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1. ALGEBRA 

Quadratic Equation 

For the equation  

 

Binomial expansion 
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where n is a positive integer, and  
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1 A curve has an equation 22 5y x x= − + . 

 

 (a) Express 22 5y x x= − +  in the form of ( )
2

a x b c− + . Hence state the coordinates   

  of the turning point.  [3] 
2

2

2 2

2

2 2

2

2

2 5

2 5
2

1 1
2 5

2 4 4

1 1
2 2 5

2 4 4

1 39
2

4 8

y x x

x
x

x
x

x
x

x

= − +

 
= − + 

 

    
= − + − +    

     

    
= − + − +    

     

 
= − + 

 

 

1 39
Turning point: ,

4 8

 
 
 

 

 

 

M1: Factor out the 2 

 

 

 

 

 

 

 

 

A1 

 

B1: FT from wrong completed square form 

 

 (b) The line 2 7y x= +  intersects the curve at points A and B.  

  Find the distance AB.  [3] 

( )

( )

( )( )

( )

( )

2

2

2

2

2 5 1

2 7 2

2 5 2 7

2 3 2 0

2 1 2 0

1
 OR 2

2

1 1
When ,  2 7 6

2 2

When 2,  2 2 7 11

1
Coordinates of intersection are ,6  or 2,11

2

1
Required distance 2 11

2

y x x

y x

x x x

x x

x x

x x

x y

x y

= − + − − −

= + − − −

 − + = +

− − =

+ − =

 = − =

 
= − = − + = 

 

= = + =

 
 − 

 

 
= + + − 

 
( )

2 5 5
6  units

2
=

 

 

 

 

 

 

 

M1: Solve quadratic equation (FT) 

 

 

 

 

 

 

 

A1 

 

 

A1: Accept 5.59 
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2 Express 
3 2

3 2

3 10 1

3

x x x

x x

+ + +

+
 in partial fractions. [6] 

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

3 2 2

3 2 3 2

2 2

3 2 2 2

2 2

2 2

2

2

3 10 1 1
By long division, 3

3 3

1 1

3 3 3

1 3 3

When 0 :

1 3

1

3

1
1 3 3

3

When 3:

9 3 1 3

7 9

7

9

1 7
1 3 3

3 9

x x x x x

x x x x

x x x x A B C

x x x x x x x

x x Ax x B x Cx

x

B

B

x x Ax x x Cx

x

C

C

C

x x Ax x x x

+ + + + +
= +

+ +

+ + + +
= = + +

+ + +

 + + = + + + +

=

=

 =

+ + = + + + +

= −

− + = −

=

 =

+ + = + + + +

( ) ( ) ( )

( ) ( )

( )

2

2

2

2 2

3 2

3 2 2

When 1:

1 7
1 1 1 1 3 1 3 1

3 9

4 7
3 4

3 9

2

9

1 2 1 7

3 9 3 9 3

3 10 1 2 1 7
3

3 9 3 9 3

x

A

A

A

x x

x x x x x

x x x

x x x x x

=

+ + = + + + +

= + +

 =

+ +
 = + +

+ +

+ + +
 = + + +

+ +

 

 

B1: With long division working 

 

M1: Correct form (FT) 

 

M3: Substitution or comparing 

coefficients correctly per unknown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 
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3 A curve has equation 
3 21

3
y x x kx= + + , where k is a constant and 1k  . Explain why  

 the curve does not have a stationary point.  [4] 

( ) ( )( )

3 2

2

2

2

2

1

3

d
2

d

Method 1:

d
To find stationary point, 0 :

d

2 0

Assume on the contrary that curve has at least one 

stationary point.

There are real roots to 2 0.

2 4 1 0

4 4 0

1

How

y x x kx

y
x x k

x

y

x

x x k

x x k

k

k

k

= + +

= + +

=

+ + =

 + + =

 − 

− 

 

( ) ( )

( ) ( ) ( )

22

2

ever, 1.

Curve does not have a stationary point

Method 2:

2 1 1

1 1 1 0 1

d
0 for all values of 

d

Graph is strictly increasing for all values of 

Curve does not have a stationa

k

x x k x k

x k k k

y
x

x

x





+ + = + + −

+ + −  −  

 



 ry point

 

 

 

 

M1: Find 
d

d

y

x
 

 

 

 

M1: Find discriminant of 

d
0

d

y

x
=  

 

 

 

 

A1: 1k   

 

A1: Conclusion 

 

 

 

M1: Completing the square 

 

M1: Establishing the 

inequality 

 

 

A1: Conclusion 
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4 The diagram shows a circle. The line PC is the tangent to the circle at P.  

 A and B are points on the circle such that PAB is a straight line. 

       

    
  

  

 Prove that 

 

 (a) triangle BPC is similar to triangle CPA, [3] 

( )

( )

 Common angle

 Angles in alternate segment

By AA similarity test,  is similar to .

BPC CPA

CBP ACP

BPC CPA

 =

 = 

  

 

B1 

B1 

B1 

 

 

 (b) 
2PA PB PC = .  [2] 

2

:
BPC BP PC BC

CPA CP PA CA

BP PC

CP PA

BP PA CP PC

PA PB PC

= =

 =

  = 

  =

 

M1: Ratio of corresponding 

sides of similar triangles 

 

 

 

 

A1 
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5 The equation of a curve is ( )3 2 24
1

3
y x k x k x= − − + − , where k is a constant. 

 

 (a) Find the range of values of k for which y is always decreasing. [4] 

( )

( )

( )

( )

( )

( ) ( )( )

( )

( ) ( )

( )( )

3 2 2

2 2

2 2

2 2

2 2

2

2 2

2 2

2 2

4
1

3

d
4 2 1

d

For  to be strictly decreasing,

d
0

d

4 2 1 0

4 2 1 0

For 4 2 1  to be always positive,

4 0

2 1 4 4 0

1 4 0

1 2 0

1 2 1 2 0

y x k x k x

y
x k x k

x

y

y

x

x k x k

x k x k

x k x k

b ac

k k

k k

k k

k k k k

= − − + −

= − − + −



− − + − 

+ + + 

+ + +

− 

+ −   

+ − 

+ − 

+ + + − 

( )( )

( )( )

3 1 1 0

3 1 1 0

1
 OR 1

3

k k

k k

k k

+ − + 

+ − 

  − 

 

 

 

 

M1: Differentiation and set 
d

0
d

y

x
  

 

 

 

 

 

 

 

B1: 2 4 0b ac−   

 

 

 

 

 

 

 

 

M1: Solve quadratic inequality 

 

 

A1 

 

 (b) Given that y has three distinct roots, find the range of values of k. [2] 

( )

( )

( ) ( )( )

( )

( )( )

2 2

2 2

2

2 2

2 2

  to have three distinct roots,

 has two turning points.

d
0 has two real roots.

d

4 2 1 0 has two real roots.

4 2 1 0 has two real roots.

4 0

2 1 4 4 0

1 4 0

3 1 1 0

y

y

y

x

x k x k

x k x k

b ac

k k

k k

k k

=

− − + − =

 + + + =

 − 

+ −   

+ − 

+ − 

−
1

1
3

k 

 

 

 

 

 

 

 

 

 

M1: 2 4 0b ac−   

 

 

 

 

 

 

A1 
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6 A curve is such that 
2

2

d
3sin 4cos 2

d

y
x x

x
= − . The curve passes through ( )0,1A  and 

( )π,3B . Find the equation of the curve.  [7] 

( )

( )

( )

2

2

d
3sin 4cos 2

d

d
3sin 4cos 2 d

d

4sin 2
3cos

2

3cos 2sin 2

3cos 2sin 2 d

2cos 2
3sin

2

3sin cos 2

y
x x

x

y
x x x

x

x
x c

x x c

y x x c x

x
x cx d

x x cx d

= −

= −

= − − +

= − − +

= − − +

−
= − − + +

= − + + +





 

( )

When 0,  1:

1 3sin 0 cos0 0

1 1

0

3sin cos 2

When π,  3 :

3 3sin π cos 2π π

3 1 π

2

π

2
3sin cos 2

π

x y

c d

d

d

y x x cx

x y

c

c

c

y x x x

= =

= − + + +

= +

 =

= − + +

= =

= − + +

= +

=

 = − + +

 

 

 

 

M1: Integration 

 

 

 

 

M1: Integration 

 

 

 

A2: Minus one mark per mistake 

M2: Substitute the two conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1 
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7 For the curve 22y x= , the tangent at point P where x a= , intersect the  

 y-axis at A. The normal to the curve at point P intersects the y-axis at B.  

 Given that 0a  , show that the area of triangle ABP is 
( )216 1

8

a a +
. [7] 

( )

( )

2

2

2

2

2

, 2

2

d
4

d

d
When ,  4

d

Gradient of tangent at 4

1
Gradient of normal at 

4

Finding equation of tangent at :  4

When ,  2 :

2 4

2

Equation of tangent at :  4 2

P a a

y x

y
x

x

y
x a a

x

P a

P
a

P y ax c

x a y a

a a a c

c a

P y ax

=

=

=

= =

 =

 = −

= +

= =

= +

 = −

 = −

( )

( )

( ) ( )
( )

2

2

2

2

2

2

2

2

2 2 2

0, 2

1
Finding equation of tangent at :  

4

When ,  2 :

1
2

4

1
2

4

1 1
Equation of normal at :  2

4 4

1
0,2

4

16 11 1
Area of 2 2  units

2 4 8

a

A a

P y x c
a

x a y a

a a c
a

c a

P y x a
a

B a

a a
ABP a a a

 = −

= − +

= =

= − +

 = +

 = − + +

 
 = + 

 

+ 
  = + − − = 

 

 

B1: Coordinate of P 

 

 

 

M1: Differentiate to find 

gradient of tangent at 
x a=  

 

 

B1: Don’t give if one of 

the gradients is wrong 

 

 

M1: Finding equation of 

tangent 

 

 

 

 

 

A1: SOI 

 

 

 

 

 

 

 

 

 

 

 

 

 

A1: SOI 

 

 

 

A1 
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8 (a) The equation of a curve is sin ,  0y a bx c a= +  . The curve attains maximum and 

 minimum values of 4 and 2 respectively, and the period is π  radians.  

 Show that 1a = , 2b =  and show that 3c = . [3] 

1 sin 1

sin

sin

4,  2

1 AND 3

bx

a a bx a

a c a bx c a c

a c a c

a c

−  

−  

− +  +  +

 + = − + =

 = =

 

2π
π

1

b

b

=

 =

 

M1: Constructing 

simultaneous equations 

with the max and min 

value. 

 

 

A1 

 

 

 

B1: Use period formula 

  

 (b) (i) Sketch, on the same diagram, the curves sin 2 3y x= +  and 3cosy x=  for 

   0 2πx   radians.  [4] 

 

B1: Correct shape for 
sin 2 3y x= +  

 

B1: Correct shape for 
3cosy x=  

 

B2: Correct turning 

points and end points 

labelled, minus one 

for any missing two 

points. 
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  (ii) Find the number of solutions to the equation sin 2 3 3cos 0x x+ − =  for 

   0 2πx   radians.  [1] 

sin 2 3 3cos 0

sin 2 3 3cos

x x

x x

+ − =

+ =
 

Number of solutions corresponds to the number of 

intersections between the curves sin 2 3y x= +  and 

3cosy x= . 

From the graphs in part (i), there are three intersections. 

Hence, there will be three solutions to the given equation.  

 

 

 

 

 

B1: Three solutions 
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9 A container of liquid was heated to a temperature of 90 C . It was then left to cool in a  

 chiller such that its temperature, T C , t minutes after the heat was removed, is given by 

 e qtT A −=  , where A and q are constants. 

 Measured values of t and T are given in the following table. 

 

t (minutes) 2 4 6 8 

CT  66.674 49.393 36.591 27.107 

 

 (a) Explain why 90A = .  [1] 

0

When 0,  90 :

90 e

90

t T

A

A

= =

=

 =

 

 

 
 

B1 

 

 (b) Plot lnT  against t and draw a straight line to illustrate the information. [3] 

t  2 4 6 8 

lnT  4.20 3.90 3.60 3.30 

 

 

B1 

 

 

B1: Straight line drawn 

passing through the lnT  

axis (not exceeding) 

 

B1: Correct axes labelled 

and scale 

 

 (c) Use the graph to estimate the value of q. [3] 
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90e

ln ln 90e

ln ln 90 ln e

ln ln 90

 is the gradient of the straight line

0.150

0.150

qt

qt

qt

T

T

T

T qt

q

q

q

−

−

−

=

=

= +

= −

−

− = −

=

 

 

 
 

 

M1: Take ln both sides 

 

M1: Find gradient of 

straight line 

A1 

 

 (d) Use your graph to estimate the temperature of the liquid 5 minutes after it was left 

 to cool.    [2] 

3.75

From the graph, 

when 5, ln 3.75

e 42.5

Required temperature 42.5

t T

T

C

= =

 = =

 = 

 

M1: Locate 5t =  to find 

the lnT  coordinate 

 

 

A1 
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10 The length, breadth and height of a cuboid is 3  cmp ,  cmp  and ( )1  cmp−  

respectively. The volume of the cuboid is  34
 cm

9
. 

 

 (a) Show that 3 227 27 4 0p p− + = .  [2] 

( )( )( )

( )

( )

2

3 2

3 2

4
3 1

9

27 1 4

27 27 4 0

27 27 4 0 Shown

p p p

p p

p p

p p

− =

− =

− − − =

 − + =

 

 

 

M1: ( )( )( )1p p p−  

 

 

 

A1 

 

 (b) Show that 3 2p −  is a factor to 3 227 27 4p p− + . [2] 

Method 1 

( )

( )

( )

2

3 2

3 2

2

2

9 3 2

3 2 27 27 4

27 18

9 4

9 6

6 4

6 4

0

p p

p p p

p p

p

p p

p

p

− −

− − +

− −

− +

− − +

− +

− − +

 
3 23 2 is a factor to 27 27 4p p p − − +  

Method 2 

Note that 

3 2
2 2

27 27 4 0
3 3

   
− + =   

   
. 

Hence, by Factor Theorem, 3 2p −  is a factor 

of 3 227 27 4p p− + . 

M1: Long division 
 

 

 

 

 

 

 
 

 

 

 

 
A1 

 

 

M1: Apply factor theorem 

 

 

A1: Must see “Factor Theorem” 

  

  



 16 

4049/1/GE/23  

 (c) Hence, find p and compute the surface area of the cuboid. [5] 

( )( )

( ) ( ) ( )( )

( )

( ) ( )

3 2

2

2

2

2

27 27 4 0

3 2 9 3 2 0

2
 OR 9 3 2 0

3

3 3 4 9 22
 OR 

3 2 9

2 2 1
 OR  OR 

3 3 3

0

2

3

Required surface area

2 1 2 1 40
2 2 2 cm

3 3 3 3 9

p p

p p p

p p p

p p

p p p

p

p

− + =

− − − =

 = − − =

− − + − − −
 = =

 = = = −



 =

       
= + + =       

       

 

 
M1: ( ) ( )23 2 9 3 2p p p− − −  (Can be shown 

without working from long division working 

in the previous part) 

 

 

M1: Factorisation or quadratic formula 

 

 

 

 

 

A1: With reject (No reason required) 
 
 

B1 
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11 (a) (i) Find the first 4 terms, in ascending powers of x, of the expansion of 

  ( )
6

2 kx−  where k is a non-zero constant. [2] 

( ) ( ) ( ) ( ) ( ) ( ) ( )
6 5 1 4 2 3 36

2 2 3 3

6 6 6
2 2 2 2 2 ...

1 2 3

64 192 240 160 ...

kx kx kx kx

kx k x k x

     
− = + − + − + − +     

     

= − + − +

 

M1: Correct 

expansion 

 

A1 

 

  (ii) Given that the coefficient of 3x  is 30 times the coefficient of x, find the 

  possible value(s) of k.   [2] 
3

2

2

160
30

192

5
30

6

36

6

k

k

k

k

k

−
=

−

=

=

= 

 

M1: Relevant ratios (FT) 

 

 

 

 

 

A1 

 

  (iii) Hence, show that there is no term in 2x  in the expansion of 

   ( )( )
621 135 2x kx− − .  [2] 

( )( ) ( )( )

( )

62 2 2 2

2 2 2

2 2

1 135 2 1 135 64 192 240 ...

... 240 8640 ...

... 240 8640 ...

x kx x kx k x

k x x

k x

− − = − − + +

= + − +

= + − +

 

( )2

2

2

When 6,  coefficient of 240 36 8640 0

Required coefficient of 0

Expansion has no term in .

k x

x

x

=  = − =

 =



 

M1: Selective expansion to 

get coefficient of 2x (FT) 

 

 

 

 

 

 

A1: (With conclusion) 
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 (b) Explain why there is no odd powers of x in the expansion of 

2
1

n

x
x

 
+ 

 
 for n . 

     [4] 

( )

( ) ( )

( )

2

2 1

2 2

2 1
General term

2

2

r
n r

rn r

n r

n
x

r x

n
x x

r

n
x

r

−

− −

−

   
=    

  

 
=  
 

 
=  
 

 

Note that ( )2 2 2n r n r− = −  is always even since n and r are 

whole numbers.  

Hence the general terms in the given expansion always have 

even powers. 

Therefore, there is no odd powers of x.  

M1: Consider general term 

 

 

 

 

 

A1: Powers combined 

(must see simplification) 
 

M1: Argue that powers are 

even since n and r are 

whole numbers (Must see) 

 
A1: With conclusion 

 

  



 19 

4049/1/GE/23 [Turn Over] 

12 A particle travels in a straight line so that, at time t seconds after leaving a fixed point O, 

 its displacement from O is s metres and its velocity is 1 msv −  , where 33e 60et tv −= − .  

 

 Find 

 

 (a) the initial velocity of the particle,  [1] 

0 0 1

1

For 0,  

3e 60e 57 ms

Initial velocity 57 ms

t

v −

−

=

= − = −

 = −

 

1 

1 

1 

1 

B1 

 

 (b) the value of t when the particle is instantaneously at rest, [3] 

3

3

4

4

For 0,

0 3e 60e

3e 60e

e 20

ln e ln 20

4 ln 20

1
ln 20 0.749 s

4

t t

t t

t

t

v

t

t

−

−

=

= −

=

=

=

=

= =

 

M1: 0v =  
 
 
 
 

M1: Solve exponential 

equations 

 

A1: Accept 
1

ln 20
4

 

 

 (c) the acceleration of the particle when ln8t = , [2] 

( )

3

3

3

ln8 3ln8 2

3e 60e

d
3e 60 3 e

d

3e 180e

When ln8,

3e 180e 24.4 ms

t t

t t

t t

v

v
a

t

a

t

a

−

−

−

− −

= −

= = − −

= +

=

= + =

 

M1: 
d

d

v
a

t
=  

 

 

 

 

A1 
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 (d) an expression for s in terms of t,  [4] 

( )

( )

3

3

3

3

3e 60e

3e 60e d

60
3e e

3

3e 20e

t t

t t

t t

t t

v

s t

c

c

−

−

−

−

= −

= −

= − +
−

= + +


 

0 0

3

When 0,  0 :

0 3e 20e

23

3e 20e 23t t

t s

c

c

s −

= =

= + +

= −

 = + −

 

M1: Integrate v to get s 
 

 

 

 

 

A1 

 

M1: Substitute initial 

conditions 

 

 

A1 

 

 (e) the total distance travelled in the first 5 seconds. [3] 
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(FT from (b)) or 5t =  into 

part (d) (FT from (d))  
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