2023 SH1 H2 Further Mathematics Promotional Examination Solutions

On	So	lution	
1	Method 1: Standard check for linear independence.		
	Consider the equation $\alpha \mathbf{u} + \beta \mathbf{A} \mathbf{u} = 0$. (1)		
	$\mathbf{A}(\alpha\mathbf{u}+\beta\mathbf{A}\mathbf{u})=\mathbf{A}0$		
	$\alpha \mathbf{A}\mathbf{u} + \beta \mathbf{A}^2 \mathbf{u} = 0$		
	$\alpha \mathbf{A}\mathbf{u} + 0$	$0 = 0 (\because \mathbf{A}^2 = \mathbf{O})$	
	$\alpha A \mathbf{u} = 0$		
	$\alpha = 0 (\because \mathbf{A}\mathbf{u} \neq 0).$		
	Sub into (1):		
	$\beta A \mathbf{u} = 0$		
	$\boldsymbol{\beta} = 0 (\because \mathbf{A}\mathbf{u} \neq 0).$		
	\therefore Equation (1) has only the trivial solution.		
	Therefore, u and Au are linearly independent	.t.	
	Method 2: Proof by contradiction.		
	Suppose u and Au are linearly dependent.		
	$\frac{\text{Version 1}}{\text{There are }} $	$\frac{\text{Version 2}}{\text{There}}$	
	Then, $\mathbf{u} = k\mathbf{A}\mathbf{u}$ for some $k \in \mathbb{R}$.	Then, $A\mathbf{u} = k\mathbf{u}$ for some $k \in \mathbb{R}$. (1) $A\mathbf{u} - k\mathbf{u}$	
	Au = A(kAu)	$\lambda^2 = \lambda(L)$	
	$=k\mathbf{A}^{2}\mathbf{u}$	$\mathbf{A}^{-}\mathbf{u}=\mathbf{A}(k\mathbf{u})$	
	$=k\mathbf{O}\mathbf{u}$	$\mathbf{O}\mathbf{u} = k\mathbf{A}\mathbf{u}$	
	= k 0	$k\mathbf{A}\mathbf{u}=0.$	
	= 0 ,	Since $Au \neq 0$, it must be the case that $k = 0$. Then from (1) $Au = 0u = 0$ contradicting	
	contradicting $Au \neq 0$.	An $\neq 0$.	
	Therefore u and Au are linearly independen	t	
2(i)	Consider the interval $0 \le \theta \le 2\pi$.		
	When $\cos 2\theta = 0$, $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$.		
	Total area = $4 \times \frac{1}{2} \int_0^{\frac{\pi}{4}} a^2 \cos 2\theta d\theta$ (by symmetry)		
	$\begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} \frac{\pi}{4} \end{bmatrix}$		
	$=2a^{2}\left\lfloor\frac{1}{2}\sin 2\theta\right\rfloor_{0}^{4}$		
	$=a^2\left(\sin\frac{\pi}{2}-\sin 0\right)$		
	$=a^{2}(1-0)$		
	$=a^2$.		

(ii) Differentiating both sides of
$$r^2 = a^2 \cos 2\theta$$
 w.r.t. θ :
 $2r \frac{dr}{d\theta} = -2a^2 \sin 2\theta$
 $\frac{dr}{d\theta} = -\frac{a^2 \sin 2\theta}{r^2} = \frac{a^4 \sin^2 2\theta}{a^2 \cos 2\theta} = \frac{a^2 \sin^2 2\theta}{\cos 2\theta}$.
Total length $= 4 \int_0^{\frac{\pi}{4}} \sqrt{a^2 \cos 2\theta} + \frac{a^2 \sin^2 2\theta}{\cos 2\theta} d\theta$
 $= 4a \int_0^{\frac{\pi}{4}} \sqrt{\frac{1}{\cos 2\theta}} d\theta$ (shown)
3(i) When $c = \frac{1}{2}$, the recurrence relation becomes $u_{n,2} = u_{n,1}$ which results in a constant
(a) sequence.
(b) Multiply equation: $m^2 - m + \frac{1}{4} = 0$
 $(m - \frac{1}{2})^2 = 0$
 $m = \frac{1}{2}$.
General solution: $u_n = (A + Bn) (\frac{1}{2})^n \to 0$.
The sequence converges to 0 as *n* becomes very large.
(ii) $u_{n,2} - u_{n,1} + (\frac{1}{4} - c^2) u_n = 0$
Auxiliary equation: $m^2 - m + \frac{1}{4} - c^2 = 0$
 $m = \frac{1 \pm \sqrt{1 - 4(\frac{1}{4} - c^2)}}{2}$
 $= \frac{1 \pm \sqrt{4c^2}}{2}$
 $= \frac{1}{2} \pm |c|$.
Since we have shown the sequence converges when $c = 0$ in part (i)(b), we may consider
the case where $c \neq 0$ here.
General solution: $u_n = A(\frac{1}{2} - |c|)^n + B(\frac{1}{2} + |c|)^n$.
Method 1: Magnitude of both roots are at most 1.

	$\left \frac{1}{2} - c \right \le 1$ and $\left \frac{1}{2} + c \right \le 1$						
	$-1 \le \frac{1}{2} - c \le 1$ $-1 \le \frac{1}{2} + c \le 1$						
	$-1 \le c - \frac{1}{2} \le 1$ $-\frac{3}{2} \le c \le \frac{1}{2}$						
	$-\frac{1}{2} \le c \le \frac{3}{2}$ $-\frac{1}{2} \le c \le \frac{1}{2}$						
	$-\frac{3}{2} \le c \le \frac{3}{2}$						
	$\therefore -\frac{1}{2} \le c \le \frac{1}{2} .$						
	<u>Method 2</u> : Observe that both roots are equidistant from $\frac{1}{2}$.						
	Observe that the larger root, $\frac{1}{2} + c $, is at least $\frac{1}{2}$. Thus, for the sequence to converge, we						
	must have						
	$\frac{1}{2} + c \le 1$						
	$ c < \frac{1}{2}$						
	$ c = \frac{1}{2}$						
	$-\frac{1}{2} \le c \le \frac{1}{2}.$						
	Also, check that when $ c \le \frac{1}{2}$, the smaller root $\frac{1}{2} - c $ satisfies $0 \le \frac{1}{2} - c \le \frac{1}{2}$ and will thus						
	have a magnitude of at most 1.						
	Hence, the required range of values of c is $-\frac{1}{2} \le c \le \frac{1}{2}$.						
4(i)	$S_n = \left\{ \mathbf{X} \in \mathbf{M}_{n \times n} \left(\mathbb{R} \right) \mathbf{v} \in \text{null space of } \mathbf{X} \right\}$						
	Take $\mathbf{O} \in \mathbf{M}_{n \times n}(\mathbb{R})$. Then, $\mathbf{O}\mathbf{v} = 0 \Rightarrow \mathbf{v} \in \text{null space of } \mathbf{O}$.						
	$\therefore \mathbf{O} \in S_n.$						
	Take A $\mathbf{P} \in \mathbf{S}$ and $k \in \mathbb{D}$						
	Then, $\mathbf{v} \in \text{null space of } \mathbf{A}$ and $\mathbf{v} \in \text{null space of } \mathbf{B}$						
	\Rightarrow Av = 0 and Bv = 0.						
	$(\mathbf{A} + \mathbf{B})\mathbf{v} = \mathbf{A}\mathbf{v} + \mathbf{B}\mathbf{v} = 0 + 0 = 0$.						
	$\Rightarrow \mathbf{v} \in \text{null space of } \mathbf{A} + \mathbf{B}$						
	$\Rightarrow \mathbf{A} + \mathbf{B} \in S_n.$: S is closed under addition						
	$(k\mathbf{A})\mathbf{v} = k(\mathbf{A}\mathbf{v}) = k0 = 0$						
	\Rightarrow v \in null space of kA						
	$\Rightarrow \kappa \mathbf{A} \in \mathcal{S}_n.$: S is closed under scalar multiplication						
	Therefore, S_n is a subspace of $\mathbf{M}_{n \times n}(\mathbb{R})$.						

(ii)

$$S_{2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{M}_{2,2}(\mathbb{R}) \begin{vmatrix} 1 \\ 2 \end{vmatrix} \in \text{null space of} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{M}_{2,2}(\mathbb{R}) \begin{vmatrix} a + 2b = 0, c + 2d = 0 \\ e & d \end{vmatrix}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{M}_{2,2}(\mathbb{R}) \begin{vmatrix} a + 2b = 0, c + 2d = 0 \\ e & d \end{vmatrix}$$

$$= \left\{ \begin{pmatrix} -2b & b \\ -2d & d \\ 0 \end{pmatrix} \end{vmatrix} b, d \in \mathbb{R} \right\}$$

$$= \left\{ b \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ -2 & 1 \end{pmatrix} \end{vmatrix} b, d \in \mathbb{R} \right\}$$

$$= \left\{ b \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ -2 & 1 \end{pmatrix} \right\}, d \in \text{null space of exception of the entry independent.$$
Therefore, a basis for S_{2} is $\left\{ \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ -2 & 1 \end{pmatrix} \right\}$.
(iii)
Take $\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in S_{n}$ and denote $\mathbf{v} = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix} \in \mathbb{R}^{n}$. Then,

$$\begin{pmatrix} a_{11} & \dots & a_{nn} \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \in S_{n}$$
 and denote $\mathbf{v} = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix} \in \mathbb{R}^{n}$. Then,

$$\begin{pmatrix} a_{11} & \dots & a_{nn} \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} (v_{n}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$a_{1}v_{1} + a_{2}v_{2} + \dots + a_{n}v_{n} = 0$$
Each equality reduces the degree of freedom of the entries in a matrix by 1. Since A has n^{2}
entries and there are n linearly independent equalities, the entries of a matrix from
 S_{n} , is $n^{2} - n$.
(iv) Since $\mathbf{O}_{nx} \mathbf{x} \in \mathbf{0} \neq \mathbf{v}$ for all $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{v} \in \text{column space of } \mathbf{X}$.
Therefore, $\{\mathbf{X} \in \mathbf{M}_{nn}(\mathbb{R})|\mathbf{v} \in \text{column space of } \mathbf{X}\}$.

5(i)	$a_n = (a_{n-1} + 60)(\frac{1}{16})$		
	$a_n = \frac{1}{16}a_{n-1} + \frac{15}{4}$		
	General solution: $a_n = A(\frac{1}{16})^n + B$, $n \ge 0$.		
	$a_0 = 0 \Longrightarrow A + B = 0$.		
	Since $a_1 = (0+60)(\frac{1}{16}) = \frac{15}{4}$,		
	$\frac{15}{4} = A \left(\frac{1}{16}\right)^1 + B$.		
	By GC, $A = -4$, $B = 4$.		
	$\therefore a_n = -4\left(\frac{1}{16}\right)^n + 4, \ n \ge 0.$		
(ii)	$\lim_{n\to\infty}a_n=4.$		
(iii)	Let b_m denote the amount of drug, in mg, at the end of the m^{th} day of taking d mg of the		
	drug a day. Then, $b_0 = 4$.		
	$b_m = (b_{m-1} + d)(\frac{1}{16})$		
	$b_m = rac{1}{16}b_{m-1} + rac{1}{16}d$		
	General solution: $b_m = C(\frac{1}{16})^m + D$, $m \ge 0$.		
	$b_0 = 4 \Longrightarrow C + D = 4$.		
	Since $b_1 = (4+d)(\frac{1}{16}) = \frac{4+d}{16}$,		
	$\frac{4+d}{16} = C\left(\frac{1}{16}\right) + D$		
	$\Rightarrow C = 4 - \frac{d}{15}, D = \frac{d}{15}.$		
	$\therefore b_m = (4 - \frac{d}{15})(\frac{1}{16})^m + \frac{d}{15}, \ n \ge 0.$		
	Since $\left \frac{1}{16}\right < 1$ and $d > 60 \Rightarrow \frac{d}{15} > 4 \Rightarrow 4 - \frac{d}{15} < 0$, $\{b_n\}$ is an increasing sequence converging		
	to $\frac{d}{15}$. So, for an overdose to never occur, $\frac{d}{15} + d \le 80$. Thus, we have		
	$\frac{16d}{15} \le 80$		
	$d \leq 75.$		
	Therefore, the maximum value of d is 75.		
6(i)	When $y = 0$, $t \cos 2t = 0$,		
	$t = 0 \text{ or } \cos 2t = 0,$		
	$t=\frac{\pi}{4}$ or $\frac{3\pi}{4}$.		
	$\begin{vmatrix} \mathbf{x} & \mathbf{y} \\ \mathbf{x} & \mathbf{y} \end{vmatrix}$		
	$\frac{dt}{dt} = \frac{1}{2\sqrt{t}}$		
	$\frac{dy}{dt} = \cos 2t - 2t \sin 2t .$		
	d <i>t</i>		

Surface area

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt + \pi \left(\frac{3\pi}{4} - \frac{\pi}{4}\right)$$

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{t} \sqrt{\left(\frac{1}{2\sqrt{t}}\right)^{2} + (\cos 2t - 2t \sin 2t)^{2}} dt + \frac{\pi^{2}}{2}$$

$$= 31.958 \text{ units}^{2} (\text{ to 5 s.f.})$$

$$= 32.0 \text{ units}^{2} (\text{ to 5 s.f.})$$

$$= 32.0 \text{ units}^{2} (\text{ to 5 s.f.})$$

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} x(-y) \frac{dx}{dt} dt$$

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} x(-y) \frac{dx}{dt} dt$$

$$= 2\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{t} (-t \cos 2t) \left(\frac{1}{2\sqrt{t}}\right) dt$$

$$= -\pi \left[\left[\frac{t \sin 2t}{2} \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}} - \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin 2t}{2} dt \right]$$

$$= -\pi \left[\left[\frac{-3\pi}{8} - \frac{\pi}{8} \right] + \left[\frac{\cos 2t}{4} \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}} \right]$$

$$= \frac{\pi^{2}}{2} - \pi (0 - 0)$$

$$= \frac{\pi^{2}}{2} \text{ units}^{3}.$$
(ii)
$$-\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} t \cos 2t dt$$

$$\approx -\pi \left(\frac{1}{3} \right) \left(\frac{\pi}{8} \right) \left[t \left(\frac{\pi}{4} \right) + 4t \left(\frac{3\pi}{8} \right) + 2t \left(\frac{\pi}{2} \right) + 4t \left(\frac{5\pi}{8} \right) + t \left(\frac{3\pi}{4} \right) \right]$$

$$= -\frac{\pi^{2}}{24} \left(0 - \frac{3\pi}{2\sqrt{2}} - \pi - \frac{5\pi}{2\sqrt{2}} + 0 \right)$$

$$= 4.94605 (\text{ to 5 d.p.})$$
Percentage error = $\left| \frac{4.94605 - \frac{\pi^{2}}{4^{2}}}{\frac{\pi^{2}}{2}} \right| = 0.228\%$ which is very small.
Thus, the approximation is very accurate.

$$\begin{array}{l} \hline \mathbf{7(i)} & \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \\ & \mathbf{v}_{n} = \mathbf{A} \mathbf{v}_{n-1} = \mathbf{A}^{2} \mathbf{v}_{n-2} = \dots = \mathbf{A}^{n} \mathbf{v}_{0}, \\ & \mathbf{B} = \mathbf{A}^{n}, \\ \hline \mathbf{(ii)} & \det(\lambda \mathbf{I} - \mathbf{A}) = 0 \\ & \left| \lambda - 1 & -2 \\ -1 & \lambda - 1 \right| = 0 \\ & (\lambda - 1)^{2} - 2 = 0 \\ & \lambda - 1 = \pm \sqrt{2} \\ & \lambda = 1 \pm \sqrt{2} \\ & \text{For } \lambda = 1 - \sqrt{2}, \text{ we solve the system } \left((1 - \sqrt{2}) \mathbf{I} - \mathbf{A} \right) \mathbf{x} = \mathbf{0}, \\ & \left(-\sqrt{2} & -2 \\ -1 & -\sqrt{2} \right) \xrightarrow{R_{1} - \sqrt{2R_{1}}} \begin{pmatrix} 0 & 0 \\ -1 & -\sqrt{2} \right) \xrightarrow{-\frac{R_{1}}{R_{1} + \sqrt{2R_{2}}}} \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 0 \end{pmatrix}, \\ & \therefore \text{ A corresponding eigenvector is } \left(\sqrt{2} \\ -1 \right), \\ & \text{For } \lambda = 1 + \sqrt{2}, \text{ we solve the system } \left((1 + \sqrt{2}) \mathbf{I} - \mathbf{A} \right) \mathbf{x} = \mathbf{0}, \\ & \left(\sqrt{2} & -2 \\ -1 & \sqrt{2} \right) \xrightarrow{-\frac{R_{1} - \sqrt{2R_{1}}}{-1}} \begin{pmatrix} 0 & 0 \\ -1 & \sqrt{2} \right) \xrightarrow{-\frac{R_{1}}{R_{1} + \sqrt{2R_{2}}}} \begin{pmatrix} 1 & -\sqrt{2} \\ 0 & 0 \end{pmatrix}, \\ & \therefore \text{ A corresponding eigenvector is } \left(\sqrt{2} \\ 1 \right). \\ & \text{For } \lambda = 1 + \sqrt{2}, \text{ we solve the system } \left((1 + \sqrt{2}) \mathbf{I} - \mathbf{A} \right) \mathbf{x} = \mathbf{0}. \\ & \left(\sqrt{2} & -2 \\ -1 & \sqrt{2} \right) \xrightarrow{-\frac{R_{1} - \sqrt{2R_{2}}}{-1}} \begin{pmatrix} 0 & 0 \\ -1 & \sqrt{2} \right) \xrightarrow{-\frac{R_{1} + \sqrt{2}R_{2}}{-1}} \begin{pmatrix} 1 & -\sqrt{2} \\ 0 & 0 \end{pmatrix}. \\ & \therefore \text{ A corresponding eigenvector is } \left(\sqrt{2} \\ 1 \right). \\ & \therefore \mathbf{A} = \left(\sqrt{2} & \sqrt{2} \\ -1 & 1 \right) \begin{pmatrix} 1 - \sqrt{2} & 0 \\ 0 & 1 + \sqrt{2} \end{pmatrix}^{n} \left(\sqrt{2} & \sqrt{2} \\ -1 & 1 \right)^{-1}. \\ & \mathbf{A}^{n} = \left(\sqrt{2} & \sqrt{2} \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 - \sqrt{2} & 0 \\ 0 & 1 + \sqrt{2} \end{pmatrix}^{n} \left(\sqrt{2} & \sqrt{2} \\ -1 & 1 \end{pmatrix}^{-1}. \end{aligned}$$

(iii)	$\mathbf{v}_n = \mathbf{A}^n \mathbf{v}_0$			
	$= \mathbf{P}\mathbf{D}\mathbf{P}^{-1}\mathbf{v}_0$			
	$= \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -1 & 1 \end{pmatrix} \begin{pmatrix} (1 - \sqrt{2})^n & 0 \\ 0 & (1 + \sqrt{2})^n \end{pmatrix} \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$			
	$= \begin{pmatrix} \sqrt{2}(1-\sqrt{2})^{n} & \sqrt{2}(1+\sqrt{2})^{n} \\ -(1-\sqrt{2})^{n} & (1+\sqrt{2})^{n} \end{pmatrix} \frac{1}{\sqrt{2}+\sqrt{2}} \begin{pmatrix} 1 & -\sqrt{2} \\ 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$			
	$=\frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{2}(1-\sqrt{2})^{n} & \sqrt{2}(1+\sqrt{2})^{n} \\ -(1-\sqrt{2})^{n} & (1+\sqrt{2})^{n} \end{pmatrix} \begin{pmatrix} 1-\sqrt{2} \\ 1+\sqrt{2} \end{pmatrix}$			
	$=\frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{2}\left(1-\sqrt{2}\right)^{n+1}+\sqrt{2}\left(1+\sqrt{2}\right)^{n+1}\\ -\left(1-\sqrt{2}\right)^{n+1}+\left(1+\sqrt{2}\right)^{n+1} \end{pmatrix}.$			
	Since $\left 1-\sqrt{2}\right < 1$, $\left(1-\sqrt{2}\right)^n \to 0$ as $n \to \infty$. Thus, as $n \to \infty$,			
	$\sqrt{2}(1-\sqrt{2})^{n+1}+\sqrt{2}(1+\sqrt{2})^{n+1}$ $\sqrt{2}(1+\sqrt{2})^{n+1}$			
	$\frac{a_n}{b_n} = \frac{(1-\sqrt{2})^{n+1} + (1+\sqrt{2})^{n+1}}{-(1-\sqrt{2})^{n+1} + (1+\sqrt{2})^{n+1}} \to \frac{(1-\sqrt{2})^{n+1}}{(1+\sqrt{2})^{n+1}} = \sqrt{2}.$			
8	Take $f(x), g(x) \in \mathbf{P}_{2}, k \in \mathbb{R}$.			
(i)	$ = \frac{(1 + \alpha (r))}{T(f(r) + \alpha (r)) - f(r) + \alpha (r) + (f(r) + \alpha (r))'} $			
	= f(x) + g(x) + f'(x) + g'(x) $= f(x) + g'(x) + f'(x) + g'(x)$			
	= f(x) + f'(x) + g(x) + g'(x) = f(x) + f'(x) + g(x) + g'(x)			
	= T(f(x)) + T(g(x))			
	T(lf(x)) = lf(x) + (lf(x))'			
	I(kI(x)) = kI(x) + (kI(x))			
	= kI(x) + kI(x) $= k(f(x)) + f'(x)$			
	$= k \left(f \left(x \right) + f \left(x \right) \right)$			
	= k I (I (x)) Therefore T is a linear transformation			
(ii)	$T(ax^{2}+bx+c) = 0x^{2}+0x+0$			
	$(ax^{2}+bx+c)+(2ax+b)=0x^{2}+0x+0$			
	$ax^{2} + (2a+b)x + (b+c) = 0x^{2} + 0x + 0$			
	a = 0			
	$2a+b=0$ $\Rightarrow a=b=c=0$			
	b+c=0			
	$\Rightarrow \text{Null space of } \mathbf{T} = \{0x^2 + 0x + 0\}.$			
	\therefore A basis for the null space of T is \emptyset .			

$$\begin{array}{ll} {\rm rank}({\mathbb T})=\dim({\mathbb P}_2)-{\rm nullity}({\mathbb T})\\ = 3-0\\ = 3.\\ \\ \hline {\rm (iii)} & {\rm T}^3(ax^2+bx+c)={\rm T}(ax^2+(2a+b)x+(b+c))\\ = ax^2+(2a+b)x+(b+c)+2ax+2a+b\\ = ax^2+(2a+b)x+2a+2b+c\\ = ax^2+(4a+b)x+2a+2b+c\\ = ax^2+(4a+b)x+2a+2b+c+2ax+4a+b\\ = ax^2+(6a+b)x+6a+3b+c.\\ \\ {\rm Conjecture:}\\ {\rm T}^a(ax^2+bx+c)=ax^2+(2na+b)x+n(n-1)a+nb+c \ {\rm for \ all}\ n\in {\mathbb Z}^*.\\ \\ {\rm Let}\ P_a\ {\rm be\ the\ statement}\\ {\rm T}^a(ax^2+bx+c)=ax^2+(2na+b)x+n(n-1)a+nb+c\ {\rm for\ all\ }n\in {\mathbb Z}^*.\\ \\ {\rm Let}\ P_a\ {\rm be\ th\ statement}\\ {\rm T}^a(ax^2+bx+c)=ax^2+(2na+b)x+n(n-1)a+nb+c\ {\rm for\ all\ }n\in {\mathbb Z}^*.\\ \\ {\rm When\ }n=1,\\ {\rm RHS}=ax^2+(2a+b)x+(b+c)\\ = {\rm LHS\ (by\ part\ (ii))}.\\ \therefore\ P_i\ {\rm is\ true.}\\ \\ {\rm Assume\ tha\ }P_a\ {\rm is\ true\ for\ some\ }k\in {\mathbb Z}^+, {\rm i.e.}\\ {\rm T}^a(ax^2+bx+c)=ax^2+(2k+b)x+k(k-1)a+kb+c.\\ \\ {\rm T}^{s+i}(ax^2+bx+c)\\ = ax^2+(2(k+1)a+b)x+(k+1)(k)a+(k+1)b+c.\\ \\ {\rm T}^{s+i}(ax^2+bx+c)\\ = {\rm T}(ax^2+(2ka+b)x+k(k-1)a+kb+c+2ax+2ka+b)\\ = ax^2+(2(k+1)a+b)x+(k^2+k)a+(k+1)b+c\\ = ax^2+(2(k+1)a+b)x+(k+1)(k)a+(k+1)b+c\\ = ax^2+(2(k+1)a+b)x+(k^2+k)a+(k+1)b+c\\ = ax^2+$$

(iii)	Let $x_0 = 0.5$	•	
	i	x_i	
	0	0.5000	
	1	0.5288	
	2	0.5069	
	3	0.5235	
	4	0.5109	
	5	0.5204	
	6	0.5132	
		0.5187	
	8	0.5145	
	10	0.5170	
	10	0.5155	
	Check:		
	f(0.515) = -	-0.0153 < 0	
	f(0.525) = 0	0.00226 > 0	
	$\therefore \alpha = 0.52$ (to 2 d.p.).	
(iv)	Using the No	ewton-Raphs	on method.
()	f(1.5)		
	$x_1 = 1.5 - \frac{f(-x_1)}{f'(1.5)}$		
	= 2.442671 (to 6 d.p.)		
	= 2.4427	(to 4 d.p.)	
(v)	$f(x) = e^{-x^2}$	1 w ² 2 w	
(')	I(x) = e	+x - 2x	
	f'(x) = -2x	$xe^{-x} + 2x - 2$	
	f''(x) = -2e	$+4x^2e^{-x^2}$ + $4x^2e^{-x^2}$ -	+2
	$=4x^2e^{-x^2}+2(1-e^{-x^2})$		
	Now, $x \neq 0$:	$\Rightarrow x^2 > 0 \Rightarrow e$	$e^{x^2} > 1 \Longrightarrow e^{-x^2} < 1 \Longrightarrow 1 - e^{-x^2} > 0$ and $4x^2 e^{-x^2} > 0$. Thus,
	$\mathbf{f}''(x) = 4x^2 \mathbf{e}$	$e^{-x^2} + 2(1-e^{-x^2})$	$(x^2) > 0. \Box$
	By GC, the o	coordinates o	f the minimum point are $(1.2583, -0.72799)$. Since $f''(x) > 0$ for
	all $x \neq 0$, $f'(x) > 0$ for all $x > 1.2583$.		
	Therefore, k	z >1.26 (3 s.f	.).

(vi)	Let θ denote the angle of elevation. Then, an approximation for θ can be obtained by	
	$\sin\theta \approx \frac{1}{3}$	
	$\theta \approx \sin^{-1}\left(\frac{1}{3}\right)$ (:: θ is acute)	
	$=19.5^{\circ}$ (to 1 d.p.)	