
Quiz

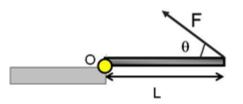
The natural length of a spring is L_0 . Sketch the graph of elastic force (F) against TOTAL length of the spring (L).

Is F proportional to L?

Solution:

- F-L graph <u>does not</u> pass through origin.
- For the <u>same spring</u>, the <u>gradient should remain the same</u> as its Force-extension graph (i.e. parallel)
- F is proportional to extension (x); but F is <u>not proportional to L!</u>
 - "proportional' relationship means that the graph is not only linear, but also passes through the origin

MINI-TEST 1

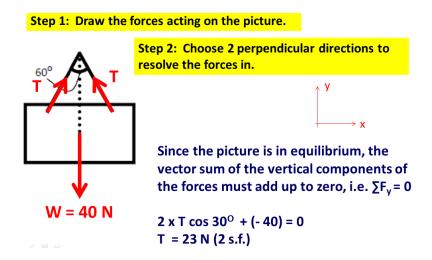

A force of 16 N is required to stretch a spring a distance of 40 cm from its rest position. A second identical spring is fixed parallel and adjacent to this spring. How much force is required to stretch this pair of springs by 20 cm?

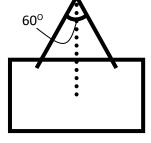
My solution:

The applied force needs to overcome the total restoring force of the spring. By Hooke's Law, restoring force is directly proportional to spring's extension (for the same spring constant); and directly proportional to the spring constant (for the same extension). Thus stretching ONE spring to HALF the distance requires HALF the force (i.e. 8 N). With TWO springs in parallel & identical, the effective spring constant DOUBLES. This DOUBLES the force required (i.e. 16 N). Final answer: 16 N

Quiz

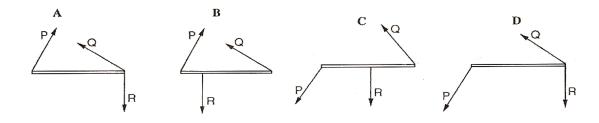
A drawbridge of length L being is raised by a chain attached as shown. What is the perpendicular distance from O? What is the moment or torque about O?

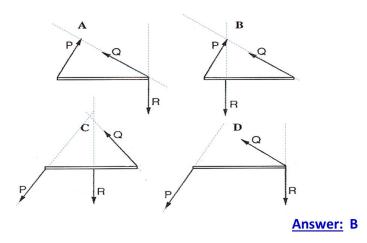



Perpendicular distance between O & the line of action of the force = Moment or torque about O, τ = **F L sin** θ

Example 6

A picture weighing 40 N is hung by a wire which passes over a small hook. The two parts of the wire are inclined at 60[°] to each other. Find the tensile force in the wire.

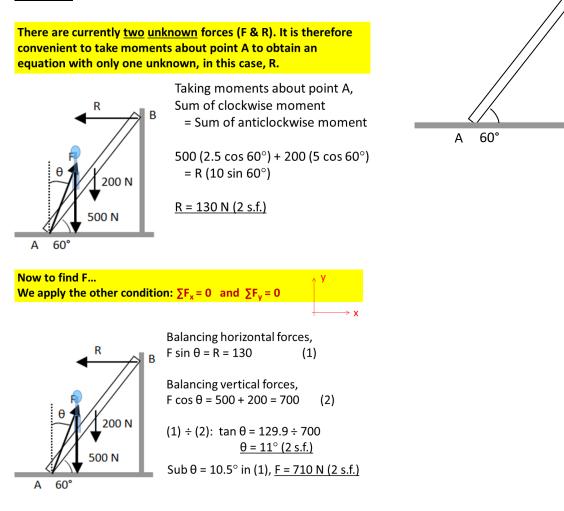

Solution:



Example 7 (N01/1/5)

A light rod is acted upon by three forces P, Q and R. Which diagram could show the position and direction of each of the forces when the rod is in equilibrium?

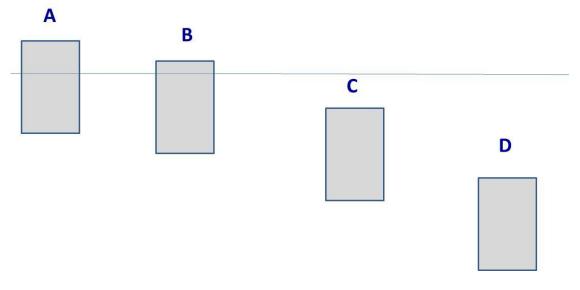
Solution:



Example 9

A uniform ladder of length 10 m and weight 200 N leans against a smooth wall so that it is inclined 60° to the horizontal ground. A boy of weight 500 N stands on the ladder ¼ of the way from its lower end. Calculate the normal reaction at the smooth wall and the magnitude and direction of the force acting on the lower end of the ladder.

В


Solution:

MINI-TEST 2 A uniform bridge, resting horizontally on supports at each end, weighs 4.5 x 10⁴ N and is 8.0 m long. Find the force acting downward on each support when the bridge carries a load of 1.0 x 10⁴ N placed 2.0 m from one end. 1.0 x 10⁴ N $4.5 \times 10^4 \text{ N}$ My solution: R₁ R_2 4.5 x 10⁴ N $1.0 \times 10^4 \,\mathrm{N}$ Sum of upward forces = Sum of downward forces $R_1 + R_2 = (1.0 + 4.5) \times 10^4 = 5.5 \times 10^4 N$ Take moments about the left end. Sum of Anticlockwise moment = Sum of Clockwise moment (R_2) (8.0 m) = (1.0 x 10⁴) (2) + (4.5 x 10⁴) (4) $R_2 = 2.5 \times 10^4 N$ $R_1 = 3.0 \times 10^4 \text{ N}$ $R_1 = 3.0 \times 10^4 \text{ N}$, upward $R_2 = 2.5 \times 10^4 \text{ N}$, upward R1 & R2: forces exerted by each support on the bridge. To determine the force acting on each support, apply Newton's 3rd Law of motion: Force on Left support by bridge = $3.0 \times 10^4 \text{ N}$, downward Force on Right support by bridge = $2.5 \times 10^4 \text{ N}$, downward

Quiz

Which object experiences the greatest value of upthrust?


Solution:

Upthrust = Weight of fluid displaced

- \rightarrow B > A
- \rightarrow C = D

MINI-TESTS 3

What proportion of an iceberg (floating in water) is submerged? [density of ice = $0.92 \text{ g} / \text{cm}^3$; density of water = $1 \text{ g} / \text{cm}^3$]

My solution:

Vertical forces are balanced since the iceberg floats and thus in equilibrium (Newton's 1st law of motion). Thus, Weight of ice berg = Upthrust Weight of ice berg = Weight of water displaced (by Archimedes' Principle) $m_{ice} g = m_{water} \operatorname{displ} g$ $V_{ice} P_{ice} g = V_{water} \operatorname{displ} P_{water} g$ $\frac{V_{water} \operatorname{displ}}{V_{ice}} = \frac{\rho_{ice}}{\rho_{water}} = 0.92$ Weight, W