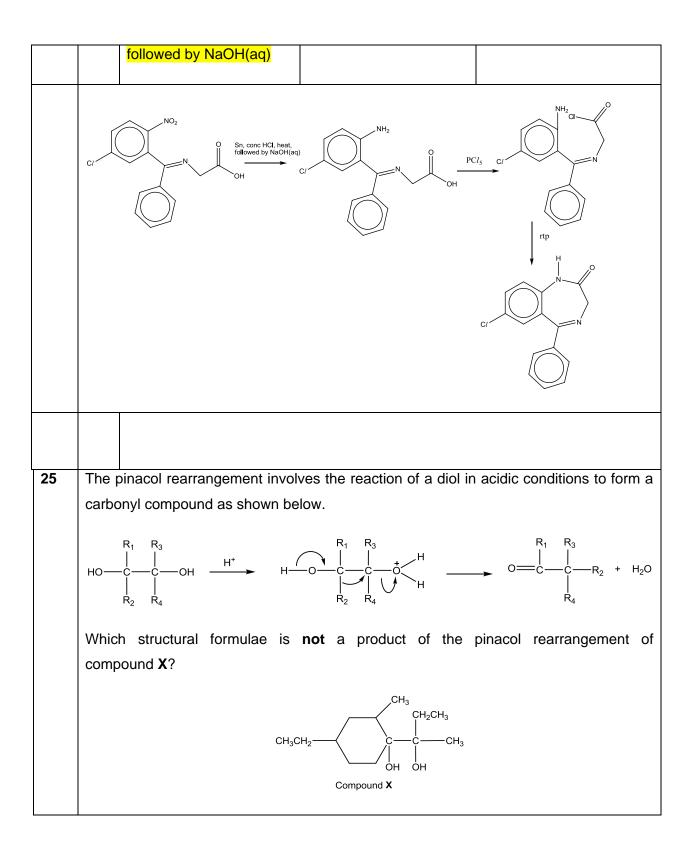
Α	Element H forms an acidic oxide.
В	Element K does not conduct electricity.
-	
С	Element E and beryllium are in the same group.
Ŭ	
D	The element preceding E has a smaller atomic radius than E.
_	
Since	e F has the highest boiling point, it is likely to be silicon, Group IV. We can thus identify
each	of the other elements by going across the period.
H is s	sulfur, and it does form sulfur dioxide, which is acidic. Statement A is true.
	potassium, and it is a metal which conducts electricity.
	aluminium, and it is in Group III, while beryllium is in Group II.
Elem	ent preceding E (aluminium) is magnesium, and it has a larger atomic radius than
	inium. This information can be obtained from the Data Booklet.
aiuiii	

17	Radi	um is a radioactive element below barium in the Periodic Table.				
	Which statement concerning radium is not true?					
	A	It is a good conductor of electricity.				
	В	Radium nitrate has a higher thermal stability than barium nitrate.				
	С	Radium dissolves in water at room temperature to form a strongly basic solution.				
	D	Radium has an outermost electronic configuration of 6s ² .				
	State	ements A, B, and C are true as these properties are all true for barium.				
	State	ement D is not true as radium belong to Period 7, and has an outermost electronic				
	conf	iguration of 7s ² .				
18	Chlo	rine and iodine are both elements in Group VII, but have some differences in their				
	reactivity and properties of their compounds.					
	Which of the following would increase from chlorine to iodine?					
	Α	oxidation state of sulfur when the halogens reacts with sodium thiosulfate				
		When chlorine reacts with thiosulfate, sulfur's oxidation state increases from +2 to +6. When iodine reacts with thiosulfate, sulfur's oxidation state increases from +2 to +2.5.				

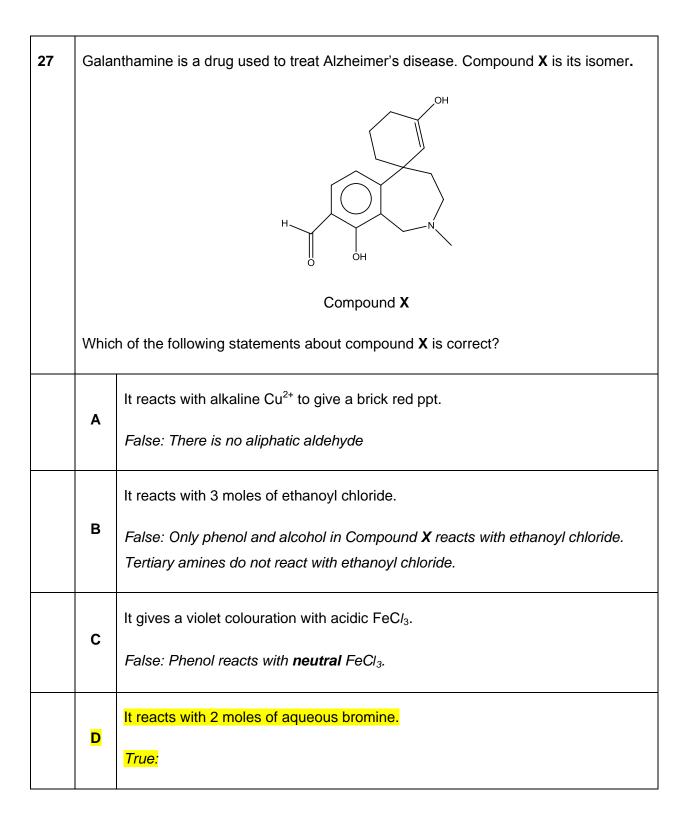
r	r						
	В	bond energy of molecules of the elements					
		The atomic size increases down the group. Hence there is less effective orbital					
		overlap, the bond length is longer and bond strength is weaker.					
-	C	strength of the van der Waals' forces between molecules of the elements					
		The number of electrons and the size of the molecules increase down the group. VDW is correlated to number of electrons and size, hence it increases.					
	D	o solubility product of the silver halide					
		The solubility of the silver halides decreases down the group, so the solubility product					
		must also decrease.					
19	Whie	ch of the following statements is true about the d-block elements in Period 4 and their					
		pounds?					
	Α	Chromium has the most number of oxidation states.					
		Untrue as the other d-block elements to the right of Cr can lose more than 6 electrons					
		from the 4s and 3d subshells – they have more oxidation states.					
	_						
	В	Cu ⁺ has 1 unpaired electron in its ground electronic configuration.					
		Untrue, as the ground electronic configuration of Cu^+ is [Ar]3d ¹⁰ . No unpaired					
		electrons.					
	<u> </u>						
	С	Ni ²⁺ is less likely to be reduced when dissolved in aqueous ammonia.					
		True as the standard reduction potential of $[Ni(NH_3)_6]^{2+}$ is more negative than that of					
		N ²⁺ . It is harder to reduce.					
	D	Scandium can form coloured complexes and can exhibit variable oxidation states.					
		סלמחמותה למח וסוחה לסוסתופט לסוחףופאפט מחט למח פאחוטוג עמומטופ טאוטמוטון אנופט.					
		Untrue as scandium does not have +2 oxidation state, and only has +3 oxidation					
		state. With this oxidation state, it does not have partially filled d-orbitals and cannot					
		have coloured complexes.					

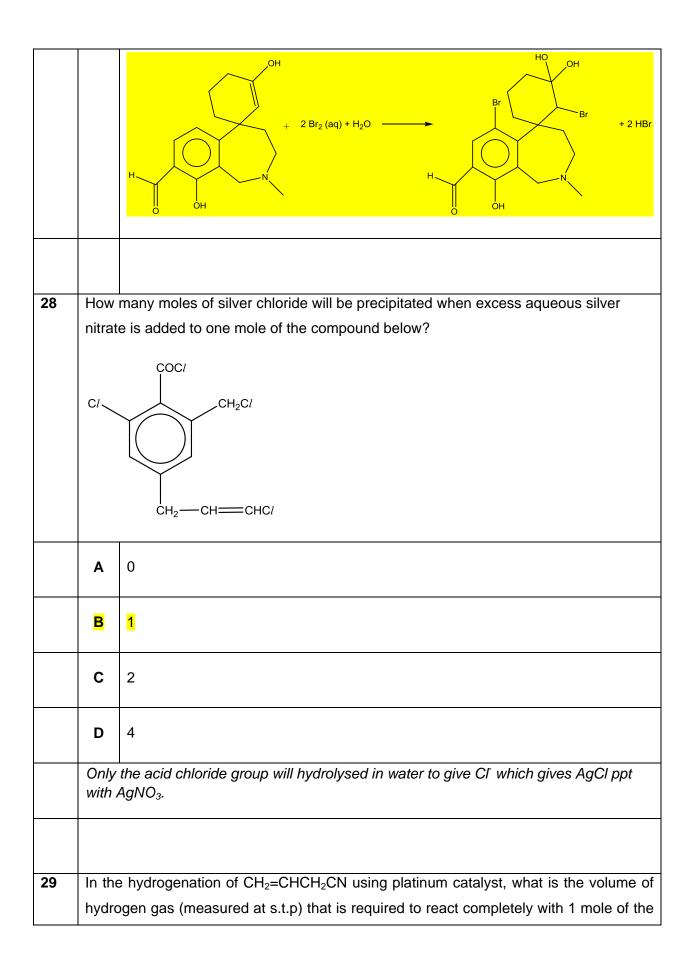

20 The diagram below shows the visible spectra of two cobalt(II) complexes, CoX_6^{2+} and CoY_6^{2+} . The various colours corresponding to the approximate wavelengths in the visible light region are shown below the x-axis. The shorter the wavelength of light, the higher its energy.

What is the colour of complex $Co Y_6^{2+}$ and which ligand causes a larger d-orbital splitting?


	colour of CoY ₆ ²⁺	ligand which causes a
		larger d-orbital splitting
A	yellow orange	x
В	yellow orange	Y
C	violet	×
D	violet	Y
Lig	and X has its peak absorption at a higher energy end than L	igand Y, so it implies a larger
en	ergy gap. Ligand Y does not absorb in the violet range.	

21	An alkene reacted with cold acidified KMnO ₄ (aq) to form a product which has a single chiral carbon atom. However the product does not react with hot acidified KMnO ₄ (aq).	
	Which is the following is a possible structure of the alkene?	


22	W , X and Y are three different organic compounds. Both X and Y can react with W to form an ester each, but Y reacts much less readily than X .				
	Which of the following could be Y?				
	A propanol				
	B	propanoic acid			
	С	propanoyl chloride			
	D	propanamide			
	Alcoh W: Al Y: Ca X: Ac Acid (group C in C	ol + Carboxylic Acid → Ester ol + Acid Chloride → Ester cohol rboxylic Acid id Chloride Chloride is more reactive then carboxylic acid because the Cl is a good leaving as compared to the OH group OR COCI bond is highly electron deficient as it is bonded to 2 strongly electronegative s, O and Cl thus attracting nucleophiles more strongly			
23		n of the following reagents is most suitable to distinguish between dilute anoic acid and methanal?			
	Α	HCN			
		False: HCN reacts with methanol but no observable change.			
	В	Hot acidified KMnO ₄ False: Both can be oxidised to form CO_2 . Methanoic acid is a special acid which can be oxidised by KMnO ₄ .			


	C	2,4-DNPH		
		True: Only methanal react	ts with 2,4-DNPH to give or	ange ppt.
	D	NaOH		
		False: Methanoic acid readobservable change.	cts with NaOH via neutralis	ation reaction with no
24	Deme	ethylated diazepam can be u	used as an anti-depressant	drug to treat anxiety.
	Whic	h of the following correctly s demethylated diazepam?	-	
	$ \begin{array}{c} & & & \\ & $			
		Compound X	demet	hylated diazepam
		Step I	Step II	
	Α	PCl ₅	LiA/H₄ in dry ether	
	В	PC <i>l</i> ₅	Sn, conc HC <i>l</i> , heat, followed by NaOH(aq)	
	с	NaBH ₄	PCl ₅	
	D	Sn, conc HC <i>l</i> , heat,	PCI₅	

Α ,CH₃ CH₂CH₃ 0 CH₃CH₂ с́н₃ ,CH₃ В ĊH₃ =0 CH₃CH₂· С CH₂CH₃ С ÇH₃ *,*0 -CH₃ CH₃CH₂ CH₂CH₃ D CH₃ CH₂CH₃ CH₃CH ĊH₂CH₃ ∕СН₃ ∕СН₃ ,CH₃ CH₂CH₃ CH2CH3 H^{+} CH₃CH₂ CH₃ CH3 СН₃СН CH₃CH₂ -CH₃ CH₂ O CH₂ O CH₃ ́∩ oH₂ όн όн Compound ${\boldsymbol X}$ OR ∠CH3 ∕СН₃ СН₃ CH₃CH₂ -CH₂CH₃ CH₃CH₂ CH₂CH₃ () ОН2 OR

СН₃ CH₂ CH₃ CH₂CH3 0 CH₂CH₃ CH₂CH CH₂ CH₃CH₂ СН₂СН CH₂CH₃ Compound X 26 Physostigmine is an alkaloid which occurs naturally in the Calabar bean. Compound **G** is a derivative of Physostigmine. Compound G The 3 nitrogen atoms are labelled as N_X to N_z. What is the increasing order of basicity of the 3 nitrogen atoms? Α $N_x < N_z < N_y$ В $N_x < N_y < N_z$ С $N_z < N_x < N_y$ $N_v < N_x < N_z$ D Amides are neutral as the lone pair of electrons on N is delocalised over the O-C-N bond and is therefore unavailable for protonation. Phenylamine is less basic than aliphatic amines as the lone pair of electrons on N atom is partly delocalised into the benzene ring, thus decreases the availability of lone pair electrons for protonation.

	comp	ound?	
	Α	22.4 dm ³	
	в	24.0 dm ³	
	C	<mark>67.2 dm³</mark>	
	D	72.0 dm ³	
		requires 1 mol of H_2 for addition to form alkane and –CN requires 2 mol of H_2 to be sed to –CH ₂ NH ₂ . Hence total of 3 mol of H_2 is required.	
	There	efore vol of H_2 at stp = 3 x 22.4 = 67.2 dm ³	
30	Compound Y was extracted from sunflowers and was known to possess anti-tumour effects.		
		$CH_{3}CO_{2} + CH_{3} + CO_{0} + CH_{0} + CH_{2} + CH_{2} + CH_{1} + CH_{2} + CH_{$	
		n of the following will not be formed when compound Y is reacted with excess hot NaOH?	
	Α	NH ₃	
	В	Na ₂ CO ₃	

ÇH₃ .OH HO. ,CO₂ Na⁺ С ∥ CH₂ NH ,CO₂⁻ Na⁺ сн₃ CH₃ .O⁻Na⁺ ⁺<u>Na</u> O ,CO₂⁻ Na⁺ ,<mark>CO₂[–] Na⁺</mark> D ĊΗ₂ ,<mark>CO₂⁻ Na⁺</mark> ĊH₃ -сн₃с50 ~ || ĊΗ₃ ÇH₃ .OH HO. CO2 Na⁺ . \$-_{NH} ∥ CH₂ ∥ CH₂ NH 0 CO₂ Na⁺ сн₃ NH_3 Compound Y + сн₃ Na₂CO₃ +

Section B

31	Whi	ch of the following is equal to one mole of the stated particles?					
	1	Electrons in 4.22 g of fluorine gas					
	Moles of $F_2 = 4.22 / 38 = 0.1111$ mol						
	Moles of $e^{-} = 0.1111 \times 9 \times 2 = 2 \mod 10^{-1}$						
	<mark>2</mark>	Neutrons in 1.90 g of fluorine gas					
	Moles of $F_2 = 1.90 / 38 = 0.05$ mol						
		Moles of neutrons = $0.05 \times 10 \times 2 = 1$ mol					
	<mark>3</mark>	Protons in 2.12 g of fluorine gas					
		Moles of $F_2 = 2.12 / 38 = 0.05579$ mol					
		Moles of neutrons = $0.05579 \times 9 \times 2 = 1$ mol					
32	Part	icle X has proton number, n.					
	Part	icle Y has proton number, $n+1$ and a charge of $+2$.					
	Part	icles X and Y are isoelectronic.					
	Whi	ch of the following statements are true?					
	1 X has a charge of +1.						
	Since Particle Y has a charge of +2, Y has electron number of n-1.						
		X and Y are isoelectronic, so X also has electron number of n-1.					
	<mark>2</mark>	Y releases more energy than X when an electron is added to each particle.					
		Y has more protons than X, hence it has higher nuclear charge, resulting in					
		stronger attraction for electrons.					
	<mark>3</mark>	Y has a smaller radius than X.					
		X and Y have same no. of electrons. Y has more protons than X, hence it has					
		higher nuclear charge and higher effective nuclear charge, resulting in a smaller					
		radius.					

	id HC/O	HBrO	HCN	
рK	a 7.46	8.70	9.21	
Whi <mark>1</mark>	ch of the fol HBrO is m			
	HBrO has	a higher	K _a valu	e than HCN, since $pK_a = -\log_{10}K_a$.
2	BrO [−] is mo HBrO is a than ClO,	weaker a	acid thai	n HClO, hence its conjugate base, BrO ⁻ is more bas
<mark>3</mark>	The maxin pH of 9.21		er capao	city for a solution containing HCN and CN ⁻ occurs a
	pir 01 3.2 1		na HCN	and CN^{-} would make up an acidic buffer which has
	A solution	containii		

34		H ₂ (g) at 1 atm			
		273 K \rightarrow Cathode Pt(s) 1 mol dm ⁻³ H ₂ SO ₄ (aq) \rightarrow Cathode Pt(s) 1 mol dm ⁻³ H ₂ SO ₄ (aq) \rightarrow Cathode Pt(s) $= 1 \text{ mol dm}^{-3}$ Vestigate the standard reduction potential of the Fe ³⁺ /Fe ²⁺ system, a student devised billowing electrochemical cell. His tutor informed him that he made a number of mistakes			
		s diagram.			
	vvna	t were his mistakes?			
	<mark>1</mark>	The cathode and anode were wrongly assigned.			
	2	The conditions used for the standard hydrogen electrode were incorrect.			
	3	He used a platinum electrode in the Fe ³⁺ /Fe ²⁺ half-cell.			
	Using the Data Booklet, the E_{cell} of the reaction is +0.77 uner standard conditions if the Fe ³⁺ /Fe ²⁺ half cell is where reduction occurs. Therefore the electrode at the Fe ³⁺ /Fe ²⁺ half cell should be the cathode.				
	The concentration of H^+ in the SHE is actually 2 mol dm ⁻³ , which is not standard condition.				
	Using a platinum electrode is correct for the Fe^{3+}/Fe^{2+} half cell.				
35	The labels of bottles containing sodium bromide and sodium iodide were accidentally				
	removed. Which chemical tests can be used to distinguish between sodium bromide and				
	sodiu	ım iodide?			
	<mark>1</mark>	Add aqueous silver nitrate followed by concentrated ammonia.			
	2	Add concentrated sulfuric acid.			
	3	Add sodium thiosulfate.			

Adding silver ions would form cream and yellow ppt, which can be further distinguished by concentrated ammonia as the silver bromide ppt would dissolve in concentrated ammonia, but not silver iodide.

Adding concentrated sulfuric acid would produce brown bromine gas for bromide, and a purple vapor along with pungent H_2S gas, thus distinguishing between the two.

Adding thiosulfate has no effect – thiosulfate reacts with Br_2 and I_2 , but not their ion forms.

36	Whic	Which statements about the chlorides of Period 3 elements are correct?			
	1	When one mole of PC l_5 is reacted completely with water, the resulting solution			
		requires eight molar equivalents of NaOH for neutralisation.			
		$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$ Since there are 8 moles of H ⁺ , 8 moles of NaOH are required.			
	<mark>2</mark>	MgCl ₂ gives a pH below 7 when dissolved in water.			
		$[Mg(H_2O)_6]^{2^+} + H_2O \implies [Mg(H_2O)_5(OH)]^+ + H_3O^+$			
	3	A/Cl ₃ reacts with water to give the colourless complex ion, $[A/(OH)_4]^-$.			
		Due to the low K_w value, water does not have sufficient OH ⁻ for this to occur.			
37	Prop	ane reacts with chlorine gas in the presence of ultraviolet light to form a mixture of			
	prod	ucts via free radical substitution. Which statements about this reaction are true?			
	<mark>1</mark>	Hexane is formed only in the termination step.			
	<mark>2</mark>	Homolytic fission occurs in the initiation and propagation step.			
	3	Chloropropane is formed only in the propagation step.			
	1. He	exane is only formed in termination step when \cdot CH ₂ CH ₂ CH ₃ reacts with \cdot CH ₂ CH ₂ CH ₃			
	2. Homolytic fission takes place in initiation and propagation step forming radicals.				
	3. Chloropropane is formed in the propagation and termination steps.				

Thiols are organic compounds containing the -SH functional group. They are sulfur analogues of alcohols. Some common reactions undergone by thiols are shown below:

 $CH_3CH_2SH + KOH \rightarrow CH_3CH_2S^-K^+ + H_2O$ Ι

$$\mathsf{CH}_3\mathsf{CH}_2\mathsf{SH}\ +\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{Br}\ \rightarrow\ (\mathsf{CH}_3\mathsf{CH}_2)_2\mathsf{S}\ +\ \mathsf{HBr}$$

38

Π

W	Which of the following statements are correct?		
1	Thiols are stronger acids than alcohols.		
2	Thiols are stronger nucleophiles than alcohols.		
3	Thiols can react with Na metal		
	Thiol is a stronger acid than alcohol since it can undergo neutralisation reaction with OH.		
	In reaction II, CH_3CH_2SH is acting as a nucleophile in the reaction. Alcohol is not a rong enough nucleophile to react with alkyl bromide in a similar reaction.		
	3. Since thiols are sulfur analogues of alcohols, it can also undergo redox reaction with Na.		

39	move	When a current is passed through a mixture of amino acids, negatively charged species move towards the anode, while positively charged species move toward the cathode. In a buffered solution at pH 7, which amino acid will move towards the anode?		
	1	H ₂ NCH(CH ₂ COOH)COOH		
	2	H ₂ NCH(CH ₂ CH ₂ NH ₂)COOH		
	3	H ₂ NCH(CH ₂ OH)COOH		
	The 1. 2.	H = 7 following species exist: $^{+}H_3NCH(CH_2COO^{-})COO^{-}$ migrates to anode $^{+}H_3NCH(CH_2CH_2NH_3^{+})COO^{-}$ migrates to cathode $^{+}H_3NCH(CH_2OH)COO^{-}$ does not move		

1	The structures of some amino acids are shown below.				
		Amino ad	cid	Formula of side chain	
				(R in RCH(NH ₂)CO ₂ H)	
		Lysine		-CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	
		Phenylala	anine	-CH ₂ C ₆ H ₅	
		Valine		-CH(CH ₃) ₂ -CH ₂ COOH	
		Aspartic a	Aspartic acid		-
	The R-groups of the amino acids in a globular protein may be found facing outwards or inwards in its tertiary structure.				
	Which of the following options are correct?				
	on the outside		on the inside		
	1	aspartic acid and lysine		valine and phen	ylalanine
	2	phenylalanine and lysine		valine and aspartic acid	
	3	aspartic acid and valine		phenylalanine and lysine	
	The R-groups of the amino acids that are non-polar in nature (hydrophobic) will be found facing inwards whereas polar R groups that can form hydrogen bonding with water (hydrophilic) will be found outwards. Hence aspartic acid and lysine should be found outside whereas phenylalanine and valine should be found inside.				

~~~ END ~~~