VICTORIA JUNIOR COLLEGE

CHEMISTRY DEPARTMENT

Mdm Toh Chui Hoon (toh.chuihoon@vjc.sg)

Chemical Equilibrium

LECTURE OUTLINE

1 Introduction

- 1.1 Concept of Dynamic Equilibrium
- 1.2 Irreversible Reactions
- 1.3 Reversible Reactions

2 Position of Equilibrium and Equilibrium Constants - *K_c* and *K_p*

- 2.1 Definition of Equilibrium constant, *K*_c
- 2.2 Types of reaction mixtures
- 2.2 Rules for writing K_c and K_p expressions
- 2.3 Equilibrium constant in terms of partial pressure, K_p
- 2.4 Significance of the Equilibrium Constants, K_c and K_p
- 2.5 Use of Le Chatelier's Principle

3 Factors affecting Position of Equilibrium

- 3.1 Effect of Concentration changes
- 3.2 Effect of Pressure changes
- 3.3 Effect of adding Inert gases
- 3.4 Effect of Temperature changes
- 3.5 Effect of Catalyst
- 4 Calculations involving equilibrium constants K_c and K_p
- 5 Industrial Application of LCP: The Haber Process
- 6 Standard Gibbs Free Energy and Position of Equilibrium

LECTURE SCHEDULE

Lecture no.	Lecture contents	Tutorial Qs
1	1.1 to 1.3; 2.1 to 2.3	1 & 2
2	2.4 to 2.5; 3.1 to 3.5	3 to 6
3	4, 5 & 6	7 to 10

REFERENCE TEXTS

- 1. A-level Chemistry by E.N. Ramsden
- 2. Chemistry in Action by Michael Freemantle

ASSESSMENT OBJECTIVES

H2

Candidates should be able to:

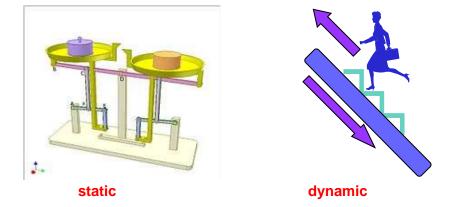
- 1. Explain, in terms of rates of the forward and reverse reactions, what is meant by a reversible reaction and dynamic equilibrium
- 2. State Le Chatelier's Principle and apply it to deduce qualitatively (from appropriate information) the effects of changes in concentration, pressure or temperature, on a system at equilibrium
- 3. Deduce whether changes in concentration, pressure or temperature or the presence of a catalyst affect the value of the equilibrium constant for a reaction
- 4. Deduce expressions for equilibrium constants in terms of concentrations, K_c , and partial pressures, K_ρ [*Treatment of the relationship between* K_ρ and K_c is not required]
- 5. Calculate the values of equilibrium constants in terms of concentrations or partial pressures from appropriate data
- 6. Calculate the quantities present at equilibrium, given appropriate data (such calculations will not require the solving of quadratic equations)
- 7. Show understanding that the position of equilibrium is dependent on the standard Gibbs free energy change of reaction, ΔG^{θ} [Quantitative treatment is not required]
- 8. Describe and explain the conditions used in the Haber process, as an example of the importance of an understanding of chemical equilibrium in the chemical industry

H1

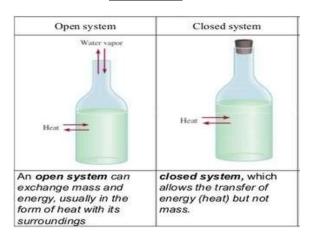
Candidates should be able to:

- 1. Explain, in terms of rates of the forward and reverse reactions, what is meant by a reversible reaction and dynamic equilibrium
- 2. State Le Chatelier's Principle and apply it to deduce qualitatively (from appropriate information) the effects of changes in concentration, pressure or temperature, on a system at equilibrium
- 3. Deduce whether changes in concentration, pressure or temperature or the presence of a catalyst affect the value of the equilibrium constant for a reaction
- 4. Deduce expressions for equilibrium constants in terms of concentrations, K_c
- 5. Calculate the value of K_c in terms of concentrations from appropriate data
- 6. Calculate the quantities present at equilibrium, given appropriate data (such calculations will not require the solving of quadratic equations)
- 7. Describe and explain the conditions used in the Haber process, as an example of the importance of an understanding of chemical equilibrium in the chemical industry

1 Introduction


LO: Explain, in terms of rates of the forward and reverse reactions, what is meant by a reversible reaction and dynamic equilibrium

1.1 Concept of Dynamic Equilibrium


Static Equilibrium vs Dynamic Equilibrium

1. **Static** equilibrium is a state in which there is **no change** in **both macroscopic and microscopic** (molecular scale) properties in a system.

E.g. two objects of equal mass on opposite sides of a balance.

- 2. On the other hand, for dynamic equilibrium, things are still happening. For example, the reactants are still continually forming products while the products are still continually forming reactants in a reversible reaction. This is why we say that the situation is dynamic. However, this cannot be deduced from observation as all macroscopic properties for a system at dynamic equilibrium are constant.
- 3. Dynamic equilibrium can only be achieved when the following 2 conditions are fulfilled:
 - The system is **<u>closed</u>**, **i.e.** one which does not allow matter to enter or leave but allows free transfer of energy.

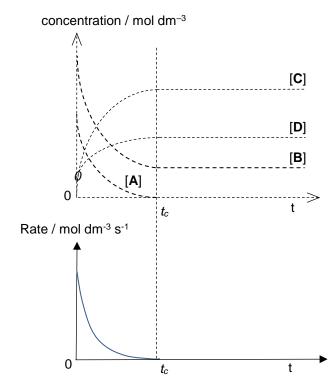
• The reaction is reversible.

SLS QUIZ 1: True or false?

	Questions	T or F
(1)	When dynamic equilibrium is reached, both the forward and backward reactions stop and the composition of the equilibrium mixture remain unchanged.	
(2)	When dynamic equilibrium is achieved, the concentrations of reactants are equal to the concentrations of products.	
(3)	Dynamic equilibrium can be attained in both open and closed systems.	
(4)	Dynamic equilibrium can only be attained if the reaction can take place in both directions (reversible).	
(5)	Dynamic equilibrium is achieved when rate of forward reaction is the same as rate of backward reaction whereby there are no more changes to the concentration of both reactants and products.	

1.2 Irreversible Reactions

Irreversible reactions are chemical reactions that proceed to completion. These chemical reactions take place in one direction almost exclusively and denoted by a single-headed arrow (→). The limiting reagent is completely used up in an irreversible reaction.


E.g. Burning of magnesium in air: $Mg(s) + O_2(g) \rightarrow 2MgO(s)$

Consider the irreversible reaction:

$$aA + bB \rightarrow cC + dD$$

- *t_c* is time taken for the reaction to be completed.
- If A is the limiting reagent, A will be consumed at the end of the reaction, t_c
- [B], [C] and [D] remain constant after time t_c.

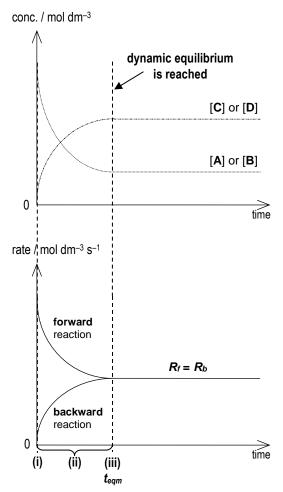
Graph of Concentration against time

SLS QUIZ 2: Fill in the blanks

- 1. Why does the curve plateau after t_c? Reaction has because no more left.
- 2. Which reactant is present in excess?
- 3. How does the rate of reaction change with time? Reaction ratewith time until becoming

1.3 Reversible Reactions

Reversible reactions are reactions that proceed in both the forward and backward directions and denoted by a double-headed arrow (=). Reversible reactions are incomplete and reach a state of dynamic equilibrium containing a mixture of both reactants and products.


E.g. Contact Process: $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$

> What is dynamic equilibrium?

A state of **dynamic equilibrium** is said to have reached when **the rate of the forward reaction** is <u>equal</u> to the rate of the backward reaction in a <u>reversible reaction</u> and the concentrations of both reactants and products are <u>constant</u> (does not change). > How is dynamic equilibrium achieved?

Consider the reversible reaction: $A + B \implies C + D$

- At time = 0, the reactants **A** and **B** are allowed to mix in a **closed** container. The **forward reaction** occurs (i.e. from *left* to *right*) to form the products **C** and **D**.
- As **A** and **B** are turned into products, [A] and [B] decreases and rate of the forward reaction (R_f) decreases.
- Since C and D are formed, the **backward reaction** commences (i.e. from *right* to *left*) to form A and B. As [C] and [D] **increases** and so rate of the backward reaction (R_b) **increases**.
- At t_{eqm} , the forward and backward reactions are still occurring. The rate of **A** and **B** reacting to form **C** and **D** is **exactly equal** to the rate of **C** and **D** reacting to form **A** and **B**. A state of **dynamic equilibrium** is attained where $R_f = R_b$ = constant $\neq 0$.
- At this point, [A]_{eqm}, [B]_{eqm}, [C]_{eqm} and [D]_{eqm} become **constant**. In other words, **no net change** in the amount of reactants and products is observable.

- At equilibrium, the reaction is **incomplete** (i.e. not 100% conversion). In other words, **reactants** are still **present** in the system at equilibrium.
- Once equilibrium is reached, the system will remain in this state, until conditions (such as temperature, concentration or pressure) affecting the rates of the forward and/or backward reactions are introduced.

SLS QUIZ 3: Fill in the blanks

- 1. Why does the curve plateau after t_{eqm}? Reaction has reached a state of
- 2. Which reactant is the limiting reagent?
- 3. How does the rate of reaction change with time for a reversible reaction? Rate of forward
 - reactionwith time while rate of backward reactionwith time until both rates are

2 Position of Equilibrium and Equilibrium Constants *K_c* and *K_p*

> What is Position of Equilibrium (POE)?

Consider this reversible reaction:

 $Cu^{2+}(aq) + 4Cl^{-}(aq) \iff CuCl_{4}^{2-}(aq) + 6H_{2}O(l)$ Blue Colourless Yellow

A solution of $Cu^{2+}(aq)$ is **blue** while a solution of $CuCl_{4}^{2-}(aq)$ is **yellow**.

What would you expect to see when hydrochloric acid is add to Cu²⁺(aq) followed by addition of water?

• The blue solution will turn _____ when hydrochloric acid is added to it and it will turn _____ again when water is added to it.

Explain the observation.

- When HC*l* is added to the solution, the **forward** reaction between Cu²⁺ and Cl⁻ to form yellow CuCl₄²⁻ will take place **faster** than the backward reaction.
- Hence, there will be an increase in the **proportion** of yellow CuCl₄²⁻(aq) in the solution causing it to turn yellow.
- We can say that the **position of equilibrium (POE**) has shifted to the ______ when HC*l* is added to the solution. In other words, adding HC*l favours the forward reaction*.
- When water is added to the solution, the **backward** reaction between CuCl₄²⁻ and water to form blue Cu²⁺ will take place **faster** than the forward reaction.
- Hence, there will be an increase in the **proportion** of blue Cu²⁺(aq) in the solution causing it to turn blue again.
- We can say that the **position of equilibrium (POE**) has shifted to the _____ when water is added to the solution. In other words, adding H_2O *favours the backward reaction*.

> What is Reaction Quotient?

For a reversible reaction, the **ratio** of the concentrations of products to reactants raised to their stoichiometric coefficients in the balanced equation is known **Reaction quotient**, Q_c

Consider the reversible reaction: $mA(aq) + nB(aq) \implies pC(aq) + qD(aq)$ Reaction quotient, $Q_c = \frac{[C]^p [D]^q}{[A]^m [B]^n}$

where [X] is the concentration of X in mol dm^{-3} at any given time.

Q_c is NOT constant; it changes with time until the reaction reaches equilibrium.

> What is Equilibrium Constant?

At equilibrium (t = t_{eqm}), rate of forward reaction **equals** rate of backward reaction, and so concentration of both reactants and products are **constant**, and hence Q_c will be a constant, known as **Equilibrium Constant**, denoted by symbol K_c . In other words, when the reaction is at equilibrium, $Q_c = K_c$

This is the law of equilibrium

At equilibrium,
$$Q_c = \frac{[C]^p [D]^q}{[A]^m [B]^n} = K_c$$

When the reaction is not at equilibrium: $Q_c \neq K_c$

- > This **mathematical expression of** K_c relates the concentration of the species present in an equilibrium mixture and the K_c value can be found through experiments.
- The equilibrium constant, K_c, for a reaction measures the **extent** to which reactants are converted to products at equilibrium at a given temperature.
- A reaction with a higher K_c value will contain a higher proportion of products relative to reactants in the equilibrium mixture compared with another reaction with a lower K_c value.
- > The equilibrium constant, K_c , is a <u>constant</u> value at a <u>given temperature</u>.
- > The **units for K_c** is dependent on the balanced chemical equation of interest.

2.1 Definition of Equilibrium Constant

Here is the definition of equilibrium constant:

Consider the reversible reaction:

 $mA(aq) + nB(aq) \iff pC(aq) + qD(aq)$

Equilibrium constant,
$$K_c = \frac{[C]_{eqm}^p [D]_{eqm}^q}{[A]_{eqm}^m [B]_{eqm}^n}$$

where $[X]_{eqm}$ is the **concentration** of X in **mol dm**⁻³ in the equilibrium mixture.

Unit of $K_c = (mol dm^{-3})^{(p+q)-(m+n)}$

Only temperature can change the K_c value of a given reaction.

2.2 Types of reaction mixtures

Homogeneous mixtures

The reaction mixtures contain reactants and products in the **same** phase or physical states:

E.g. $N_2(g)$ + $3H_2(g)$ \Longrightarrow $2NH_3(g)$

E.g. $CH_3CO_2H(l)$ + $CH_3OH(l)$ \iff $CH_3CO_2CH_3(l)$ + $H_2O(l)$

> Heterogeneous mixtures

The reaction mixtures contain reactants and product in different phases or physical states:

E.g. $I_2(s) \Longrightarrow I_2(g)$

- E.g. $3Fe(s) + 4H_2O(g) \implies Fe_3O_4(s) + 4H_2(g)$
- E.g. $Ag^+(aq) + Cl^-(aq) \iff AgCl(s)$

Rules for writing *K_c* and K_p expressions

The followings are **excluded** from the *K*_c and *K*_p expressions:

a) <u>Concentration of pure solids</u>

Exclude solids in **all** equilibrium expressions for all mixture because **concentration** of pure solids which are just their densities are **constants** and **independent** on the **mass of solid present**.

E.g.: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

 $K_c = [CO_2(g)] \mod dm^{-3}$

b) <u>Concentration of pure liquids</u>

Exclude pure liquids in equilibrium expressions for **heterogeneous** equilibria because concentrations of pure liquids calculated from their densities are **constants** in heterogeneous mixtures.

E.g.: $2HBr(g) \Longrightarrow H_2(g) + Br_2(I)$

$$K_c = \frac{[\mathrm{H}_2]}{[\mathrm{HBr}]^2} \quad \mathrm{mol}^{-1} \,\mathrm{dm}^3$$

c) <u>Concentration of solvents</u>

Exclude solvents in **all** equilibrium expressions as they are present in **excess** so their concentrations are relatively constants. In addition, being pure liquids, their concentrations calculated from their densities would be **constant**.

SLS QUIZ 4: Yes or No

Physical state of species	Heterogeneous mixtures	Homogeneous mixtures
Solid		
Liquid		
Gaseous		
Aqueous (solvent is H₂O)		

2.3 Equilibrium Constant in terms of Partial Pressures, K_p [for H2 only]

- 1. The equilibrium constant can also be defined in terms of **partial pressures**, K_p
- 2. The use of K_{ρ} is only useful for systems involving **gases**.
- 3. For a reversible gaseous system in dynamic equilibrium:

$$A(g) + nB(g) \Longrightarrow qC(g)$$

equilibrium constant, $K_{\rho} = \frac{p_{C}^{q}}{p_{A}^{m}p_{B}^{n}}$; unit of $K_{\rho} = (\text{Pa or atm})^{q - (m+n)}$

where p_z is the <u>equilibrium</u> partial pressure of gas Z in Pa, kPa or atm.

[Recall: $p_A = \frac{n_A}{n_T} \times p_T$ and Dalton's Law of Partial Pressure $p_T = p_A + p_B + ...$]

- 4. The equilibrium constant, K_{ρ} , is a **<u>constant</u>** value at a <u>given temperature</u>.
- 5. The units for K_{P} are dependent on the balanced chemical equation of interest.

E.g.: $2HBr(g) \rightleftharpoons H_2(g) + Br_2(g)$

$$K_p = \frac{p_{H_2} p_{Br_2}}{p 2_{HBr}} \quad \text{(no units)}$$

.....

<u>Exercise</u>

Write down the equilibrium constant expressions and their units for the following:

	Equation	K_c (or K_p)	Unit for <i>K</i> c (or <i>K</i> p)
(a)	I₂(aq) + 2Fe ²⁺ (aq)	$\kappa_c =$	
(b)	$BiCI_3(aq) + H_2O(I) \Longrightarrow BiCIO(s) + 2HCI(aq)$	K _c =	
(c)	$CH_{3}CO_{2}CH_{2}CH_{3}(l) + H_{2}O(l)$ $\iff CH_{3}CO_{2}H(l) + CH_{3}CH_{2}OH(l)$	<i>K</i> _c =	
[For (d)	H2 only] $3Fe(s) + 4H_2O(g) \Longrightarrow Fe_3O_4(s) + 4H_2(g)$	$\kappa_{ ho} =$	

Enrichment: Relationship between K_c and K_p [Not in syllabus]

> For ideal gases, pV = nRT

Concentration of a gas: $\frac{n}{V} = \frac{p}{RT}$

> Consider a reversible reaction: $aA(g) + bB(g) \Longrightarrow cC(g) + dD(g)$

$$\mathcal{K}_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = \frac{\left(\frac{p_{C}}{RT}\right)^{c}\left(\frac{p_{D}}{RT}\right)^{d}}{\left(\frac{p_{A}}{RT}\right)^{a}\left(\frac{p_{B}}{RT}\right)^{b}} = \frac{p_{C}^{c}p_{D}^{d}}{p_{A}^{a}p_{B}^{b}}(RT)^{(a+b)-(c+d)} = \mathcal{K}_{p} \times (RT)^{(a+b)-(c+d)}$$

2.4 Significance of the Equilibrium Constants, *K_c* or *K_p*

- > As K_c (or K_p) is sensitive to the stoichiometric coefficients of the chemical equation, it must be accompanied by the chemical equation of interest.
- > Units of K_c and K_p vary and should always be stated (unless otherwise stated).
- > K_c (or K_p) is **constant** only when **temperature remains** <u>**constant**</u>. It varies with temperature.
- The value of K_c (or K_p) indicates the <u>extent</u> of the forward reaction at equilibrium at a given temperature.
 - If K_c is <u>large</u> (eg.10⁵) \Rightarrow conversion of reactants to products would be high i.e. forward reaction is almost complete.
 - If K_c is <u>small</u> (eg.10⁻⁵) \Rightarrow conversion of reactants to products would be low i.e. forward reaction does not proceed to any appreciable extent.
- > The value of K_c (or K_p) is <u>unaffected</u> by changes in the concentrations or pressure of either reactants or products. K_c (or K_p) value is affected by temperature only.

2.5 Use of Le Chatelier's Principle (LCP)

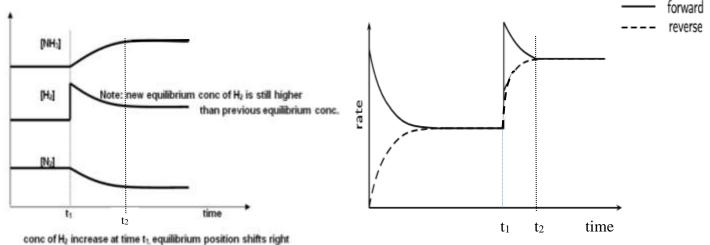
- LO: State Le Chatelier's Principle and apply it to deduce qualitatively (from appropriate information) the effects of changes in concentration, pressure or temperature, on a system at equilibrium
 - Le Chatelier's Principle states that when a system at equilibrium is disturbed, the system will counteract by shifting its position of equilibrium in a direction that will reduce that disturbance in order to re-establish the equilibrium.
 - These disturbances could be changes in concentration, partial pressure, temperature or the use of a catalyst.

3 **Factors affecting Position of Equilibrium of Reversible reactions**

3.1 Effect of Concentration changes

- If a substance is **added** to a system (i.e. its concentration increases) at equilibrium, the system will adjust itself so as to **remove** the substance added.
- If a substance is **removed** from a system (i.e. its concentration decreases) at equilibrium, the system will adjust itself so as to **replace** the substance removed.

E.g. For $N_2(g) + 3H_2(g) \implies 2NH_3(g)$, predict what happens if more H_2 is introduced.


Prediction using LCP:

- By Le Chatelier's Principle, the system will **counteract** the increase in amount of H₂ by favouring the **forward** reaction, so the position of equilibrium will shift to the **right**.
- In the new equilibrium mixture, the concentration of NH₃ and H₂ would be **higher** than the previous one, while that of N₂ would be **lower** than the previous one (see graph below).

Effect on rates of forward and backward reactions:

- When more H₂ is added (i.e. [H₂] increases) at t₁ (see graph below), the system will **adjust to reduce** the concentration of H₂.
- Rate of forward reaction will increase leading to formation of more NH₃.
- The forward rate will then start to **decrease** while the backward rate starts to **increase** with time until both are **equal** again. At this stage, the system is said to have re-established its equilibrium (refer to t₁ in the graph)
- Position of equilibrium is said to have shifted to the **RIGHT**.

Concentration

- New equilibrium [H₂] is still **higher** than the initial equilibrium [H₂].
- The new equilibrium mixture will contain more H₂ and NH₃ but less N₂.
- There is no change to the value of K_c.

- When the system is **at equilibrium**, $Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3} = K_c$
- \circ Adding H₂ will cause [H₂] to increase, so value of Q_c will drop at the start.

$$\Rightarrow Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3} < K_c$$
, the system is no longer at equilibrium

- \circ At the same time, forward rate will spike, causing more N₂ to react and more NH₃ formed.
- $[N_2]$ will start to decrease while $[NH_3]$ will start to increase. Hence, Q_c will start to increase until it is equal to the K_c value again.
- When H₂ is added, forward rate will spike and then drop as concentration of H₂ and N₂ start to fall. Backward rate will increase as concentration of NH₃ start to increase. The system will re-establish its equilibrium when the forward rate and backward rate are the same again. At this stage, value of Q_c is equal to the value of K_c .
- Hence changes in concentration of species will not change K_c value.

1.2 Effect of changes in Partial Pressure of gases

Since pressure has a **negligible** effect on the volumes of **solids and liquids**, pressure changes only affect those reactions in which **gases** are involved.

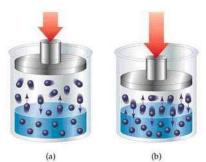
A change in partial pressure of gases in the reaction will affect position of equilibrium in the same way as concentration changes as they are directly proportional to each other.

► For gas A,
$$p_A V = n_A RT \Rightarrow p_A = \frac{n_A}{V} RT = [A] \times RT$$

Hence, $p_A \propto [A]$

- ➡ Effect of changing partial pressure of A on POE is the same as changing concentration of A.
- > There are **2 ways** to change the partial pressure of gases:

(i) Adding or removing any of the gaseous components at constant temperature


Eg 1: For $N_2(g) + 3H_2(g) \implies 2NH_3(g)$, predict what happens if some NH₃ is removed.

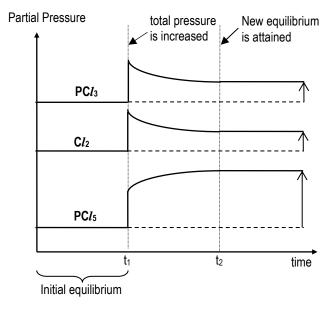
Prediction using LCP:

- Removal of some NH₃ will lower the partial pressure of NH₃.
- By Le Chatelier's Principle, the system will counteract by favouring the forward reaction in order to increase the partial pressure of NH₃.
- So position of equilibrium will shift to the **right**.

(ii) Change the **VOIUME** of the vessel at constant temperature

- **Compression** (i.e. **decreasing volume of vessel**) to **increase** partial pressure of all gases
- Expansion (i.e. increasing volume of vessel) to decrease partial pressure of all gases

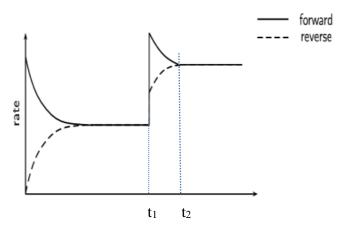
The **stoichiometry** of a gaseous reaction will influence the effect of changing partial pressure of **all** gases on the **Position of Equilibrium** of the reaction.


There are **2** types of stoichiometry:

• Reactions with different amount of gaseous reactants and products

Eg 2: $PC_{l_3}(g) + C_{l_2}(g) \iff PC_{l_5}(g)$, predict what happens if volume of vessel is decreased.

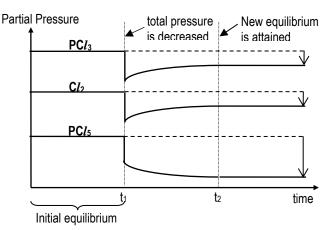
Prediction using LCP:


- When the volume of the vessel is decreased, the partial pressure of all gases will increase.
- By Le Chatelier's Principle, the system will counteract the increase in pressure by favouring the forward reaction to reduce the total amount of gas particles in the system.
- Hence, the position of equilibrium will shift to the **right**.
- Partial pressure of PCl_3 and Cl_2 will fall while partial pressure of PCl_5 will rise until new equilibrium is attained at t_2 .
- At the new equilibrium, the partial pressure of all species are **higher** than in the previous equilibrium.

New equilibrium partial pressures of PC l_3 , C l_2 and PC l_5 will be **higher** than their initial equilibrium partial pressures.

Note: The above graphs are not drawn to exact scale.

Effect on rates of forward and backward reactions:

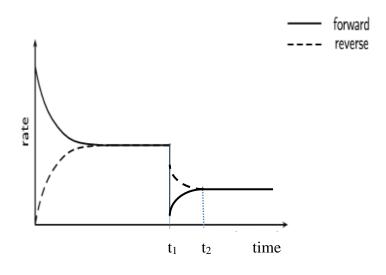


- When the volume of the vessel is **decreased** (t₁), partial pressure of all gases will **increase** and so both forward and backward rates will **spike**. The system will counteract by **reducing** the total amount of gas particles in the system and so the forward rate will spike more.
- As more PCI₅ formed, the backward rate will rise while the forward rate fall until they are **equal** again.
- At this stage (t₂), a new equilibrium position is attained.

Eg 3: $PCb(g) + Cb(g) \implies PCb(g)$, predict what happens if volume of vessel is increased.

Prediction using LCP:

- When the volume of the vessel is **increased**, the partial pressure of **all** gases will **decrease at t**₁.
- By **Le Chatelier's Principle**, the system will counteract the decrease in pressure by favouring the **backward** reaction to **increase** the total amount of gas particles in the system.
- Hence, the position of equilibrium will shift to the **left**.
- Partial pressure of PCl_3 and Cl_2 will rise while partial pressure of PCl_5 will fall until new equilibrium is attained at t_2 .
- At the new equilibrium, the partial pressure of all species are **lower** than in the previous equilibrium.



New equilibrium partial pressures of PC l_3 , Cl_2 and PC l_5 will be **lower** than their initial equilibrium partial pressures.

Note: The above graphs are not drawn to exact scale

Effect on rates of forward and backward reactions:

- When the volume of the vessel is **increased** (t₁), partial pressure of all gases will **decrease** and so both forward and backward rates will **drop**. The system will counteract by **increasing** the amount of gas particles in the system and so the backward rate will drop less and hence faster than the forward reaction.
- As **more** Cl₂ and PCl₃ formed, the forward rate will **rise** while the backward rate will **fall** until they are **equal** again.
- At this stage (t₂), a new equilibrium position is attained.

2 Reactions with <u>equal</u> amount of gaseous reactants and products

Eg 4: $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$

- Since the number of gaseous particles on both sides of the system is **equal**, changes in partial pressure of gases favour **neither** the forward nor the backward reaction
- Position of equilibrium is unaffected and the system remains at equilibrium.
- There will be **no change** to the **composition** of the equilibrium mixture (i.e. amount of H_2 , I_2 and HI remain unchanged).

1.3 Effect of adding an Inert Gas

- > An inert gas is a gas that does not react with any of the species involved in the equilibrium.
- The inert gas can be added to an equilibrium system under two separate conditions:
 <u>Constant volume</u> or <u>Constant total pressure.</u>
- E.g. Adding Ne gas to the closed system $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ at:

• At constant volume

- The <u>partial pressures</u> (or concentration) of the reactants and products <u>do not change</u> though there is an increase in total pressure.
- Hence, the reaction is **not disturbed** and the **equilibrium position is unchanged**.

• At constant pressure (refers to total pressure of system)

- The **volume** of the system must **increase** to keep total pressure constant when an inert gas is added. Hence, the **partial pressures** of the reactants and products will **decrease**.

- By Le Chatelier's Principle, the system will counteract by shifting the equilibrium position to the **side** with **more gas particles** are present to **raise** the partial pressures in order to overcome the stress.

<u>Note</u>: The effect of adding inert gas at constant pressure on the equilibrium position is the **same** as **increasing the volume of vessel**.

Tickle your Brains

Why does partial pressure of gaseous reactants and products remain the same when an inert gas is added at constant volume?

Partial pressure of a gas A = mole fraction of A x P_T

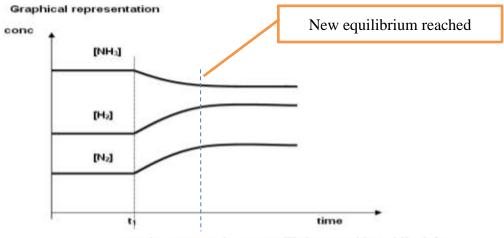
$$= \int \frac{n_A \times P_T \uparrow}{n_T \uparrow}$$

Since decrease in mole fraction of gas is matched by increase in total pressure of the system, the two effects cancel each other. Hence, partial pressure remains the same.

1.4 Effect of Temperature changes

> Direction of POE shift will depend on **enthalpy change** of reaction.

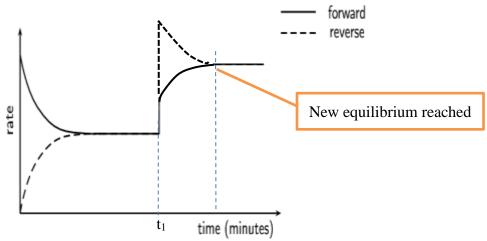
Eg 1: Consider an equilibrium system with an exothermic forward reaction:


 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ $\Delta H = -92 \text{ kJ mol}^{-1}$ Predict what happens if temperature of the system is changed.

• When the temperature is **increased**:

Prediction using LCP:

- By Le Chatelier's Principle, the system will **counteract** the increase in temperature by favouring the **backward endothermic** reaction to **lower temperature** by **removing** heat, so the position of equilibrium will shift to the **left**.
- In the new equilibrium mixture, the concentration of N₂ and H₂ would be **higher** than the previous one while that of NH₃ would be **lower** than the previous one (see graph below).
- Hence, *K*_c value will **decrease**.


$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

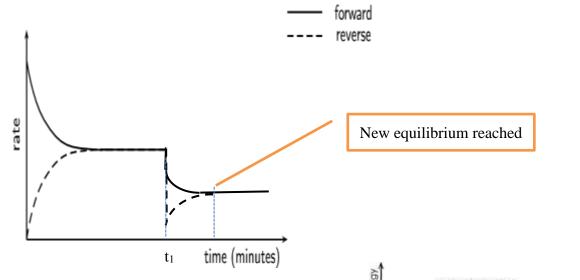
temp increase at time t₁ equilibrium position shifts left

Effect on rates of forward and backward reactions:

- Increasing temperature at time t_1 will increase the kinetic energy of both reactants and products in the system. Hence <u>both</u> forward and backward reactions will become **faster**.
- However, rate of backward reaction increases **more than** forward reaction as backward endothermic reaction is favoured in order to remove heat.
- More H_2 and N_2 formed and so the forward rate will start to **increase** while the backward rate will **decrease** until both rates are the **equal**.
- At this stage, a new equilibrium is reached.
- Since the **rates of both** forward and backward reactions **increase**, equilibrium is reached **faster**.

• When the temperature is **lowered**:

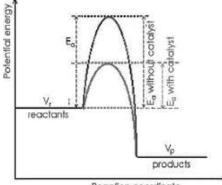
Prediction using LCP:

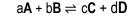

- By Le Chatelier's Principle, the system will counteract the decrease in temperature by favouring the forward exothermic reaction to increase temperature by releasing heat, so the position of equilibrium will shift to the right.
- In the new equilibrium mixture, the concentration of N_2 and H_2 would be **lower** than the previous one while that of NH_3 would be **higher** than the previous one (see graph below).
- Hence, *K*_c value will **increase**.

$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

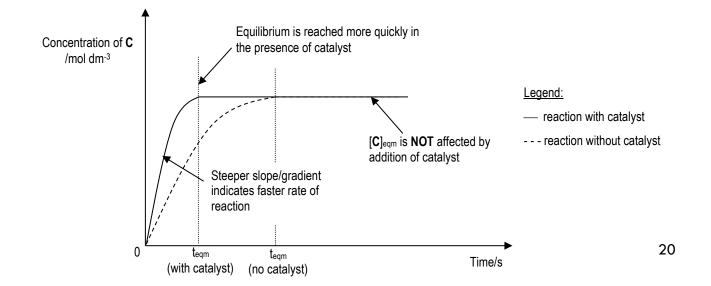
- The numerical value of K_c (or K_p) will only change <u>if and only if</u> temperature changes.

Effect on rates of forward and backward reactions:


- Decreasing temperature at time t₁ will lower the kinetic energy of both reactants and products in the system. Hence <u>both</u> forward and backward reactions will become slower.
- However, rate of forward reaction decreases less than backward reaction as the forward exothermic reaction is favoured in order to release heat.
- More NH₃ formed and so the backward rate will start to **increase** while the forward rate **decrease** until both rates are the **equal**.
- At this stage, a new equilibrium is reached.
- Since the **rates of both** forward and backward reactions **decrease**, equilibrium is reached **at a longer time**.



1.5 Effect of Catalyst


- Catalyst increases both the rates of the forward and backward reactions to the <u>same extent</u> by lowering the activation energy of both reactions by the <u>same amount.</u>
- Hence, it will **not** affect equilibrium position but it will allow equilibrium to reach *faster*.
- > It has **no effect** on equilibrium composition and **no effect** on K_c (or K_p)

Eg: Concentration of **C** against time graph for the catalysed and uncatalysed reaction:

<u>SLS QUIZ 5</u>

1. YES or NO

Factors	Any effect on POE?	Any effect on K _c or K _p ?
Concentration		
Pressure		
Temperature		
Catalyst		
Inert gas (constant P)		
Inert gas (constant V)		

2. Silver chlorate(V) reacts with chlorine in a 1 dm³ container as follows:

$$2AgCIO_3(s) + CI_2(g) \Longrightarrow 2AgCI(s) + 2CIO_2(g) + O_2(g) \qquad \Delta H > 0$$

Which one of the following changes would affect the equilibrium position of the above reaction?

- A Addition of an inert gas
- **B** Increase in temperature
- **C** Addition of a suitable catalyst
- **D** Removal of some silver chloride
- 3. The key stage in the manufacture of sulfuric acid is the reaction between sulfur dioxide and oxygen.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

Which of the following statements are correct for an increase in temperature?

- 1 The equilibrium constant increases.
- 2 The rate for the forward reaction increases.
- 3 The rate for the backward reaction increases.
- 4 The activation energy for the forward reaction decreases.

Α	1, 2, 3 and 4	В	2, 3 and 4 only
С	2 and 3 only	D	3 only

4 Calculations involving K_c and K_p

LO: Calculate the quantities present at equilibrium, given appropriate data (such calculations will not require the solving of quadratic equations)

Worked Example 1

The reaction $2D(aq) + E(aq) \iff F(aq)$ was allowed to reach equilibrium. The initial amounts of the reactants present in a 3 dm³ solution were 3.00 mol **D** and 2.25 mol **E**. At equilibrium, there were 0.60 mol **F**.

Calculate the equilibrium constant, K_c.

Solution:

		2 D (aq)	+	E(aq)	⇒ F (aq)
I	Initial amount / mol				
С	C hange in amount / mol				
E	Equilibrium amount / mol				
Equilibrium concentration / mol dm ⁻³					

Ans: 1.01 mol-2 dm6

Worked Example 2

The system $\mathbf{B}(aq) \iff \mathbf{C}(aq)$ has an equilibrium constant, K_c of 0.50 at 50 °C. Initially there is 0.0150 mol dm⁻³ of **B** which is allowed to reach equilibrium at 50 °C.

- (i) Calculate the equilibrium concentrations of **B** and **C**.
- (ii) If the concentration of **B** in the equilibrium mixture is increased by 0.0075 mol dm⁻³ at time $= t_1$, what will be the concentrations of **B** and **C** when the equilibrium is established again at the same temperature at time $= t_2$?
- (iii) Sketch the concentration-time graph for the reaction from time = 0 to time = t_2 .

Solution:

(i) Let **x** be the concentration of B be reacted.

		B (aq)	\Rightarrow	C (aq)
I	Initial concentration / mol dm ⁻³			
С	Change in concentration / mol dm ⁻³			
Е	Equilibrium concentration / mol dm ⁻³			

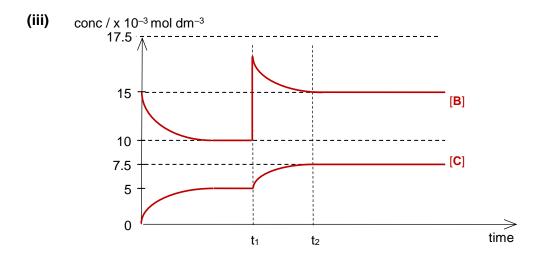
Ans: $[C]_{eqm} = 0.00500 \text{ mol } dm^{-3}$ $[B]_{eqm} = 0.0100 \text{ mol } dm^{-3}$

(ii) <u>Method 1:</u>

Let the change in concentration of C be y from t_1

mol dm ⁻³	B(aq)	<u> </u>	C (aq)
[I] at t ₁			
[C]			
[E]			

Method 2:


Start from the beginning with no C in the system,

Let **y** be the equilibrium concentration of **C** at t_2 .

mol dm ⁻³	B(aq)	``	C (aq)
[1]			
[C]			
[E]			

$$K_c = \frac{[C]}{[B]}$$

 $[C]_{eqm} = y = \underline{0.00750 \text{ mol } dm^{-3}}$ $[B]_{eqm} = 0.0225 - y = 0.0225 - 0.0075 = \underline{0.0150 \text{ mol } dm^{-3}}$

Worked Example 3 [For H2 only]

At 1100 K, $K_p = 0.13$ atm⁻¹ for the system **2SO₂(g) + O₂(g)** \implies **2SO₃(g)**

If 2.00 mol of SO_2 and 3.00 mol of O_2 are mixed and allowed to react in a vessel, what would be the final total pressure to give 90% yield of SO_3 ?

Solution:

Limiting reagent is $SO_2 => 90\%$ of SO_2 reacted will give 90% yield of SO_3

mol	2SO ₂ (g)	+	O ₂ (g)	\rightarrow	2SO ₃ (g)
I					
с	- 90% x 2 = 1.80				
E					

 $n_{\text{total}} = 0.20 + \frac{2.10}{2.10} + 1.80 = 4.10 \text{ mol}$

Let the total pressure required be P_T

Recall:

 P_T = Sum of partial pressure of all gases in the system

 P_A = mole fraction of A x Total Pressure

$$= (\mathbf{n}_A / \mathbf{n}_T) P_T = X_A P_T$$

Worked Example 4 [For H2 only]

At 50 °C and 1.01 x 10⁵ N m⁻², the degree of dissociation of N₂O₄ is 0.53. Find the equilibrium constant, K_p , for the dissociation N₂O₄(g) \implies 2NO₂(g).

Solution:

Degree of dissociation, α , is the **fraction** of <u>reactant</u> that has dissociated at a particular temperature. It can be expressed as fraction or percentage.

Degree of dissociation, $\alpha = \frac{\text{amount dissociated}}{\text{initial amount}}$

Let the initial amount of N_2O_4 be y

	N ₂ O ₄ (g)	\rightarrow	2NO ₂ (g)
Initial amount / mol	У		
Change in amount / mol			
Equilibrium amount / mol			
Equilibrium mole fraction, X			
Partial pressure at equilibrium / N m ⁻² = mole fraction x P _T			

Total amount of gases at equilibrium = 0.47y + 1.06y = 1.53y

 $P_T = 1.01 \text{ x } 10^5 \text{ Nm}^{-2}$

Ans: $K_p = 1.58 \times 10^5 \text{ Nm}^{-2}$

SLS QUIZ 6:

1 On heating, nitrogen dioxide decomposes as follows:

$$2NO_2(g) \Longrightarrow 2NO(g) + O_2(g)$$

When 4 mol of nitrogen dioxide (in a V dm³ vessel) is heated to a constant temperature, the equilibrium mixture is found to contain x mol of oxygen. Which one of the following shows the correct K_c for this reaction?

Industrial Application of LCP: The Haber Process

LO: Describe and explain the conditions used in the Haber process, as an example of the importance of an understanding of chemical equilibrium in the chemical industry

The Haber Process for production of NH_3 is an example of an important industrial reaction which is **reversible** and involves equilibrium mixtures:

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ $\Delta H^{\Theta}(2$

$$\Delta H^{\Theta}$$
 (298 K) = -92 kJ mol⁻¹

- 3 important principles in industrial reactions are:
- 1. Reaction must be **fast**
- 2. Yield is **high**
- 3. Cost is **low**

The desired reaction should take place **quickly** to produce the required product in **high yield**. The process should **minimise cost** by making the reaction as fast as possible such as ensuring that the temperature is not too low, avoiding very high pressures and making use of catalysts if possible.

The Haber process provides a good example to show how an understanding of LCP can be applied in the chemical industry to achieve the aim of producing the **maximum amount of product** in the **shortest time** and at the **minimum cost**.

Condition	Explanation		
	 Since the forward reaction is exothermic, a lower temperature would result in a higher yield of NH₃. 		
Tomporatura: 450 %C	 However, the rate of reaction is too slow at low temperature and it takes a long time to establish equilibrium. 		
Temperature: 450 °C	 On the other hand, a high temperature increases the rate of production but results in lower yield and higher production cost. 		
	 Thus, a compromise is needed and a moderately high temperature of 450 °C is used to ensure a reasonable rate of production and yield. 		
Pressure: 200 atm	 The forward reaction takes place with a reduction in the number of gaseous particles. A high pressure will favour the desired reaction (increase yield). However, too high a pressure increases cost of production (more expensive and stronger equipment that could withstand the high pressure need to be used). 		
Catalyst: Finely divided Fe	 This increases the rate of production. 		
catalyst with A_2O_3 as promoter	Note: The catalyst does not affect the percentage of NH_3 in the equilibrium mixture.		
Continuous removal of NH ₃ • The removal of NH ₃ as it forms shifts the position of equilibric right, thereby increasing the yield of NH ₃ .			
Molar ratio of N_2 : H_2 = 1 : 3	 The molar ratio used is similar to that of the stoichiometric ratio to minimise excess. 		

SLS QUIZ 7:

1 Ammonia is manufactured industrially via the Haber process.

 $3H_2(g) + N_2(g) \Longrightarrow 2NH_3(g), \quad \Delta H < 0$

Which statements are true about the Haber process?

- 1 Iron catalyst is used to increase yield of ammonia.
- 2 A pressure of 250 atm is used to increase yield of ammonia.
- 3 A temperature of 450 °C is used to increase rate of reaction.
- A 1, 2 and 3 only
- **B** 1 and 2 only
- C 2 and 3 only
- D 3 only

Additional Information: Applications of Equilibrium

Carbon monoxide poisoning

Haemoglobin is a complex molecule that transports oxygen in the blood system. The binding process can be represented by the equilibrium:

haemoglobin + $O_2 \implies$ oxyhaemoglobin

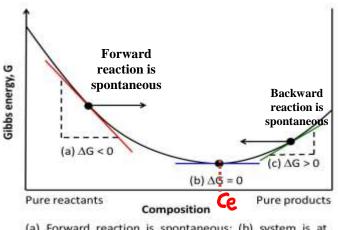
The equilibrium position will shift to the left when oxygen is used in the body to maintain the state of equilibrium.

Carbon monoxide, a by-product of "incomplete" oxidation (burning) of hydrocarbons, poses a major pollution problem. It is dangerous to life because it also binds to haemoglobin:

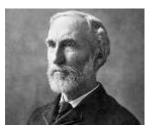
This equilibrium has a much greater equilibrium constant than the haemoglobin– O_2 reaction, i.e. CO binds much more strongly to haemoglobin than O_2 . Consequently, less haemoglobin is available to transport oxygen and the victim of CO poisoning suffocates. The treatment for CO poisoning is to supply pure oxygen to the victim. This helps by shifting equilibrium position to the left, thus reversing the binding of CO to haemoglobin and increasing the concentration of oxyhaemoglobin in blood plasma.

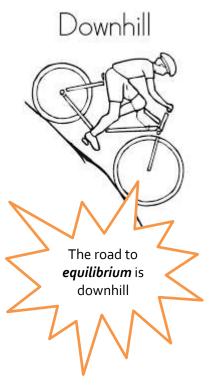
DID YOU KNOW

Ammonia, World War I and Haber...


Ammonia, which can be converted into nitrates, is an indispensable ingredient in gunpowder. Before the Haber Process, nature supplied the nitrates needed. Plants such as pea and peanut plants harbor bacteria in their roots that can convert nitrogen gas in air into nitrogen compounds. Animals eat the plants and nitrates form in their nitrogen rich manure. Large amounts of manure, such as those found in seasonal roosting areas for large flocks of birds used to be harvested for nitrates. In Europe prior to World War I, such nitrates had to be imported, which meant the importing countries were vulnerable to blockade. German chemist Fritz Haber was the first to develop a practical industrial process that could manufacture ammonia on large scales. He won the Nobel prize in 1918 for his efforts. He also helped the Germany government to develop various chemical weapons, including mustard gas, during the war. However, though he received much adulation, his life was not without tragedies. During the War, his wife committed suicide. We all know Germany eventually lost the war. Due to his Jewish roots, Haber, was later forced to leave his homeland when the Nazis came into power. After a grave illness, Haber died on January 29, 1934, at Basle, on his way from England to convalesce in Switzerland, his spirit was broken by his rejection by the Germany he had served so well.

6 Gibbs Free Energy and the Position of Equilibrium [For H2 only]


- LO: Show understanding that the position of equilibrium is dependent on the standard Gibbs free energy change of reaction, ΔG^{θ} [Quantitative treatment is not required]
 - J. Willard Gibbs is a professor of mathematical Physics at Yale University. In 1878, he wrote a 323-page paper that virtually established the major principles governing chemical equilibria. He has given us another perspective in understanding chemical equilibrium based on free energy consideration.


Significance of Gibbs free energy, G

- **G** is not a constant. Its value will change with **temperature and pressure** of the system.
- The lower the **G** value, the more stable is the system.
- At a given temperature and pressure, chemical reactions will change its composition in a direction to reduce the value of the G until it reaches the minimum value. At this stage, the reaction reaches equilibrium.
- When **minimum G** is obtained, there will be **no more changes** in the **composition** of the mixture and so **G** remains constant, hence Δ **G** is **zero**. The reaction reaches **dynamic equilibrium** and the rate of forward reaction and rate of backward reaction are now **equal**.

(a) Forward reaction is spontaneous; (b) system is at equilibrium; (c) backward reaction is spontaneous

Ce: Composition of mixture at equilibrium

- Reaction will shift its POE to change its composition towards **Ce** so as to obtain minimum **G**.
- Sign of ΔG gives information about the spontaneity of the reaction.
 - \circ When the reaction has a **high proportion of reactants**, ΔG is **negative**. Hence **forward** reaction will be **spontaneous** and is **faster** than backward reaction.
 - When the reaction has a **low proportion of reactants**, ΔG is **positive**. Hence **backward** reaction will be **spontaneous** and is **faster** than forward reaction.
 - When the reaction has equilibrium composition, Ce, ∆G is zero.
 Hence both forward and backward reactions will be spontaneous and occurring at the same rate.

10³

10²

10¹

0 10⁻¹ 10⁻²

10⁻³

-10

0

ΔG°, kJ mol^{−1}

+10

+20

ln K

Summary of information from sign of ΔG

Reactants \implies **Products** $\Delta G = + \text{ or } 0 \text{ or } - (\text{depend on the reaction composition})$

Reaction composition	Sign of ∆G	Which direction is spontaneous?
High proportion of	Negative	Forward reaction is spontaneous; faster than
reactants		backward reaction.
C e (equilibrium	Zero	Both reactions are spontaneous and occurring at
composition)		an equal rate. Reaction is at equilibrium.
Low proportion of	Positive	Backward reaction is spontaneous; faster than
reactants		forward reaction.

Note: Under Energetics, you have also learned that ΔG can be calculated from enthalpy change and entropy change at a given temperature.

```
\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}
```

• ΔG^{θ} is known as Standard Gibbs Free energy change.

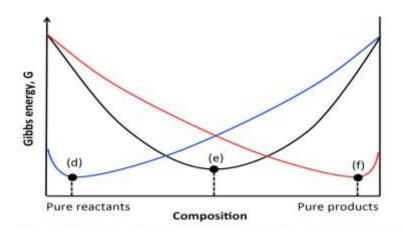
- * Δ**G**^θ has a <u>constant</u> value for a given reaction
- It refers to the free energy change of a reaction under standard conditions which refer to 25°C, 10⁵ Pa (or 1 bar) & concentration of 1 mol dm⁻³
- * ΔG^{θ} is related to equilibrium constant K

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{\theta} + \mathbf{RTlnQ}$$

At equilibrium under a given temperature, $\Delta G = 0$ and Q = K

$$\mathbf{0} = \Delta \mathbf{G}^{\boldsymbol{\theta}} + \mathbf{R}\mathbf{T}\mathbf{ln}\mathbf{H}$$

 $\Rightarrow \Delta \mathbf{G}^{\theta} = -\mathbf{RTInK} [no need to remember]$


• Since ΔG^{θ} is related to **K**, we can look at the sign of ΔG^{θ} of a reaction to gather information about its **K** value, position of equilibrium and its composition at equilibrium.

O When ΔG^{θ} has a negative sign, K would be greater than 1 and very big (K >>1).

- ⇒ The position of equilibrium (i.e. position of minimum G) lies very much to the right, and the reaction should be almost complete; there would be a high proportion of products in such a reaction mixture.
- ⇒ Ratio of [Products] / [Reactants] > 1

2 When ΔG^{θ} has a positive sign, K would be <u>small</u> and less than 1 (0 < K < 1).

- ⇒ The position of equilibrium or minimum G lies very much to the left, and most of the reactants are left unreacted; there would be a low proportion of products in such a reaction mixture.
- ⇒ Ratio of [Products] / [Reactants] < 1</p>
 - How about a reaction with $\Delta G^{\theta} = 0$? [Refer to summary on page 33 for answers]
 - \Rightarrow What would be its **K value**?
 - ⇒ Where is the **position of equilibrium**?
 - And what would be the ratio of [Products] / [Reactants] at equilibrium?

• We can also look at the position of the **minimum G** of a reaction to gather information about its **position of equilibrium**, its **composition at equilibrium** and **sign** of its ΔG^{θ} .

Position of minimum G	Composition of mixture at equilibrium and its position of equilibrium	Sign of ∆G ^θ
Reaction (d) Close to reactants	 High proportion of reactants at equilibrium. [Products] / [Reactants] < 1 Position of equilibrium lies very much to the left, so reaction is rather incomplete. 	Forward reaction is non-spontaneous , so ΔG^{θ} has a positive sign
Reaction (f) Close to products	 High proportion of products at equilibrium. [Products] / [Reactants] > 1 Position of equilibrium lies very much to the right, so reaction is almost complete. 	Forward reaction is spontaneous, so Δ G ^θ has negative sign
Reaction (e) At about equal amount of reactants and products	 About equal amount of products and reactants at equilibrium. [Products] / [Reactants] ≈ 1 Position of equilibrium lies at about midway of reaction. 	Δ G^θ ≈ 0 Reaction is almost reaching equilibrium.

SLS QUIZ 8: True/False

1	A reversible reaction has the lowest free energy when it is in a state of equilibrium	
2	A reversible reaction is not in equilibrium if its free energy is not the minimum.	
3	A reversible reaction will change its composition until it has zero free energy.	
4	A reversible reaction will adjust its composition so as to achieve minimum free energy.	
5	A reaction with negative ΔG^{θ} would contain a high proportion of products at equilibrium.	

Summary of Factors Affecting Position of Equilibria

	Shift in Position of	K _c (or	Rate Constant		Damarka	
Change	Equilibrium	K _p)	k f	k b	Remarks	
↑ [A] or [B] ↓ [C] or [D]	To right	No change	No cl	hange	For gaseous components, the effect of \uparrow or \downarrow	
↓ [A] or [B] ↑ [C] or [D]	To left	No change	No change		partial pressure is similar to that of \uparrow or \checkmark concentrations.	
<i>ΨP</i> ⊤ or ↑ V	 To left if (a+b) > (c+d) To right if (a+b) < (c+d) No change if (a+b) = (c+d) 	No change	No change No change		Only <u>gaseous</u> system is affected.	
个P _T or ΨV	 To right if (a+b) > (c+d) To left if (a+b) < (c+d) No change if (a+b) = (c+d) 	No change				
↑Т	For ∆H > 0 (endothermic forward reaction) ■ To right	\mathbf{T}	1	↑	Equilibrium is achieved in a shorter time.	
	For ∆H < 0 (exothermic forward reaction) ■ To left	\checkmark				
√т	For ∆H > 0 (endothermic forward reaction ■ To left	¥	\downarrow	\downarrow	Equilibrium is achieved in a longer time.	
	For ∆H < 0 (exothermic forward reaction) ■ To right	۲	\downarrow	\downarrow		
Addition of a catalyst	No change	No change	Increase same e		Equilibrium is achieved in a shorter time.	
Addition of inert gas at constant pressure (increase volume of vessel)	 To left if (a+b) > (c+d) To right if (a+b) < (c+d) No change if (a+b) = (c+d) 	No change	No change		Only <u>gaseous</u> system is affected. Total volume of system is increased. Reaction that produces <u>more</u> molecules is favoured.	
Addition of inert gas at constant volume	No change	No change	No change Only <u>gaseous</u> system is affected. Total pressure of system is increased		Total pressure of system is increased but partial pressures	

aA + bB ⇐⇒ cC + dD

Summary of ΔG , ΔG^{θ} & Position of Equilibirum (For H2 Only)

1. The sign of Gibbs free energy change, ΔG gives information about the spontaneity of a process; it provides information on the relative rates of the forward or backward reaction as well as the state of equilibrium of the reaction.

∆G is negative	Forward reaction is occurring faster than backward reaction.	Reaction is not at equilibrium; the backward reaction will catch up as the concentration of products increase until both rates are equal whereby a state of equilibrium is achieved.
∆G is positive	Backward reaction is occurring faster than backward reaction.	Reaction is not at equilibrium; the forward reaction will catch up as the concentration of reactants increase until both rates are equal whereby a state of equilibrium is achieved.
∆G = 0	Forward rate and backward rate are equal.	Reaction is at equilibrium

2. Standard Gibbs free energy change, ΔG^{θ} is a <u>constant</u>. The sign of ΔG^{θ} provides information on the K value, position of equilibrium and the composition of the reaction mixture at equilibrium, i.e. [Products] / [Reactants] ratio.

Sign of ΔG ^θ	K value	Position & Composition of mixture at equilibrium		
Δ G ^θ has negative sign	K would be very big (K >> 1)	 There would be a high proportion of products in the reaction mixture. [Products] / [Reactants] > 1 Position of equilibrium lies very much to the right, and the reaction should be almost complete. Position of minimum G lies close to products. 		
ΔG ^θ has positive sign	K would be small (0 < K < 1)	 There would be a low proportion of products in the reaction mixture. [Products] / [Reactants] < 1 Position of equilibrium lies very much to the left, and most of the reactants are left unreacted. Position of minimum G lies close to reactants. 		
$\Delta \mathbf{G}^{\boldsymbol{\theta}} = 0$	K = 1 $\Delta G^{\theta} = -RTlnK$ 0 = -RTlnK K = 1	 There would be equal proportion of products and reactants in the reaction mixture. [Products] / [Reactants] = 1 Position of equilibrium lies at mid-point and the reaction is half completed. Position of minimum G is at equal amount of reactants and products. 		

 $\Delta \mathbf{G}^{\theta} = -\mathbf{RTInK}$ (don't need to remember)

3. Position of minimum G of a reaction provides information about its position of equilibrium, its composition at equilibrium and sign of its ΔG^{θ} .

Position of minimum G	Composition of mixture at equilibrium and its position of equilibrium	Sign of ΔG ^θ
Close to reactants	 High proportion of reactants at equilibrium. [Products] / [Reactants] < 1 Position of equilibrium lies very much to the left, so reaction is rather incomplete. 	Forward reaction is non-spontaneous , so ΔG^{θ} has a positive sign
Close to products	 High proportion of products at equilibrium. [Products] / [Reactants] > 1 Position of equilibrium lies very much to the right, so reaction is almost complete. 	Forward reaction is spontaneous, so Δ G ^θ has negative sign
At about equal amount of reactants and products	 About equal amount of products and reactants at equilibrium. [Products] / [Reactants] ≈ 1 Position of equilibrium lies at about midway of reaction. 	Δ G^θ ≈ 0 Reaction is almost reaching equilibrium.