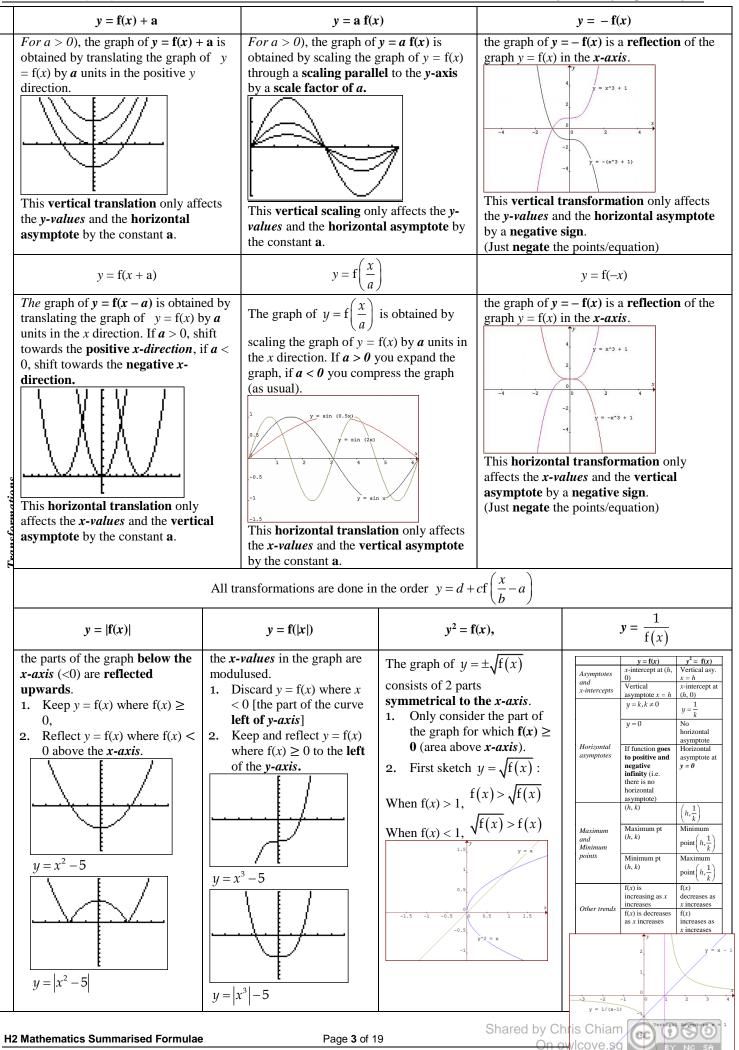

Chapter 1: Binomial Theorem

of quadratic functions $= c^n + {n \choose 1} c^{n-1} (x+x^2) + {n \choose 2} c^{n-2} (x+x^2)^2 + \dots$ form $(a+b)^n$ where a is the constant and b would be x and x^2 .Expansion of $(1+x)^n$ $(1+x)^n = 1+nx + \frac{n(n-1)}{2!} x^2 + \dots \frac{n(n-1)\dots(n-r+1)}{r!} x^r + \dots x < 1$ To expand $(1+kx)$, replace x with kx .Ascending powers of x (or descending $1/x$)Descending powers of x Ascending powers of x (or descending $1/x$)Descending powers of x $(a+bx)^n = \left[a\left(1+\frac{b}{a}x\right)\right]^n = a^n \left(1+\frac{b}{a}x\right)^n$ $(a+bx)^n = \left[bx\left(\frac{a}{bx}+1\right)\right]^n = (bx)^n \left(1+\frac{a}{bx}\right)^n$ Expansion of $(a+bx)^n$ $= a^n \left[1+n\left(\frac{b}{a}x\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}x\right)^2 + \dots \right]$ $= b^n x^n \left[1+n\left(\frac{a}{bx}\right)+\frac{n(n-1)}{2!}\left(\frac{a}{bx}\right)^2 + \dots \right]$ Range of validity:Range of validity:Range of validity:	Expansion of linear algebraic factors	$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r}$	$++b^n$ where <i>n</i> is a	positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	of quadratic		$(x+x^2)^2+$	Express the quadratic factor into the form $(a + b)^n$ where <i>a</i> is the constant and <i>b</i> would be <i>x</i> and x^2 .
$\begin{bmatrix} (a+bx)^n = \left[a\left(1+\frac{b}{a}x\right)\right]^n = a^n\left(1+\frac{b}{a}x\right)^n \\ = a^n \left[1+n\left(\frac{b}{a}x\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}x\right)^2 + \\ \dots + \frac{n(n-1)\dots(n-r+1)}{r!}\left(\frac{b}{a}x\right)^r + \dots \right] \\ \text{Range of validity:} \end{bmatrix} = a^n \left[1+n\left(\frac{a}{bx}\right)+\frac{n(n-1)}{2!}\left(\frac{a}{bx}\right)^2 + \\ \dots + \frac{n(n-1)\dots(n-r+1)}{r!}\left(\frac{b}{a}x\right)^r + \dots \right] \\ \text{Range of validity:} \\ \text{Range of validity:} \end{bmatrix}$		$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots \frac{n(n-1)\dots(n-r+1)}{r!}x^{n-1}$	$(x^{r}) = \frac{1}{x^{r}} + \dots x < 1$	To expand $(1 + kx)$, replace x with kx .
$\begin{vmatrix} -x \\ a \end{vmatrix} < 1 \Rightarrow x < \frac{a}{b} \Rightarrow - \frac{a}{b} < x < \frac{a}{b} \text{ (small x values)} \\ \text{(closer to 0 gives better estimate)} \end{vmatrix} \qquad \begin{vmatrix} -x \\ b \\ b \\ a \end{vmatrix} < 1 \Rightarrow x > \frac{a}{b} \Rightarrow x < - \frac{a}{b} \text{ or } x > \frac{a}{b} \text{ (large x values)} \end{vmatrix}$	-	$(a+bx)^{n} = \left[a\left(1+\frac{b}{a}x\right)\right]^{n} = a^{n}\left(1+\frac{b}{a}x\right)^{n}$ $= a^{n}\left[1+n\left(\frac{b}{a}x\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}x\right)^{2}+\frac{n(n-1)\dots(n-r+1)}{r!}\left(\frac{b}{a}x\right)^{r}+\dots\right]$ Range of validity: $\left \frac{b}{a}x\right <1\Rightarrow x <\left \frac{a}{b}\right \Rightarrow -\left \frac{a}{b}\right $	$(a+bx)^{n} = \left[bx\left(\frac{a}{b}\right)^{n}\right]$ $= \frac{b^{n}x^{n}}{\left[1+n\left(\frac{a}{bx}\right)^{n}+\frac{n(n-1)}{2}\right]}$ Range of validity:	$\left[\frac{a}{bx}+1\right]^{n} = \left(bx\right)^{n} \left(1+\frac{a}{bx}\right)^{n}$

Chapter 2: Sequences and Series

Simple definitions	$u_1 = S_1 [1^{\text{st}} \text{ term} = \text{sum}]$	of 1 st term]		$u_n = S_n - S_{n-1}$; $n \ge 2$	[The differen	ce in 2 sur	ns gives the term]
	Arithmetic prog	ression (A.P.)				Geometric pro		
Definitions	difference of any two s the sequence i		ers of				• •	blying the previous one he <i>common ratio</i> .
General	$u_n = a + (n-1)d$ where	a = first term, $n =$	= no.	<i>u</i> _n	$=ar^{n}$	-1		T = S = S
term	of terms, $d = com$	mon difference.		where $r =$				$T_n = S_n - S_{n-1}$
Proving	$d = u_n - u_{n-1}$ a no	-zero constant			$r = \frac{u}{u_n}$	$\frac{n}{-1}$ is a consta	nt indepe	ndent of <i>n</i> .
Sum of first n	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	$S_n = \frac{n}{2}(a + $	<i>l</i>)	$S_n = \frac{a(1-r)}{1-r}$	ⁿ)	$S_n = \frac{a(r')}{r}$	(n-1)	$S_{\infty} = \frac{a}{1-r}$
terms		l = last term	m		wher	e $r \neq 0,1$		S_{∞} exists $\Leftrightarrow r < 1$
Sigma Notation	$\sum_{r=a}^{b} u_r = u_a + u_{a+1} + u_{a+1}$	$u_{k+2} + + u_b$ when	re <i>a</i> and	d b are integers	s. <i>n</i> = ((b – a + 1) i.e.	. upper lin	nit – lower limit + 1.
Rules of sigma notation	$\sum_{r=1}^{n} a = an \qquad \sum_{r=1}^{\infty}$	$\left(\text{G.P.}\right)^r = \frac{a}{1-r}$	$\sum_{r=1}^{n} d$	$au_r = a \sum_{r=1}^n u_r$	$\sum_{r=1}^{n} (\nu$	$u_r + v_r = \sum_{r=1}^n u_r$	$v_r + \sum_{r=1}^n v_r$	$\sum_{r=m}^{n} (u_r) = \sum_{r=1}^{n} u_r + \sum_{r=1}^{m-1} v_r$
Method of Differences	Note: Watch out for me Also note that the <u>cance</u> on the RHS.							
Limit of sequence	$\frac{1}{n}, \frac{1}{n!} \rightarrow 0$	$a^n \to 0$ if $0 < a < 1$)	-	$\frac{1}{a^n} \to 0 \text{(if } a >$	- 1)		finity and	<i>an</i> , a^n where $a > 1$ will are not included in the a sequence.
Convergen ce of sequences	A sequence is conve where L is a fi	,	L	$u_n \rightarrow b$	L, u_{n+1}	$\rightarrow L$		(Use G.C. to generate rms of sequence)


Chapter 3: Mathematical Induction

	$\begin{array}{c} \text{EIIS of } P_1 = n \\ \text{What you} \end{array}$	pccess of proving, you may use a wrote for P_k into that . [esp. for sigmas]
Format	Assume that P_k is true for some $k \in \mathbb{Z}^+$, i.e. [<i>replace n</i> by <i>k</i>] We want to prove P_{k+1} , i.e. [<i>replace k</i> by $k+1$]	
	LHS of P_{k+1} = [Start proving] = RHS (Proven)	
	Since P_1 is true and P_k is true $\Rightarrow P_n$ is true for all $n \in \mathbb{Z}^+$.	
Conjecture	Some induction questions may involve conjectures (guess) of the general formula. write the values of a sequence/sigma for $n = 1, 2, 3, 4$ then deduce a general equat by Mathematical Induction.	

Chapter 4: Graphing Techniques

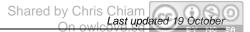
Points that must be labeled	Axial intercepts ($x = 0, y = 0$)	Turning Points (Let $\frac{dy}{dx}$ solve for <i>x</i>)	= 0 and	Asymptotes (Express in for Vertical asymptote: Let $D(x) = 0$, solve for <i>x</i> .	Horizontal/Oblique
	Cir	ncla		$\frac{D(x) = 0, \text{ solve for } x.}{Eclipse (over$	asymptote: $Q(x)$.
	$(x-h)^2 + (y-k)^2 = r^2 r$ centre (h, k) and radius y (h, (h, 0)	epresents a circle with <i>r</i> .	centre (h	$\frac{(y-k)^2}{b^2} = 1 \text{ where } a \neq b \text{ reg}$ $(y-k)^2 = 1 \text{ where } a \neq b \text{ reg}$ $(x + a) = b \text{ reg}$ $(y + b) = b \text{ reg}$	presents an ellipse with
			Hyper	bola	1
Conics	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ w}$ horizontal hyperbola wi	th centre (h, k) .	hyperbol	$-\frac{(y-k)^2}{b^2} = 1 \text{ where } a \neq b \text{ rep}$ a with centre (h, k) .	
	Oblique asymptotes: y-	-k = -(x-h) and a	Oblique	asymptotes: $y-k = \frac{b}{a}(x-h)$	and $y-k = -\frac{b}{a}(x-h)$.
	$y-k = -\frac{b}{a}(x-h)$. Line	es of symmetry: $x = h$. y	Lines of	symmetry: $x = h$, $y = k$.	-
	= k.	$y - k = \frac{b}{a}(x - h)$		y b,	$y-k = \frac{b}{a}(x-h)$ $y-k = -\frac{b}{a}(x-h)$

Chapter 4: Graphing Techniques

Chapter 5: Functions

	Definition	A function f, or mapping, i of $y \in Y$.	s a rule which ass	gns every element of $x \in X$ to only one element				
		Domain is the set of <u>x-values</u> which a function f is defined a Note: <u>It must always be state</u>	s the domain (D _f)	f(x) †				
	D	$x \in (a, b)$	a < x < b					
Definitions	Domain	$x \in [a, b]$	$a \le x \le b$	Range				
		$x \in (a, b]$	$a < x \le b$	¥				
		$x \in [a, b)$	$a \le x < b$	x				
	Range	Range is the set of <u>y-values</u> (a corresponding to every x value (R _f)		- Domain>				
	If $f:A \to B$	is a function, for each $a \in A$, the	the vertical line $x = a$	cuts the graph $y = f(x)$ at only one point .				
Vertical line test	Positive	From the sketch, any vertica point . Hence $f(x)$ is a function		\in D _f will cut the graph of $y = f(x)$ at exactly one				
	Negative	From the sketch, the line $x = a$ (state a constant)cuts the graph of $y = f(x)$ at 2 different points . Hence $f(x)$ is not a function.						
	Definition	For any one-to-one function such that $f^{-1}(y) = x \Rightarrow y = 0$		e is an inverse function that exists, i.e. $f^{-1}: x \mapsto R_f$ = X.				
Inverse functions	Horizontal line test	$= f(x) \text{ at only 1 point.}$ $= f(x) \text{ at only 1 point.}$ $Example 1$ $Determine if the function a one-to-one function.$ $From the diagram, any h$ $y = \mathbf{b}, \text{ where } \mathbf{b} \in \mathbf{R}_{f} \text{ cuts}$ $y = f(x) \text{ at exactly one points one-one.}$	n f: $x \mapsto \sqrt{x}$ is <i>orizontal line</i> the graph of	bontal line $\mathbf{y} = \mathbf{b}$ where $\mathbf{b} \in \mathbf{R}_{\mathrm{f}}$ cuts the graph of \mathbf{y}				
	Notes	$D_{f^{-1}} = R_f \text{ and } R$ To obtain the inverse func- these steps: 1. Let $\mathbf{y} = \mathbf{f}(\mathbf{x})$ and expr 2. Rewrite \mathbf{x} as $\mathbf{f}^{-1}(\mathbf{y})$ to function in y. 3. Replace all \mathbf{y} with \mathbf{x} to a function in x. 4. State the domain of f	etion f ⁻¹ , follow ess in terms of y. obtain f ⁻¹ (y) as a to obtain f ⁻¹ (x) as	$f(x) = y \Leftrightarrow x = f^{-1}(y)$ The graphs of f and f ⁻¹ are reflections of each other in the line y = x . Hence finding the solution of f(x) = f ⁻¹ (x) is the same as the solution of the equation f(x) = x or f ⁻¹ (x) = x				
Composite	Definition			on) is the application of one <u>function</u> to the composite function gf as $gf(x) = g(f(x))$ where				
functions	Conditions	The composite function g	f exists $\Leftrightarrow R_{\rm f} \subseteq D_{\rm g}$	the composite function fg exists $\Leftrightarrow R_g \subseteq D_f$				
	Notes	$D_{gf} = D_f, D_{fg} = D_g$	$ff^{-1}(x)$	$= f^{-1}f(x) = x$ $f^{2}(x) = ff(x)$				

Chapter 6: Equations and Inequalities


Descrition	Addition and Subtraction	If $a > b$, then $a + c > b + c$ and $a - c > b - c$ If $a > b$ and $c > d$, then $a + c > b + d$
Properties of Inequalities	Multiplication and Division	If $c > 0$ and $a > b$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$. (can only cross-multiply positive terms) If $d < 0$ and $a > b$, then $ad < bd$ and $\frac{a}{d} < \frac{b}{d}$ (reverse the inequality sign – especially when dealing with logarithmic terms)
		1. Make one side of the inequality zero. (never cross-multiply terms that can take positive or negative values) $\frac{3x^2 + 7x + 2}{x - 1} \ge 0$
		2. Factorise the inequality into linear factors (by using completing the square, etc.) Positive factors can be ignored . $\frac{(3x+1)(x+2)}{(x-1)} \ge 0$
		3. Equate each factor to zero and solve to get the critical points. Let $3x + 1 = 0, x + 2 = 0, x - 1 = 0$ $\therefore x = -\frac{1}{3}, x = -2, x = 1$
Solving inequalities	Without G.C.	4. Draw a no. line with the critical points. Circle the critical points that will make the denominator zero (or not satisfy the inequality) -2 -1/3 1
		5. Test the sign in any region. The critical points will divide the no. line into alternating positive and negative regions. Let $x = 0, \frac{(0+1)(0+2)}{(0-1)} = -2(<0)$
		6. The solution will be the region required by Hence, $-2 \le x \le -\frac{1}{3}$ and $x > 1$
	With G.C.	 Sketch the 2 different inequalities using G.C. Calculate the <i>x</i>-intercepts (or points of intersection). Determine the solution, ensuring it does not include values which will make the denominators of the original inequality zero.
Properties of x	$\sqrt{x^2} = x $	$\begin{vmatrix} ab \\ ab = a b \\ \frac{a}{ b } = \frac{ a }{ b }, b \neq 0 \qquad x = k \Rightarrow x = \pm k \qquad x > k \Leftrightarrow \\ x > k \text{ or } x < -k \qquad x < k \Leftrightarrow \\ -k < x < k \end{cases}$
Solving sim. linear eqn using GC	Use the PlySmlt	2 SIMULT EQN SOLVER in TI-84 GC.

Chapter 7: Differentiation and its Applications


Name	Formula			
Rules of differentiation	$\frac{\mathrm{d}}{\mathrm{d}x}(u\pm v) = \frac{\mathrm{d}u}{\mathrm{d}x} \pm \frac{\mathrm{d}v}{\mathrm{d}x}$	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) =$	$= u \frac{\mathrm{d}v}{\mathrm{d}x} + v \frac{\mathrm{d}u}{\mathrm{d}x}$	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{u}{v}\right) = \frac{v\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) - u\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)}{v^2}$
Chain Rule	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$r = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}$	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$
Higher order derivatives	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}'(x)$	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	If f''(x) > 0, cu	d for finding nature of points) rve is u shaped.
Trigonometric Functions	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos$		rve is n shaped. $\frac{d}{dx}(\tan x) = \sec^2 x$
	$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{cosec} x) = -\operatorname{cosec} x \cot x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\sec x)$	$= \sec x \tan x$	$\frac{d}{dx}(\tan x) = \sec^2 x$ $\frac{d}{dx}(\cot x) = -\csc^2 x$
Exponential Functions	$\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$		$\frac{\mathrm{d}}{\mathrm{d}x}(a$	a^{x}) = $\frac{\mathrm{d}}{\mathrm{d}x}$ (e ^{ln a x}) = $a^{x} \ln a$
Logarithmic Functions	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$		$\frac{d}{d}$	$\frac{\mathrm{d}}{\mathrm{d}x}(\log_a x) = \frac{1}{x}\log_a e$
Implicit Functions	$\frac{\mathrm{d}}{\mathrm{d}x} f(y) = \frac{\mathrm{d}}{\mathrm{d}y} f(y) \times$	$\frac{\mathrm{d}y}{\mathrm{d}x}$		there is a y function, there will be a x function in the answer.
Inverse trigonometric functions	$\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}\mathrm{f}(x)=\frac{\mathrm{f}'(x)}{\sqrt{1-x^2}}$	$\frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}\mathrm{f}(x)$	$x) = -\frac{f'(x)}{\sqrt{1-x^2}}$	$\frac{\mathrm{d}}{\mathrm{d}x} \tan^{-1} \mathrm{f}(x) = \frac{\mathrm{f}'(x)}{1 + \mathrm{f}(x)^2}$
Parametric Differentiation	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{1x}{1t}$	When given par	ametric eqn, just find dy/dx and the points from there
Tangent and normal	$y - y_1 = m \ x - x_1$		y	$y - y_1 = -\frac{1}{m} x - x_1$
First derivative test	f'(x) < 0, f''(x) > 0 f'(x) = 0, f''(x) = 0 f''(x) < 0, f''(x) < 0	f'(x) < 0	$\int f'(x) > 0$	$f'(x) = 0$ $f'(x) > 0 \qquad \qquad f'(x) < 0$
	inflection point d ² u	m	inimum	maximum
Second derivative test	$\frac{d^2y}{dx^2} = 0$ (use table form to determine natu	re)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} > 0$	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} < 0$
Increasing functions	$\begin{array}{c} y \\ \uparrow \\ f(x_2) \\ f(x_1) \\ \hline \\ \downarrow \\ \downarrow$	If concave dow. If concave upw Shape: n shape.	unctions, $f'(x) > 0$. nwards , $f''(x) < 0$. ards , $f''(x) > 0$. <i>ng</i> : No flat points all	owed.
Decreasing functions	$\begin{array}{c} & & \\$	If concave dow . If concave upw Shape: u shape.	functions, $f'(x) < 0$. nwards , $f''(x) < 0$. ards , $f''(x) > 0$. <i>ing</i> : No flat points all	lowed.
Graphs of y = f'(x)			nes $y = 0$, vertical as all become x intercep	
	mmarised Formulae	Page 6 of 19		ared by Chris Chiam On owlcast updated 19 October

Chapter 8: Integration and its Applications

Integration	$\int f(x) dx$	$= \mathbf{F}(x) + c$			
Definite integral	$\int_{a}^{b} \mathbf{f}(x) \mathrm{d}x = \mathbf{F}(b) - \mathbf{F}(a)$				
Properties of	$\int_{a}^{a} f(x) \mathrm{d}x = 0 \qquad \qquad \int_{a}^{b} f(x) \mathrm{d}x$	$x = -\int_{b}^{a} f(x) dx \qquad \qquad \int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$			
definite integral		$\int_a^b f(x) \mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$			
Integrals involving <u>linear</u> algebraic	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c \text{ where } n \neq 1$	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + c$ (include modulus sign)			
functions) dx whereby b is where $f(x) = 0$.			
Reverse chain rule	$\int \left[f(x) \right]^n f'(x) \mathrm{d}x = \frac{\left[f(x) \right]^{n+1}}{n+1} + c \text{ where } n \neq 1$	$\int \frac{\mathbf{f}(x)}{\mathbf{f}(x)} \mathrm{d}x = \ln \left \mathbf{f}(x) \right + c$			
Tutt		dding constants , NOT variables outside and inside the of the integral cannot be changed)			
Exponential Functions	$\int \mathbf{f}'(x)e^{\mathbf{f}(x)} \mathrm{d}x = e^{\mathbf{f}(x)} + c$	$\int \mathbf{f}'(x)a^{\mathbf{f}(x)} \mathrm{d}x = \frac{e^{\mathbf{f}(x)}}{\ln a} + c$			
	$\int \sin x \mathrm{d}x = -\cos x + c$	$\int \cos x \mathrm{d}x = \sin x + c$			
Trigonometric	$\int \sec^2 x \mathrm{d}x = \tan x + c$	$\int \sec x \ \tan x \ \mathrm{d}x = \sec x + c$			
functions	$\int \csc x \cot x dx = -\csc x + c$	$\int \csc^2 x \mathrm{d}x = -\cot x + c$			
	$\int \tan x \mathrm{d}x = \ln \sec x + c$	$\int \cot x \mathrm{d}x = \ln \sin x + c$			
	$\int \sec x \mathrm{d}x = \ln \left \sec x + \tan x \right + c$	$\int \csc x dx = -\ln \left \csc x + \cot x \right + c$			
Trigonometric	$\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} + c$	$\int \cos^2 x dx = \int \frac{1 + \cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} + c$			
identities	$\int \tan^2 x \mathrm{d}x = \int \sec^2 x - 1 \mathrm{d}x = \tan x - x + c$	$\int \cot^2 x \mathrm{d}x = \int \operatorname{cosec}^2 x - 1 \mathrm{d}x = -\cot^2 x - x + c$			
Factor	$\sin P + \sin Q = 2\sin \frac{P+Q}{2}\cos \frac{P-Q}{2}$	$\sin P - \sin Q = 2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$			
Formulae	$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$	$\cos P - \cos Q = -2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$			
Involving	$\int \frac{1}{\left(px+q\right)^2 + a^2} \mathrm{d}x = \frac{1}{ap} \tan^{-1} \left(\frac{px+q}{a}\right) + c$	$\int \frac{1}{\sqrt{a^2 - \left(px + q\right)^2}} \mathrm{d}x = \frac{1}{p} \sin^{-1} \left(\frac{px + q}{a}\right) + c$			
fractions	$\int \frac{1}{x^2 - a^2} \mathrm{d}x = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right $	$\int \frac{1}{a^2 - x^2} \mathrm{d}x = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right $			
Partial	$\frac{px+q}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$	$\frac{px+qx+r}{(ax+b)(cx+d)^2} = \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2}$			
Fractions	$\frac{px^2 + qx + r}{(x^2 + qx)(x^2 + qx)}$	$=\frac{A}{ax+b} + \frac{Bx+C}{x^2+c}$			
		$ax+b$ x^2+c			
Integration by substitution	 Change all x to u. Change du to dx Integrate (should be easy) Change all u back to x. 	Note: Only use integration by substitution if the question says so .			
Integration by parts	$\int_{a}^{b} u \frac{dv}{dx} dx = [uv]_{a}^{b} - \int_{a}^{b} v \frac{du}{dx}$ • Choice of function to be differentiated <i>u</i> follows the order: LIATE (logarithmic, inverse trigo, algebraic, trigo, exponential) • It can be applied twice on certain integrals.	 Can be used for: Integrating simple functions (logarithmic and inverse trigo functions) such as ln <i>x</i>, sin⁻¹<i>x</i>, cos⁻¹<i>x</i>, tan⁻¹<i>x</i> Product of different types of functions. 			

	$f(x) \ge 0$ (above <i>x-axis</i>)	$f(x) \le 0$ (bel	ow <i>x-axis</i>)	$f(x) \ge 0$ on $[a, c], f(x) \le 0$ on $[c, b]$
-		$A = -\int_{a}^{b} x^{a}$		-(., [.,,]).(., [.,,]
	$A = \int_{a}^{b} \mathbf{f}(x) \mathrm{d}x$	$A = -\mathbf{J}_a$	I(x) dx	
Area bounded by curve w.r.t.	$y = \mathbf{f}(x)$	Î		$A = \int_{a}^{b} f(x) dx - \int_{b}^{c} f(x) dx$
x-axis			$b \xrightarrow{x}$	• u • v
				(the negative area must be negated)
			$y = \mathbf{f}(x)$	
	$f(x) \ge 0$ (right of <i>y</i> - <i>axis</i>)	$f(x) \le 0 (left)$	t of y-axis)	$f(x) \ge 0$ on $[a, c], f(x) \le 0$ on $[c, b]$
	$A = \int_{c}^{d} \mathbf{f}(\mathbf{y}) \mathrm{d}\mathbf{y}$	$A = -\int_{c}^{d} 1$	f(y) dy	
Area bounded	$y \longrightarrow x = g(y)$	x = g(y)	۱	$\int d^{d} dx = \int \int d^{c} dx = \int d^{c} dx$
by curve w.r.t.	d		d	$A = \int_{c}^{d} f(y) \mathrm{d}y - \int_{b}^{c} f(y) \mathrm{d}y$
y-axis	c		<u></u> c	(the negative area must be negated)
-	Note: Remember to (1) chan	$f(\mathbf{x})$ to $f(\mathbf{x})$ if row	(2) change	e the coordinates (3) write dy.
	For $f(x) > g(x)$, $A = \int_{a}^{b} [f(x) - f(x)] dx$			$g(x), A = \int_{a}^{d} [f(y) - g(y)] dy$
	Always take top curve – bot			take right curve – left curve
	y = g(x)	1	¢ y	x = f(y)
Area between 2		y = f(x)	d	x = g(y)
curves				
	\mathbf{P}			
		x	с	T III
	cb cc	•		
	$A = \int_{a}^{b} f(x) dx + \int_{b}^{c} g(x) dx$ where in	ntersection at <i>p</i> .	$A = \int_{c}^{q} f(y) \mathrm{d}y$	$+\int_{q}^{d} g(y) dy$ where intersection at q
	y = g(x)		۲ ۲	•
Area with one		$y = \mathbf{f}(x)$	d	x = f(y)
point of intersection			9	
			c	x = g(y)
		د ح	<u> </u>	■ → x
Area under	$A = \int_{a}^{b} y dy = \int_{t_{a}}^{t_{b}} g(t) f(t)$	t) dt	۱ ۸ ـــ	$\int_{a}^{d} x \mathrm{d}y = \int_{a}^{t_{d}} f(t) g'(t) \mathrm{d}t$
parametric				
curve	with $x = f(t)$ and $y = g$	5(1)	(1) Express tota	ith $x = f(t)$ and $y = g(t)$ l area of rectangles in terms of $f(x)$.
	y T			$f_1 + (\Delta x) f(x_2) + + (\Delta x) f(x_{n-1})$
			$+(\Delta x)f(x)$	D'
Area as a limit		$y = \mathbf{f}(x)$	n	l area in sigma notation.
of sum of areas of rectangles			$A = \sum_{r=1}^{n} f(x_r)$	Δx
			(3) Find limit of	f the sum of rectangles as $n \to \infty$.
	$\begin{array}{cccc} a & x_1 & x_2 & x_3 \\ & & & & \\ & & $	x	22	$f(x_r)\Delta x = \int_a^b f(x) dx$
Volume of	$V = \pi \int_{-\infty}^{b} \left[\mathbf{f}(x) \right]^2 \mathrm{d}x$		$n \rightarrow \infty \frac{1}{r=1}$	$V = \pi \int_{a}^{d} \left[\mathbf{f}(\mathbf{y}) \right]^{2} \mathrm{d}\mathbf{y}$
revolution Volume of rev ⁿ	5 a			
bounded by 2	$V = \pi \int_{a}^{b} [f(x)]^{2} - [g(x)]^{2}$			$= \pi \int_{c}^{d} [f(y)]^{2} - [g(y)]^{2} dy$
graphs	Always take top curve – bot	tom curve	Always	take right curve – left curve

Chapter 9: Differential Equations

Direct Integration	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(x) \Rightarrow y = \int \mathbf{f}(x) \mathrm{d}x$	$\frac{d^2 y}{dx^2} = f(x) \Rightarrow y = f''(x)$
Separation of variables	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(y) \Rightarrow \int \frac{1}{\mathbf{f}(y)} \mathrm{d}y = \int 1 \mathrm{d}x$	
By substitution	$y = vx \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = v + x\frac{\mathrm{d}v}{\mathrm{d}x}$	$z = x + y \Rightarrow \frac{\mathrm{d}z}{\mathrm{d}x} = 1 + \frac{\mathrm{d}y}{\mathrm{d}x}$
	To obtain back the general solution, remen	mber to replace the new variable back to y.
Applications of D.E.	$\frac{\mathrm{d}P}{\mathrm{d}t} \propto P \Rightarrow \frac{\mathrm{d}P}{\mathrm{d}t} = kP \Rightarrow \int \frac{1}{P} \mathrm{d}P = \int k \mathrm{d}t$	$\frac{\mathrm{d}P}{\mathrm{d}t} \propto \frac{1}{P} \Rightarrow \frac{\mathrm{d}P}{\mathrm{d}t} = \frac{k}{P} \Rightarrow \int P \mathrm{d}P = \int k \mathrm{d}t$

Chapter 10: Macluarin's Series

Power series representation	$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$	$+\frac{x^n}{n!}\mathbf{f}^{(n)}0+$		to find $f'(x), f''(x)$ and $f'''(x)$ 0 into the differentiated terms and e formula.
	$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots -$	$+\frac{n(n-1)(n-r+r)}{r!}$	$\frac{(-1)}{x^r} x^r + \dots (x < 1)$	Only use the standard series from MF15 if derivation is not required.
Standard Maclaurin series	$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{r}}{r!}$	+ (all x)	$\sin x = x - \frac{x}{3}$	$\frac{x^{3}}{5!} + \frac{x^{5}}{5} - \frac{(-1)^{r} x^{2r+1}}{(2r+1)!} + \dots \text{ (all } x)$
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^r x}{(2r)}$	$\frac{x^{2r}}{!} + \dots \text{ (all } x)$	$\ln(1+x) = x - \frac{x^2}{2}$	$+\frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots (-1 < x \le 1)$
	When x is small and measured in ra	dians , and x^3 onwa	rds is neligible , the	following approximations are valid:
Small angle approximations	$\sin x \approx x$	$\cos x \approx$	$=1-\frac{x^2}{2}$	$\tan x \approx x$
	$\sin(A\pm B) = \sin A\cos B \pm \cos B$	$\cos A \sin B$	You cannot assu	me $x \pm \alpha \approx x$ for some constant α .
Compound	$\cos(A\pm B) = \cos A \cos B \pm s$	in A sin B	However y	ou can assume $sin(\alpha x) \approx \alpha x$
angle formulae	$\tan(A \pm B) = \frac{\tan A \pm \tan A}{1 \mp \tan A}$	$\frac{\operatorname{an} B}{\operatorname{an} B}$	Note: Always sele	ect the value of <i>x</i> closer to 0 if there are 2 answers.

Chapter 11: Permutations and Combinations

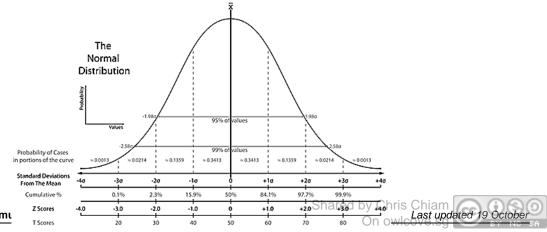
Counting principlesoverlapping c operation, and the n ways in the second	No. of ways to arrange r objectsNo. of ways to choose r objects f	Note: If there are 2 objects that must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	<i>B</i> performed vays, the	
Counting principlesoperation, and the n ways in the sector category, there aPermutationsA permutation is an ordered arrangement of objects mainly concerned to find the total number of ways to arrang objects.CombinationsA combination is an unordered selection of a number of objects	The are m ways in the first category, nd category and k ways in the last the $(m + n + + k)$ to perform it. No. of ways to arrange n distinct where p of them are identical . and q of them are identical . No. of ways to arrange r objects No. of ways to choose r objects for r objec	successive operations can be completed $m \times n \times \times k$ ways. tobjects in a straight line Note: If there are 2 objects that must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	eted in $n!$ $\frac{n!}{p!}$ $\frac{n!}{p!q!}$ nP_{r}	
<i>n</i> ways in the second category, there are category, th	 (m + n + + k) to perform it. No. of ways to arrange n distinct where p of them are identical. and q of them are identical. No. of ways to arrange r objects No. of ways to choose r objects f 	$m \times n \times \times k$ ways.t objects in a straight lineNote: If there are 2 objects that must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row.out of n distinct objects in a straight line	$ \begin{array}{c} n! \\ \frac{n!}{p!} \\ \frac{n!}{p!q!} \\ \frac{n!}{p!q!} \\ ^n\mathbf{P_r} \end{array} $	
PermutationsA permutation is an ordered arrangement of objects mainly concerned to find the total number of ways to arrang objects.CombinationsA combination is an unordered selection of a number of objects	 No. of ways to arrange <i>n</i> distinct where <i>p</i> of them are identical. and <i>q</i> of them are identical. No. of ways to arrange <i>r</i> objects for No. of ways to choose <i>r</i> objects for No.	t objects in a straight line Note: If there are 2 objects that must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	$\frac{n!}{p!}$ $\frac{n!}{p!q!}$ $^{n}\mathbf{P_r}$	
Permutationsan ordered arrangement of objects mainly concerned to find the total number of ways to arrang objects.CombinationsA combination is an unordered selection of a number of objects	 where p of them are identical. and q of them are identical. No. of ways to arrange r objects No. of ways to choose r objects f 	Note: If there are 2 objects that must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	$\frac{n!}{p!}$ $\frac{n!}{p!q!}$ $^{n}\mathbf{P_r}$	
Permutationsarrangement of objects mainly concerned to find the total number of ways to arrang objects.CombinationsA combination is an unordered selection of a number of objects	 and q of them are identical. No. of ways to arrange r objects No. of ways to choose r objects f 	must be together, treat them as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	$\frac{\overline{p!}}{\frac{n!}{p!q!}}$ $\frac{n!}{p!q!}$ $\mathbf{^{n}Pr}$	
Permutations objects mainly concerned to find the total number of ways to arrang objects. A combination is an unordered selection of a number of object	 and q of them are identical. No. of ways to arrange r objects No. of ways to choose r objects f 	indust be together, near mean as a single unit and multiply 2!. If objects must be separated, place them between the gaps of the row. out of n distinct objects in a straight line	$\frac{n!}{p!q!}$ ⁿ P _r	
Permutations concerned to find the total number of ways to arrang objects. A combination is an unordered selection of a number of object	No. of ways to arrange <i>r</i> objects No. of ways to choose <i>r</i> objects f	objects must be separated, place them between the gaps of the row. out of <i>n</i> distinct objects in a straight line	$\frac{n!}{p!q!}$ ⁿ P _r	
concerned to find the total number of ways to arrang objects. A combination is an unordered selection of a number of objects	No. of ways to arrange <i>r</i> objects No. of ways to choose <i>r</i> objects f	them between the gaps of the row.out of n distinct objects in a straight line	$\frac{\overline{p!q!}}{^{n}\mathbf{Pr}}$	
of ways to arrang objects. A combination is an unordered selection of a number of object	No. of ways to arrange r objectsNo. of ways to choose r objects f	out of <i>n</i> distinct objects in a straight line	"Pr	
objects. A combination is an unordered selection of a number of object	No. of ways to arrange r objectsNo. of ways to choose r objects f	• •		
Combinationsan unorderedCombinationsselection of anumber of object	· · · ·	from <i>n</i> distinct objects	nC	
Combinationsan unorderedCombinationsselection of anumber of object	TO 1100 1 11 11 11 11		Ur	
Combinationsan unorderedCombinationsselection of anumber of object	If <i>r</i> different balls are distributed contain any number of balls), the	to <i>n</i> different urns (such that any urn can en number of outcomes	2 ^{<i>n</i>}	
	 combinations is selected. This calculating separately and adding Some useful techniques: 1. Complementary technique 2. Grouping technique (order n 3. Insertion technique (order m <u>Note</u>: When subdividing into groups. 	must be taken into account) nust be taken to account – use for 3 or more of pups of equal number , remember to divide b	ases, objects)	
D	No. of ways of arranging <i>n</i>	distinct objects in a circle if:		
Permutations in a circleThe positions are i	The positions are indistinguishable : $\frac{n!}{n} = (n-1)!$ The positions are distinguishable : $n! = n \times (n-1)!$			
Note that seats bec	ausunguisnable: $-=(n-1)!$			

Chapter 12: Probability

Probability of an event		$P(A) = \frac{\text{No. of outcomes event occurs}}{\text{No. of possible outcomes}} = \frac{n(A)}{n(S)}$								
Complimentary Events		P(A) + P(A') = 1								
Addition Law	P(A or B) = P	P(A) + P(B) - P(B)	(A and B))]	$P(A \cup B)$	$= \mathbf{P}(A) + \mathbf{P}(B)$	$B) - P(A \cap B)$		
Mutually	2 event	s are mutually	exclusiv	e if they c a	annot occu	r togethe	er (within a si	tuation)		
exclusive events	$P(A \cap B) =$	= 0	Р	$P(A \cup B) =$	P(A) + P(B))	$P(A \mid B) =$	$= 0 \text{ or } \mathbf{P}(B \mid A) = 0$		
Conditional Probability	$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$	$ A\rangle = \frac{P(A \cap B)}{P(A)}$ $P(A B) = \frac{P(B \cap A)}{P(B)}$			If <i>A</i> and <i>B</i> are mutually exclusive, P(A B)=0 (Since <i>B</i> occurs, <i>A</i> wont occur, vice versa)					
Independent	2 events are independent if the occurrence of one does not affect the other (between diff. situations)									
Events	$\mathbf{P}(A \mid B) = \mathbf{P}$	$\mathbf{P}(B \mid A) = \mathbf{P}(B)$				$P(A \cap A)$	B) = P(A) P(B) *			
Other useful approaches	Few stages with few outcomes: <u>Tree diagram</u>	Diff. probabi for diff. eve Venn diag	ents:	space: 7	sample Fable of omes	e of <u>WITHOU</u>		<u>Sequences and</u> <u>Series</u> : For turn-by- turn situations		
Tree diagram	How to use a tree diag1. Multiply the pro2. On any set of br.3. Check that all er	 How to use a tree diagram: Multiply the probabilities along the branches to get the end results On any set of branches that meet up at a point, the probabilities must add up to 1. Check that all end results add up to 1. To answer any question, find the relevant end results. If more than one satisfy the requirements, add 								
Other formulas	$\mathbf{P}(A \cup B) = 1 - \mathbf{P}(A' \cap A)$		B) = 1 - P	$(A' \cup B')$	$\mathbf{P}(A) = \mathbf{P}(A)$	$(A \cap B) + P(A \cap B)$	$A \cap B'$) F	P(A' B) + 1 - P(A B)		
Notes		"and" means	∩ (i.e.	multiply) v	whereas "or	" means	\cup (i.e. add)			

Chapter 13: B	inomial and Pos	sion Distributions		Use pdf for equal, cdf for less than or equal.					
	$X \sim \mathbf{B}(n,p)$	Where <i>X</i> is the random variable , <i>n</i> is the no. of trials and <i>p</i> is the probability of success .	$\mathbf{P}(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x}$						
Binomial			se the	TABLE function in G.C. to get highest value.					
Distribution	Conditions for Binomial Distribution:1. There are <i>n</i> independent trials,*								
	 Each trial has exactly two possible outcomes: a "success" or a "failure" The probability of a "success", denoted by p is the same for each trial.* 								
Poisson Distribution	$X \sim \text{Po}(\lambda)$ Where λ is the mean no. of occurences.			$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, 3$					
	Conditions for p	oisson distribution:							
				h other in a given interval of time or space*,					
		e number of events per interval is con							
	3. The average	number of events per interval is propo The mean value (aver							
Expectation	Binom	ial Distribution: $E(X) = np$	age)	Poisson Distribution: $E(X) = \lambda$					
	Spread of values of X from its mean.								
Variance	Binomial Dist	tribution: $\operatorname{Var}(X) = \sigma^2 = np(1-p)$		Poisson Distribution: $Var(X) = \sigma^2 = \lambda$					
Standard		Spread of y	values	s of X.					
Deviation	Binomial	Distribution: $\sigma = \sqrt{np(1-p)}$		Poisson Distribution: $\sigma = \sqrt{\lambda}$					
Additive properties	If 2	$X \sim \text{Po}(\lambda)$ and $Y \sim \text{Po}(\mu)$, and X and Y	are in	dependent , then $X + Y \sim Po(\lambda + \mu)$					

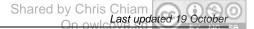
Chapter 14: Normal Distribution


Normal Distribution	$X \sim \mathrm{N}(\mu, \sigma^2)$	(average)	and σ are the) and the varia) respectively	ance (spread		$4 \qquad 99.7\% \text{ of data are within} \\3 \text{ standard deviations of} \\\text{the mean } (\mu - 3\sigma \text{ to } \mu + 3\sigma)$		
Standard normal distribution	Z ~ N(0,1)		$\sigma = 0$ and $\sigma = 0$					
Area under	$P(a < X < b) =$ $= P(a \le X < b)$	` -	_ /			deviation		
<i>normal curve</i> (by symmetry)	$P(X > a) = 1 - P(X < a)$ $P(X < \mu - a) = P(X > \mu + a)$ $P(X < \mu + a) = P(X > \mu - a)$				0.1%	2.4% 13.5% 34% 2.4% 0.1%		
Transforming to standard normal				solving unk	nown μ	$3\sigma \mu - 2\sigma \mu - \sigma \mu \mu + \sigma \mu + 2\sigma \mu + 3\sigma$ or σ) – use invnorm function.		
		E(a) =	= <i>a</i>			$\operatorname{Var}(a) = 0$		
	$\mathbf{E}(aX) = a \mathbf{E}(X)$					$\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$		
	$\mathbf{E}(aX\pm b) = a\mathbf{E}(X)\pm b$				$\operatorname{Var}(aX\pm b)=a^2\operatorname{Var}(X)$			
Properties of expectation and variance				$= n \mathbf{E}(X)$	$\operatorname{Var}(X_1 + \ldots + X_n) = \operatorname{Var}(X_1) + \ldots + \operatorname{Var}(X_n) = n \operatorname{Var}(X)$			
	$\mathbf{E}(aX \pm bY) = a \mathbf{E}(X) \pm b \mathbf{E}(Y)$					$\operatorname{Var}(aX \pm bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)$		
	When $a = b = 1$, F(X + V) = F(X) + F(V)					When $a = b = 1$,		
	$E(X \pm Y) = E(X) \pm E(Y)$					$\operatorname{Var}(X \pm Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$		
	If X and Y	' are two i i	ndependent n	ormal varia	ables, the	m $aX + bY$ will also be a normal variable .		
Sample mean	$E(\overline{X}) =$			$Var(\overline{X}) = \frac{\sigma^2}{n}$		Distribution: $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ for any size <i>n</i>		
	If X_1, X_2X_n	If X_1, X_2X_n is a random sample of size <i>n</i> taken from a non-normal or unknown distribution with mean μ						
Central Limit Theorem (CLT)	and variance σ^2 , then for sufficiently large <i>n</i> , th			ntly large n,	the samp	le mean is $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ approximately.		
	Large samples a	are usually	of size 50 .	X ₁ -	$-X_2 + + X_n \sim N(n\mu, n\sigma^2)$ approximately by CLT.			
	Using poisse distribution		If $X \sim B(n, n)$, p), then $X \cdot$	- Po(<i>np</i>)	approximately if <i>n</i> is large (>50) and $np < 5$.		
Approximation of binomial and poisson	Using norm distribution	al		* Cont P(:	$\begin{array}{l} \textbf{nuity con} \\ 5 < X \le 8 \end{array}$	(<i>np</i> , <i>npq</i>) approximately if <i>n</i> is large, <i>np</i> > 5 and <i>nq</i> > 5 nuity correction must be applied. E.g. $< X \le 8$) $\xrightarrow{c.c.} P(5.5 < X \le 8.5)$ rt to more/less than and equal to before c.c.)		
distributions	When n is large np > 5 but nq		I	Redefine X a	is $X' \sim \mathbf{B}($	$(n, q) \rightarrow X' \sim Po(nq)$ approximately.		
	Using norm distribution), then $X \sim N(\lambda, \lambda)$ approximately if $\lambda > 10$ ntinuity correction must be applied.			

Chapter 15: Sampling

Random sampling		: Ev	ery member	of population has equal chance of	being chosen
	Туре	Steps		Advantages	Disadvantages
	Simple random sampling	 Create a list population (s frame) Create a rand sample (usin selection) 	sampling dom	Free from bias	 Difficult/impossible to identify every member of the population Not able to get access to some members chosen from the sample
	Systematic sampling	 List the population of the populati	st <i>k</i> ect a domly. <i>k</i> th he next <i>k</i>	Could lead to more precise inferences concerning population because the sample chosen is spread evenly throughout the entire population.	 There could be bias caused by the effect of periodic/cyclic pattern of the population. Not always possible to list the members of the population in some order.
Types of sampling	Stratified sampling	 Divide the p into a number overlapping subpopulati gender). Take a rand sample from stratum with size proporti size of the st 	om (age / om neach sample conal to the	 Likely to give a sample representative of the population. Each strata can be treated separately, hence sampling may be more convenient and more accurate. 	Strata may not be clearly defined. (overlapping of strata)
				ery member does not have an equa	al chance of being chosen
	Quota sampling	 Divide the p into a numbe overlapping subpopulati gender). Samples take each stratum random (by 	opulation er of non- g ions (age / en from a are non-	Information can be collected quickly.	 Not representative of the population as compared to other types of sampling Biased (non-random) as not everyone gets an equal chance of being selected. No sampling frame
	ļ	Population		Sample	Unbiased estimate
	Mean	μ	$\overline{x} =$	$=\frac{1}{n}\sum x = c + \frac{1}{n}\left[\sum (x-c)\right]$	$\mu = \overline{x} = \frac{1}{n} \sum x = c + \frac{1}{n} \left[\sum (x - c) \right]$
Point estimation	Variance σ =		$\frac{1}{n}\sum (x-\overline{x})^2 \qquad \text{(biased!)}$ $\frac{1}{n}\left[\sum x^2 - \frac{\left(\sum x\right)^2}{n}\right]$ $\frac{1}{n}\left\{\sum (x-c)^2 - \frac{\left[\sum (x-c)\right]^2}{n}\right\}$	$s^{2} = \frac{n}{n-1}\sigma_{x}^{2} = \frac{1}{n-1}\sum(x-\bar{x})^{2}$ $= \frac{1}{n-1}\left[\sum x^{2} - \frac{(\sum x)^{2}}{n}\right]$ $= \frac{1}{n-1}\left\{\sum (x-c)^{2} - \frac{[\sum (x-c)]^{2}}{n}\right\}$	

Chapter 16: Hypothesis Testing


H ₀ (null hypothesis)	mean.	an.				In hypothesis testing, we try to reject H_0 as far as possible as it is a more reliable			
H_1 (alternative hypothesis)	by null hypothesis.	udes the va	aue specifie	d	claim con	pared to do not reject H ₀ .			
Test statistic	Random variable whose	value is cal	culated fron	n samp l	le data.				
Critical region						The value of c which			
Level of significance, α	 Probability of rejecting H₀ given that H₀ is true. (usually around 0.05) If a result is significant at α%, then it is also significant at any level greater than α%. If a result is not significant at α%, then it is also not significant at any level < α%. The <i>n</i>-value is the smallest level of significance at which H₀ can be rejected. 								
<i>p</i> -value	value of the test statistic a extreme or more extreme	st statistic li	es in the		p -value > α Test statistic does not lie in the critical region, hence we do not reject H ₀ .				
	Left-tail test	Right-1	tail test			2-tail test			
Types of tests	A change in the decrease direction . H: $U \le U_0$	increase of	lirection.	Note t	hat α (and	either direction. H ₁ : $\mu \neq \mu_0$. <i>p</i> -value) is divided equally ils of the critical region			
z-test T-test	 True when population and the population v for any sample size, Also true when population distribution distri	n distributi ariance is k large or sn lation size on is unkno l limit theo (approxin roximately) population e population	on is Norm nown this h hall. is large when orem , hately), test h. variance is to n distribution	by n this holds ll. large when vn. When <i>n</i> is em, attely), test $s^2 = \frac{1}{n-1} \left[\sum x - \frac{(\sum x)^2}{n} \right] = \frac{1}{n-1} \sum (x-\overline{x})^2$					
		ately, test st	ely, test statistic $T = \frac{T - \mu_0}{\sqrt{S^2 / n}} \sim t(n-1)$.						
 Write down H Determine an distribution. Identify the <i>l</i>. Determine th there is a 2-ta Compute the Determine if <i>region</i>, and s problem. (sin 	H ₀ and H ₁ . a approximate <i>test statistic</i> a <i>evel of significance</i> , α (from <i>e critical region</i> . Multiply iil test. <i>test statistic</i> (using G.C.) the test static lies <i>within th</i> tate conclusion in context and $\alpha \in z = (< \text{ or } >)$	2. Det dist 3. Ide: 4. Con 5. Fin is a 6. Det <i>reg</i> t pro	 Determine an approximate <i>test statistic</i> and its distribution. Identify the <i>level of significance</i>, α (from qn) Compute the <i>test statistic</i> (using G.C.) Find the <i>p</i>-value (from G.C.). Multiply by 2 if there is a 2-tail test. 						
	hypothesis) H1 (alternative hypothesis) Test statistic Critical region Level of significance, α p-value Types of tests z-test T-test Critical regio 1. Write down H 2. Determine an distribution. 3. Identify the h 4. Determine th there is a 2-ta 5. Compute the 6. Determine if region, and si problem. (sin	hypothesis)mean.H1 (alternative hypothesis)Range of values that excl by null hypothesis.Test statisticRandom variable whose of determines the critical regionCritical regionRange of values of the test determines the critical regionLevel of significance, α If a result is sign of rejecting H e If a result is not e The <i>p</i> -value is that H0 is true. <i>p</i> -valueProbability of observing significance, α <i>p</i> -valueProbability of observing significance, α <i>p</i> -valueProbability of observing significance, α <i>p</i> -valueIf a result is not e The <i>p</i> -value is that H0 is true.Types of testsA change in the decrease direction. H1: $\mu < \mu_0$ Types of tests• True when population and the population view for any sample size, e. Also true when popu population distribution large >50, by centra Under H0, $\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ T-testUnder H0, $\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ Critical region method (if \overline{x}, μ_0 or <i>n</i> is und Under H0, $\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ Critical region method (if \overline{x}, μ_0 or <i>n</i> is und istribution.1. Write down H0 and H1.2. Determine an approximate test statistic is distribution.3. Identify the level of significance, a (from 4. Determine the critical region. Multiply there is a 2-tail test.5. Compute the test statistic (using G.C.)6. Determine if the test static lies within th region, and state conclusion in context problem. (since $z = (< or >)$	hypothesis)mean.H1 (alternative hypothesis)Range of values that excludes the value is call Range of values of the test static that determines the critical region is know Probability of rejecting H0 given that etting H1 aresult is significant at a etting H2 given that etting H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 given etting H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 given that H2 giv	hypothesis)mean.H1 (alternative hypothesis)Range of values that excludes the value specific by null hypothesis.Test statisticRandom variable whose value is calculated from Range of values of the test static that leads to th determines the critical region is known as the crCritical regionRange of values of the test static that leads to th determines the critical region is known as the crLevel of significance, α If a result is significant at α %, then it is entry that ho is true.P-valueIf a result is significant at α %, then it is or significant at α %, then it is entry that ho obtained, given that ho is true.p-valueProbability of observing a value of the test statistic as extreme or more extreme that the one obtained, given that h_0 is true.Test statistic li region, hence of that h_0 is true.Types of testsA change in the decrease direction. H1: $\mu < \mu_0$ A change in the increase direction. H1: $\mu < \mu_0$ z-testAlso true when population distribution is Norm and the population distribution size is large whe population distribution is unknown. When large >50, by central limit theorem,T-testUse when n is small and population variance is Given (or assume) that the population distribution distribution.1.Write down H_0 and H_1.1.2.Determine an approximate test statistic and its distribution.2.3.Identify the level of significance, a (from qn) distribution.3.4.Determine the critical region. Multiply by 2 if there is a 2-tail test.5.5.Compute the test st	hypothesis)mean.H1 (alternative hypothesis)Range of values that excludes the value specified by null hypothesis.Test statisticRandom variable whose value is calculated from sample determines the critical region is known as the critical determines the critical region is known as the critical value of rejecting H0 given that H0 is true. (usuall is rue. (usuall extended of significant at $a\%$, then it is also s eLevel of significance, a Probability of rejecting H0 given that H0 is true. (usuall externe or more extreme that the one obtained, given that H0 is true.Probability of observing a value of the test statistic as extreme or more extreme that H0 is true. p -valueImage in the decrease direction. H1: $\mu < \mu_0$ Test statistic lies in the region, hence we reject that H0 is true.Types of testsA change in the decrease direction. H1: $\mu < \mu_0$ A change in the increase direction. H1: $\mu > \mu_0$ p -value• True when population distribution is Normal and the population variance is known this holds for any sample size, large or small. z -test• True when population distribution is unknown. When n is large >50, by central limit theorem, T -testUse when n is small and population variance is unknown Given (or assume) that the population distribution is no Under H0, $\overline{X} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ approximately, test statistic1.Write down H0 and H1. 0.1.2.Determine an approximate test statistic and its distribution.1.3.Identify the level of significance, a (from qn) 4.3.4.Determine the critical region. Multi	hypothesis)mean.In hypothesisH1 (alternative hypothesis)Range of values that excludes the value specified by null hypothesis.In hypothesis as far as p claim com as far as p claim comTest statisticRandom variable whose value is calculated from sample data.Critical regionRange of values of the test static that leads to the rejection of Ho determines the critical region is known as the critical value.Probability of rejecting H0 given that H0 is true.Probability of observing a value of the test statistic as extreme or more extreme that H0 is true.p-valueProbability of observing a value of the test statistic as extreme or more extreme that H0 is true.P-value $\leq a$ Types of testsLeft-tail testA change in the decrease direction. H1: $\mu > \mu_0$ A difference in the critical region, hence we reject H0.Types of testsLeft-tail testA change in the decrease direction. H1: $\mu > \mu_0$ A difference in the decrease direction. H1: $\mu > \mu_0$ Value of the test statisticN($\mu_0, \frac{\sigma^2}{n}$) (approximately), testHowever approxim approxim approxim approxim approximz-testUnder H0, $\overline{x} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ (approximately), testHowever approxim approxim approxim approxim approximT-testUse when n is small and population distribution is normal. I arge >50, by central limit theorem, I arge >50, by central limit theorem, I arge >50, by central limit theorem,T-testUse when n is small and population distribution is mormal. I under H0, $\overline{x} \sim N\left(\mu_0, \frac{\sigma^2}{n}\right)$ approximately, test statistic			

H2 Mathematics Summarised Formu

Chapter 17: Correlation and Regression

	• A sketch where each axis represent	• A sketch where each axis represents a variable and each point represents an observation .								
	• Controlled variable is usually plotted at <i>x</i> -axis (usually stated from question).									
				•						
	r=+1	r=-1	r=0							
		· · ►	· · ·	•	Curved line					
Scatter		The second secon	•	•	<u>_</u>					
diagrams				• •						
			1 .							
			•	••	and the second s					
	a b		C	d						
	Positive linear correlation Negativ	e linear correlation	No linear	correleation	Non-linear correleation					
	• The product moment correleation		<i>r</i> =	$\frac{\sum (x-\bar{x})(y)}{\sqrt{\left\{\sum (x-\bar{x})^2\right\}\left\{\sum x\right\}}}$	(-y)					
	denoted by r, measures the streng	th and direction	, –	$\sqrt{\sum (r - \bar{r})^2} \sqrt{\sum (r - \bar{r})^2}$	$\overline{\left(v-\overline{v}\right)^{2}}$					
Product	of a linear correleation between	the 2 variables.		$\sqrt{\left(\sum \left(x - x \right) \right)} $	_(y y) {					
moment	• $-1 \le r \le 1$			Σ	$\frac{\sum x \sum y}{n}$					
correlation	Anomalies are removed from a set	et of bivariate data	_	$\sum xy -$	<u> </u>					
coefficient	to calculate an accurate value of r		_	$(\sum r)^2$	$\frac{2}{2}\left(\left(\sum u\right)^{2}\right)$					
	• There may not be direct cause-eff	ect relationship		$\sum x^2 - \frac{(\sum x)}{2}$	$-\left\ \sum y^2 - \frac{(\sum y)}{2}\right\ $					
	between the 2 variables.	_		n	$\int \left(\frac{2}{n} \right) $					
	The linear re	egression fits a straig	ht line in the	scatter diagram.						
	Least squares regression line of y on x				egression line of <i>x</i> on <i>y</i>					
	$y - \overline{y} = b(x - \overline{x})$ where			$x - \overline{x} = d(y - \overline{y})$						
		Both regression	on lines	$\sum x \sum y$						
	$\sum (x - \overline{x})(y - \overline{y}) = \sum xy - \underline{\sum xy} - \underline{\sum xy}$	intersect at		$\sum (x - \overline{x})(x - \overline{x})(x$	$(y - \overline{y}) \sum xy - \underline{\sum x } y$					
	$b = \frac{\sum (x - x)(y - y)}{\sum (x - x)^2} = \frac{n}{(\sum x)^2}$	intersect at	(,, y)	$\frac{(\sum_{n})^2}{(\sum_{n})^2}$						
	$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$			$d = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (y - \overline{y})^2} \frac{\sum xy - \frac{\sum x/2}{n}}{\sum y^2 - \frac{(\sum y)}{n}}$						
					<u> </u>					
	y	y xony		y x on y /	,					
	\checkmark y on x and x on y coincide	1 ./	y on x	1 · /-						
	x on y conicide	مر المراجع (المراجع			y on x					
D		المناجع المراجع		- AR						
Regression			(, 4)							
lines				• / •	-2,4)					
	↓ x		> <i>x</i>	+	• x					
	r = 1	$0.8 \leq r$	<1	$r \approx 0.2$	5					
	v	v		v						
	y 	Å.		$\bigwedge^{x \text{ on } y}$						
	y on x and				(\bar{x}, \bar{y})					
	x on y coincide	de de	(x, 4)							
				1.14						
			xony							
	x	y on x		· · · · · · · · · · · · · · · · · · ·	y on x					
		1	0.8	$r \approx -0.$	5					
	r = -1	$-1 < r \leq$	-0.0	$r \sim -0.$						
Choice of	Case	Estimate y			Estimate x given y					
regression	x is controlled, y is random			Use y on x						
line	y is controlled, x is random			Use <i>x</i> on <i>y</i>						
	Both <i>x</i> and <i>y</i> is random	Use y o			Use x on y					
Interpolation	Interpolating: Estimation using a va				sing a value outside the					
extrapolation	given range of data.			of data (unreliab	le and should be avoided)					
	Non-linear model	Variabl	e Y		Variable X					
	$y = a + bx^2$	у			<i>x</i> ²					
Linear law	$y = a + \frac{b}{-}$	у			<u>1</u>					
	<i>x</i>	y			x					
	$y = ax^b$	ln y			$\ln x$					

Chapter 18: Vectors

Chapter 18: Vectors									
Modulus of vector	Modulus of vector a is its m If $\mathbf{a} = \overrightarrow{PQ}$, its length = $ \overrightarrow{PQ} $	Modulus of vector a is its magnitude/length, denoted as $ \mathbf{a} $. If $\mathbf{a} = \overrightarrow{PQ}$, its length = $ \overrightarrow{PQ} $.							
Unit vector			for of a is $\frac{1}{ \mathbf{a} }\mathbf{a}$, denoted as $\hat{\mathbf{a}}$.						
Negative vectors	Negative vectorsNegative vector of \mathbf{a} , denoted by $-\mathbf{a}$, is the vector of magnitude $ \mathbf{a} $ with opposite direction.								
Null vector	Vector that has no magnitu		· · · ·	posite un ection.					
Addition of vector			•	nd v .					
Subtraction of vector				110 11					
Proving a									
parallelogram	To show that A, B, C, D is a	parallelogram, just show	W $AB = DC$ or $AD = BC$						
Danallal vestora	If a and b are non-zero vec	tors, $\mathbf{a} // \mathbf{b} \Leftrightarrow \mathbf{a} = \lambda \mathbf{b}$ for s	some $\lambda \in \mathbb{R} \setminus \{0\}$.						
cto	If 3 points A, B and C are co	ollinear (lie in a straight	t line),						
Collinear points	$\Leftrightarrow \overrightarrow{AB} = \lambda \overrightarrow{AC} \text{ or } \overrightarrow{AB} = \lambda \overrightarrow{BC} = \lambda BC$								
b Multiplication of		For all vectors a an	d b , and λ , $\mu \in \mathbb{R}$,						
.st vector by scalar	$\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}$	$(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$	λ($\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$					
ber	Position vector		Ratio Theore	m					
Collinear points Collinear points Multiplication of vector by scalar Position vector of a p with reference to or the vector \overline{OP} . Give	igin O is	ratio $\lambda : \mu$, then of <i>C</i> is given by		a c μ					
$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$.	$\frac{1}{y}$	$\overrightarrow{OC} = \frac{\mu \overrightarrow{OA} + \lambda \overrightarrow{OI}}{\lambda + \mu}$	$\mathbf{c} = \frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\mu + \lambda}$						
ic	$\begin{array}{c} \text{for } P(a, b) \\ \hline bj \\ y \\ \hline bj \\ x \end{array} \xrightarrow{p(a, b)} x \\ \hline 0 $	axis and positive y-axis	the vector of <i>P</i> with respect to <i>O</i> can be written as $\overrightarrow{OP} = \begin{pmatrix} a \\ b \end{pmatrix}$ and positive <i>y</i> -axis respectively. Length from origin to point $P = \overrightarrow{OP} = \begin{pmatrix} a \\ b \end{pmatrix} = \sqrt{a^2 + b^2}$ Unit vector in direction of $\overrightarrow{OP} = \frac{\overrightarrow{OP}}{ \overrightarrow{OP} } = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} a \\ b \end{pmatrix}$						
\mathbf{i} (a)	bint $P(a, b, c)$ in the x-y-z plane, t or $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ where \mathbf{i}, \mathbf{j} and \mathbf{k} are y.	unit vectors of the posit	-	xis and positive <i>z</i> -axis					
*	$P(a, b, c)$ $b \rightarrow y$ $(0, 0, 1)$ $(0, 0, 1)$ $(0, 0, 1)$ $(1, 0, 0)$		Unit vector in direction of $\overrightarrow{OP} = \frac{\overrightarrow{OP}}{\left \overrightarrow{OP}\right } =$						
	$\begin{pmatrix} a_1 \end{pmatrix} \begin{pmatrix} b_1 \end{pmatrix}$	Dot Product: F	Rotate To Baseline						
Definition	If $\mathbf{a} = \begin{bmatrix} a_2 \\ a_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$, then the scalar product of \mathbf{a} and \mathbf{b} , denote $\mathbf{a} \cdot \mathbf{b}$, is defined as	d as	b,=[b]	Also, it can be proven that $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$ where θ is the					
-	$\mathbf{a} \bullet b = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \bullet \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_1 + a_2 b_2 + a_3 b_3 b_1 + a_2 b_2 + a_3 b_3 b_1 + a_3 b_3 b_1 + a_3 b_3 b_1 + a_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b$		+ Perpendicular (= 0)	(diverging or converging) angl between a and b .					
	Note that the product is a scalar.		cos(θ) • b						
Parallel vectors	-	opposite vectors, $\mathbf{a} \mathbf{b} \cos 180^\circ = - \mathbf{a} \mathbf{b} $	$\mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2$	$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1.$					
Perpendic ular vectors	If a and b are perpendicular, then $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos 90^\circ = 0 \therefore \mathbf{a} \perp \mathbf{b} \Leftrightarrow \mathbf{a} \cdot \mathbf{b}$		i = 0 Other properties + $\mathbf{a} \cdot \mathbf{c}, \ \mathbf{a} \cdot (\lambda \mathbf{b}) = \lambda$	$a \cdot b = b \cdot a, a \cdot (b+c) = a \cdot b$ $(a \cdot b)$					
		I	Shared by Chr						

		Angle b	between 2 vectors		Length of projection				
Scalar product (cont')	$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} } \text{ or}$ $\theta = \cos^{-1} \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ $= \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{a_1^2 + a_3^2 + a_3^2}}$	+ a ₃ b ₃	If P, Q and R are three points, then to the Q or P cos $\angle P_1$ or P cos $\angle P_2$ or P or P cos $\angle P_1$ or P cos $\angle P_2$ or P co	find $\angle PRQ$, we use $RQ = \frac{\overline{RP} \cdot \overline{RQ}}{ \overline{RP} \overline{RQ} } \text{(diverging vectors)}$ $RQ = \frac{\overline{PR} \cdot \overline{QR}}{ \overline{RP} \overline{RQ} } \text{(converging vectors)}$	Length of projection of a on u = $ \mathbf{a} \cos \theta $ = $ \mathbf{a} \mathbf{b} \cos \theta $	a θ b			
	$\sqrt{a_1^2 + a_2^2 + a_3^2}$	$b_1^2 + b_2^2 + b_3^2$	$R \sim Q$	$RQ = \frac{1}{ PR } QR$	$= \left \mathbf{a} \cdot \mathbf{b} \right = \frac{\mathbf{a} \cdot \mathbf{b}}{\left \mathbf{b} \right }$	$ \mathbf{a} \cos heta $			
	Vector equation	vector b and fixed point <i>A</i> If <i>P</i> is a poin	ne which is parallel which passes throug with position vector t on the line, then its or r is given by $\mathbf{a} + \mathbf{b}$	sha r a .	A A a O				
	Line through 2 fixed pts	• A direct	tion vector of the lin	ition vectors a and b r he through A and B is he is $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ where d	\overrightarrow{AB} .	₹.			
	Parametric Equations	If a line passe point $P(x, y, y)$	es through $A(x_1, y_1, z_2, z_3)$ on the line is $\mathbf{r} = \mathbf{r}$		$= \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k} , \text{ th}$ $+ \lambda \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \text{ where } \lambda \in$	en the position vector of any \mathbb{R} .			
	Cartesian Equation			$\frac{x - x_1}{\alpha} = \frac{y - y_1}{\beta} = \frac{z - z_1}{\gamma} =$ <i>Intersect</i>					
	Relationship between 2 lines	F If $L_1 // L_2 \Leftrightarrow$		Intersect If L_1 and L_2 intersec unique values of λ a	t, there are	Skew d ₁ and d ₂ are not parallel and there are no unique values of λ			
3. Vector				$\mathbf{a}_1 + \lambda \mathbf{d}_1 = \mathbf{a}_2 + \lambda \mathbf{d}_2$		and μ for $\mathbf{a}_1 + \lambda \mathbf{d}_1 = \mathbf{a}_2 + \lambda \mathbf{d}_2$. An assistent and to find the solution if			
equation of straight line	Acute angle between 2 lines		gle between the 2 lir en b and d.	$L_1 : \mathbf{a}_1 + \lambda \mathbf{b}$ and $L_2 : \mathbf{c}$ hes is the same as the					
	Foot of ⊥ from point P to a line	Since N is on Since $\overrightarrow{PN} \perp L$ Hence $\overrightarrow{PN} \cdot \mathbf{d}$	= 0 [by <i>perpendicula</i>	b	equation to				
	Distance from a point to a line	vector of the The distance (1) Find \overline{ON} (2) Find AN Pythago (3) Find θ (a)	point <i>A</i> on the line <i>I</i> <i>PN</i> can be found us <i>i</i> then find $ \overline{PN} $ <i>i</i> (<i>length of projectio</i> ras theorem: $\overline{PN} = \sqrt{2}$ angle between \overline{AP} and <i>if</i> θ is found or known	ing: <i>n</i> of \overrightarrow{AP} on d , then u $\sqrt{AP^2 - AN^2}$ and d). Then find $\overrightarrow{PN} =$	se	P P A N d L			

nared by Chris Chiam (CC () (SO) On owlc⊉ast ûpdated 19 October∋n

	Image of a point P by reflection in the line L	Since N is the mid-p $\overrightarrow{OP} + \overrightarrow{OP}'$	one of the 4 methods sta oint of <i>PP</i> ', using <i>ratio t</i> king it the subject.		e	P $\gamma' = 1$ N d τ r r r		
4. Vector Product		If $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, $\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 \\ -(a_1 a_2 b_3) \\ -(a_1 a_2 b_3) \\ -(a_2 a_3 b_3) \\ -(a_2 a_3 b_3) \\ -(a_3 a_3 b_3 b_3 b_3) \\ -(a_3 a_3 b_3 b_3 b_3 b_3) \\ -(a_3 a_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b_3 b$	$\begin{bmatrix} -a_3b_2 \\ b_3 - a_2b_1 \\ -a_2b_1 \end{bmatrix}$ at $\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$ n where unit vector perpendicular ways the right hand grip to be perpendicular on the set	Fore θ is the angle lar to both a and rule .	hxa	b H a		
	⊥ distance	Perpendicular distance from A to b $= \mathbf{a} \sin \theta = \frac{ \mathbf{a} \mathbf{b} \sin \theta}{ \mathbf{b} } = \frac{ \mathbf{a} \times \mathbf{b} }{ \mathbf{b} } \text{ (or } \mathbf{a} \times \mathbf{b} \text{)}$ This can be used to find: • Area of parallelogram = $ \mathbf{a} \times \mathbf{b} $ where b is the length, • Area of triangle = $\frac{1}{2} \mathbf{a} \times \mathbf{b} $						
	Equation of Planes	non-parallel to each	where parallel to the plane and h other the vector while $\lambda \mathbf{d}$ and	$\therefore \overrightarrow{AP} \perp \mathbf{n} = 0$ Note that the the plane wi	product form, we l $p(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0, \mathbf{r} \cdot \mathbf{n} = 0$ the position vector \mathbf{r} and from $\mathbf{a} \cdot \mathbf{n}$ and from $\mathbf{a} \cdot \mathbf{n}$	$\mathbf{a} \cdot \mathbf{n} = d$ of every point on		
5. Planes	Cartesian Equation of a Plane	Let $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$.	. Then $\mathbf{r} \cdot \mathbf{n} = d \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$	$= d \therefore n_1 x + n_2 y +$	-			
	of $\overrightarrow{PN} : \mathbf{r} = \overrightarrow{OP}$ Since N is the between PN a can equate th $\therefore \overrightarrow{ON} \cdot \mathbf{n} = d$ and \overrightarrow{O} $\Rightarrow (\overrightarrow{OP} + \lambda \mathbf{n}) \cdot \mathbf{n} =$	a point of intersection and the plane, we are above with $\mathbf{r} \cdot \mathbf{n} = \mathbf{d}$. $\overline{\partial N} = \overline{\partial P} + \lambda \mathbf{n}$ for some $\lambda \in \mathbb{R}$. <i>d</i> . Solve for λ and find $\overline{\partial N}$.	P (siven)	Let Π be a plane equation $\mathbf{r} \cdot \mathbf{n} = a$ perpendicular of be found by: (1) Choose any plane. Then projection of (2) $\overline{PN} = \overline{PN} $	<i>I</i> . The distance <i>PN</i> can point <i>A</i> on the <i>PN</i> = length of of \overrightarrow{AP} on n .	n n n n n n n n n n n n n n n n n n n		
	Line has vector Plane has vec	rsection of line & plane or equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$ tor eqn $\mathbf{r} \cdot \mathbf{n} = \mathbf{d}$. n, $(\mathbf{a} + \lambda \mathbf{d}) \cdot \mathbf{n} = d$	Acute angle between	$\sin \theta = \frac{ \mathbf{d} \cdot \mathbf{n} }{ \mathbf{d} \mathbf{n} }$	Acute angle I	between 2 planes $\cos \theta = \frac{ \mathbf{n}_1 \cdot \mathbf{n}_2 }{ \mathbf{n}_1 \mathbf{n}_2 }$ beingth		

Chapter 19: Complex Numbers

	Imaginary numbers	i = 🗸	-1		$i^2 = -1$				Denoted by $\mathbb{C} = \{a + b\mathbf{i} : a, b \in \mathbb{R}\}$		
	Forms		is a numb	is a number of the form $a + bi$, where $a, b \in \mathbb{R}$							
	Cartesian form	<i>a</i> is called the real part of z , denoted as Re (z).					<i>b</i> is called the imaginary part of <i>z</i> , denoted as $Im(z)$.				
Definition	Simple operations	$(a+b\mathbf{i})\pm(c+d\mathbf{i})$	d)i i	$\times \mathbf{i} = \mathbf{i}^2 = -$	1	F	or division	, rationa	alise the c	lenominator.	
		The <i>c</i>	omplex conjug	ate of th	e complex	nui	mber z =	$=(a+b\mathbf{i})$ is	denoted	as $z^* = ($	$a-b\mathbf{i})$.
	Complex conjugate	$z + z^* = 2t$ $z - z^* = 2t$		$zz^* = a^2 + b^2$ $z_1 \pm z_2)^* = z_1^* + z_2^*$				* z ₂ *		$\left(\frac{z_1}{z_2}\right)^* = \frac{z_1}{z_2} \overset{*}{z_2}$	
	Equality	2 complex no. a	re equal only i	f they ha	ve the san	ne r	eal & in	maginary	parts, a	$+b\mathbf{i} = c +$	$d\mathbf{\ddot{i}} \Leftrightarrow a = c, b = d$
Complex roots	b^2-4ac	$\geq 0 \Rightarrow 2$ real roots	The co	-	•	-	•	l equation $-4ac < 0 =$			ients will always gate roots
Multiple powers		$i, i^5, i^9, i^{13} = i$	$i^{4n-2} = -1$, e.g	. i ² ,i ⁶ ,i ¹⁰	= -1 i	4 <i>n</i> -3	=-1, e	.g. i ³ ,i ⁷ ,i ¹¹	=-i	$i^{4n} = 1$	e.g. $i^4, i^8, i^{12} = 1$
Fundamenta of algebra	al Theorem	If $P(z) = 0$ has n	solutions α_1, α_2	$_{2}, \alpha_{3},, \alpha_{r}$	$_{i}$, it can be	e exj	pressed	in the form	P(z) =	$(z-\alpha_1)(z$	$(z-\alpha_2)(z-\alpha_n)$.
	Diagrams		$r \equiv z = \sqrt{x^2 + y^2}$ $\theta \equiv \arg z = \tan^{-1} \left(\frac{x}{x}\right)$ y y y y $hm(z)$					$\lim_{i} e^{i\varphi} = \cos \varphi + i \sin \varphi$ $\int_{i} \sin \varphi + i \sin \varphi$ $\int_{i} \sin \varphi + i \sin \varphi$ $\int_{i} \sin \varphi + i \sin \varphi$			
Argand diagram	Conjugate	Represented by	P'(x,-y) (refl	ection of	<i>P</i> in the r	eal	axis)	Modulus-argument form : Since (by			
	Modulus	$ z = \sqrt{x^2 + y^2} = r$						parametric form), $x = r \cos \theta$, $y = r \sin \theta$ $\therefore z = x + iy = r(\cos \theta + i \sin \theta)$			
		$\arg(z) = \theta$. For a positive no. <i>a</i> ,					$\bullet z^* = z $				
	Argument	$\arg(a) = 0$	arg(-a)	$\arg(-a) = \pi$ $\arg(-a\mathbf{i}) = -\frac{\pi}{2}$				• $\arg(z^*) = -\arg(z)$ • $zz^* = x^2 + y^2 = z ^2$ Multiplication by i rotates 90°.			
	Λ	<i>lote: must follow principal argument:</i> $-\pi < \theta \le \pi$						winnphe	ation by	Totales	90.
Modulus-	Operations	<i>z</i> ₁ <i>z</i> ₂	$(\theta_2) + i\sin(\theta_2)$				Z_2	$=\frac{r_1}{r_2}\left[\cos(\frac{r_2}{r_2}\right]$	$(\theta_1 - \theta_2) + \theta_2$	$i\sin(\theta_1-\theta_2)$]	
argument form	Powers	$ z_1 z_2 = z_1 z_2 $	$=\frac{ z_1 }{ z_2 }$	$\frac{ z_1 }{ z_2 } \qquad \qquad \arg(z_1z_2) = \arg(z_1) + \arg(z_2)$ $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$					$= z ^n$	$\arg(z^n) = n\arg(z)$	
Euler's formula			$re^{i\theta} = r$	$(\cos\theta + i)$	$i\sin\theta$), w	here	θ is in	radians.			•
J	Definition	A locus is a set	of points that	satisfy g	iven cond	itio	ns. Note	e: always ta	the $z = x$	x + iy.	
	Circle	A locus is a set of points that satisfy given conditions. Note: always take $z = x + iy$.The equation $ z - z_1 = r$ represents a circle with centre at (x_1, y_1) and radius r . The Cartesian equation of the locus is $(x - x_1)^2 + (y - y_1)^2 = r^2$ Notes: • Check if the circle passes through O by comparing the radius with the distance between the centre of the circle and O . • Check whether the circle crosses the axes between the radius and the distance.						e distance cle and O. ssses the axes by			
Locus	Perpendic ular bisector	The equation $ z $ and (x_2, y_2) . The					icular bi	isector of the			
	Half-line	The equation ar the positive real	-	epresents	a half-lin	e fro	$A(x_1)$, y_1) (exclu	ding A)	making	an angle θ with
	Others	Assume $z = x +$	iy and then de	duce its	nature.						
De Moivre's Theorem	If $z = r(\cos \theta)$	$\theta + i \sin \theta$, then z	$r^n = r^n (\cos n\theta)$	$+i\sin n\theta$) for $n \in \mathbb{Q}$) (ra	tional n	ıo.)			
Nth roots	$z = \sqrt[n]{Re}^{i\left(\frac{\alpha+2}{n}\right)}$	$(k\pi)^{(k\pi)}, k = 0, 1, 2, 3, \dots$,(<i>n</i> -1)					Observed			0.000
H2 Mathemat	tics Summarise	d Formulae		Page 19	of 19			Snared	On ow	s oniam Ic uas tap	dated 19 October