-	 	

CATHOLIC JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATIONS

Higher 1

CANDIDATE NAME				
CLASS	2Т	INDEX NUMBER		

PHYSICS

8866/02 Paper 2 28 August 2015 2 hours

Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper. [PILOT FRIXION ERASABLE PENS ARE NOT ALLOWED] You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any two questions. Circle the 2 questions that you answered in the table below.

At the end of the examination, fasten all work securely together.

The number of marks is given in brackets [] at the end of each question or part of the question.

FOR EXAMINER'S	JSE				
SECTION A (40 MARKS)					
1	/7				
2	/8				
3	/7				
4	/8				
5	/3				
6	/7				
SECTION B (40	MARKS)				
7	/20				
8	/20				
9	/20				
TOTAL	/80				

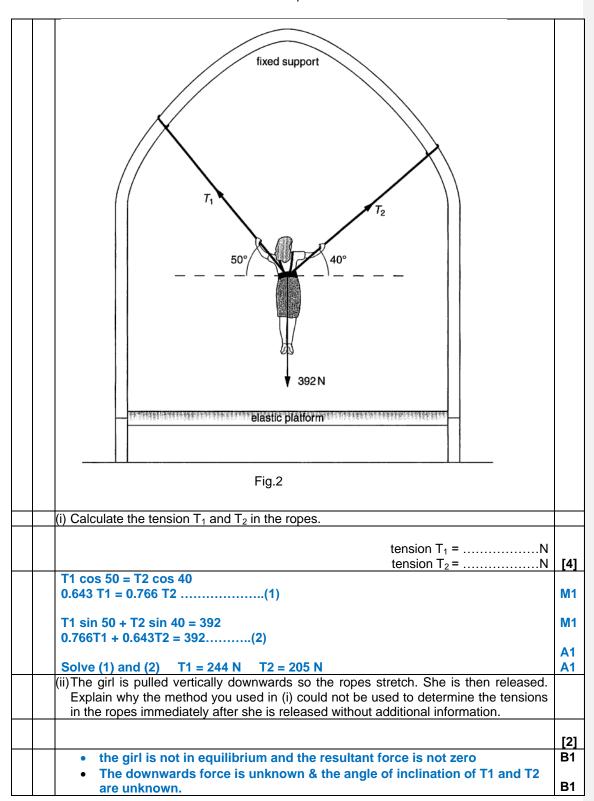
This document consists of 24 printed pages

[Turn over]

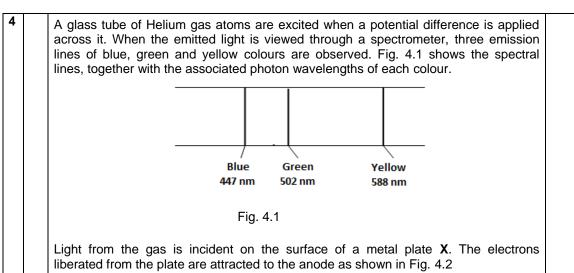
PHYSICS DATA:

speed of light in free space, permeability of free space, $\mu_{\rm o} = 4\pi\,\mathrm{x}\,10^{-7}\,\mathrm{H}\,\mathrm{m}^{-1}$ elementary charge, $e = 1.60\,\mathrm{x}\,10^{-19}\,\mathrm{C}$ the Planck constant, $e = 1.66\,\mathrm{x}\,10^{-27}\,\mathrm{kg}$ unified atomic mass constant, $e = 1.66\,\mathrm{x}\,10^{-27}\,\mathrm{kg}$ rest mass of electron, $e = 9.11\,\mathrm{x}\,10^{-31}\,\mathrm{kg}$ rest mass of proton, $e = 9.81\,\mathrm{m}\,\mathrm{s}^{-2}$

PHYSICS FORMULAE:


uniformly accelerated motion, $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ work done on / by a gas,
hydrostatic pressure
resistors in series, $R = R_1 + R_2 + \dots$ resistors in parallel, $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

SECTION A (40 marks)


Answer all questions in Section A.

1	A d	car of mass 1380 kg, travelling at 31.1 m s ⁻¹ , is brought to rest by applying the brakes.	
	Ιh	e average braking force is estimated to be 1.38 x 10 ⁴ N. Calculate	
	(a)	the initial kinetic energy of the car,	
		kinetic energy =J	[1]
		K.E. = $\frac{1}{2}$ m v ² = $\frac{1}{2}$ (1380)(31.1) ² = 667400 J	A1
	(b)	the average deceleration of the car,	
		deceleration = m s ⁻²	[1]
		$F = ma \Rightarrow a = F/m = 1.38 \times 10^4 / 1380 = 10.0 \text{ m s}^{-2}$	A1
	(c)	the distance travelled before it comes to rest.	
		braking force =N	[2]
		Work done = KE loss	M1
		Fd = KE	A1
		$d = KE loss / F = 667400/1.38 \times 10^4 = 48.2 m$	
	(d)	Suggest whether the answer in (c) is an over-estimation or under-estimation.	
			[2]
		In practice, air resistance and rolling friction of the road are presence.	B1
		The total decelerating force is larger and hence the distance travel will be	
		shorter.	
		The value is an overestimation.	B1

2	(a)	State what is meant by the equilibrium of a body.	
			[2]
		It does not accelerate linearly, velocity is constant	B 1
		It does not change in rotational speed, angular velocity is constant	B1
	(b)	Fig. 2 shows a girl supported by two ropes. She is in equilibrium. She has a weight of	
		392 N.	

	ong-jumper leaps off the starting block at a speed 8.6 m s ⁻¹ at an angle θ to the izontal and lands on level pit.	
(a)	Explain why the longer-jumper needs to have an upwards component of velocity at take-off, as well as forward velocity component to reach a good horizontal distance.	
		[2]
	the upwards component gives him airborne time t	B1
	The forwards component u_x gives him forward distance travelled because $x = u_x t$	B 1
(b)	(i) Suppose that the angle $\theta=35^\circ$, calculate the time to reach the maximum height and the horizontal distance of the long jumper. In your calculations, you should neglect the presence of air resistance.	
	time =s horizontal distance =m	[4]
	Vertical motion without air resistance Using "v = u + at"	-
	$0 = 8.6\sin 35 + (-9.81)t$	М1
	t = 0.5028 = 0.50 s	A1
	airborne time = 2 x 0.5028 = 1.006 s	M1
	horizontal distance = 7.6 cos35 x 1.006 = 6.26 = 6.3 m	A1
	(ii) Why does his horizontal distance is less than the answer to (b)(i) when air resistance is taken into consideration.	
		[1]
	Air resistance opposes the motion,	
	So the airborne time will decreases	
	The horizontal component of the velocity also decreases with time	
	Since horizontal distance = horizontal velocity of velocity x airborne time	
	The horizontal range is smaller	B 1

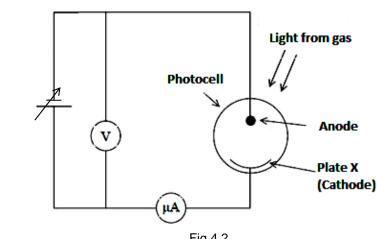
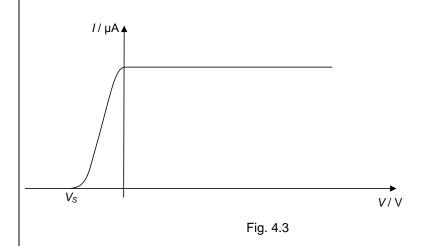


Fig 4.2

The experiment is then repeated using two other metal plates Y and Z of different work function energies. The table below shows the work function energies of the different plates.


Plate Work Function Energy / e	
X	1.58
Υ	2.42
Z	3.17

(a) What is meant by the term work function energy of a metal?

allowed to incident on plate X.

Work function energy is the minimum energy required to eject an electron from a metal surface in the photoelectric effect.

The figure below shows the variation of current I in the circuit with applied potential difference V between the metal plate and anode when the blue light from the gas is

	[3]
	[ə]
10 ⁻¹⁹ J	A1
	M1
$10^{-19})V_{c}$	
- 7.3	A1
stantial difference 1/	
	[3]
otential difference V	[4]
answers.	
· X	
v	
T	
→	
V/V	
	B1
	B1
	D 4
	B1
	В1
nmeter?	[2]
otons from the blue	[2]
ciono montrario bido	
	otential difference V answers. otential difference V answers. otential difference V answers. v x Y photoelectric effect meter? otons from the blue

Comment [M1]: 3 s.f.

		= 2.78 eV	M1
		Work function energies plate Y = 2.42 eV < photon energy → electrons liberated → current is not zero Work function energies plate Z = 3.17 eV > photon energy → no electron liberated → current is zero	A 1
5	and 2I ou the wires	es X and Y, which are at right angles to the plane of the paper, carrying current I ut of the plane of the paper as shown in Fig.5. A point P is at equal distance from s. On Fig. 5, draw an accurate vector diagram to show how you can determine the de and direction of the resultant field at P.	
		B B _X X • Y Fig. 5	[3]
	Diagram	shows correct	
	Relative Direction	magnitude of Bx and By, By = 2Bx of Bx and By gram method for find B	A1 A1 A1

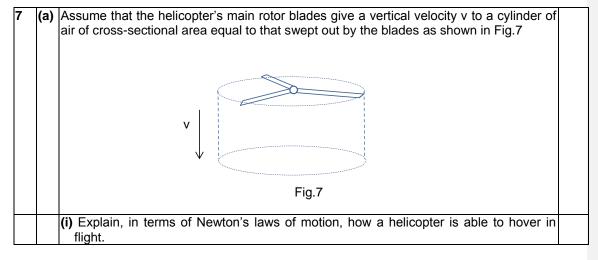
In the 16th century, Kepler conducted observations of the planetary positions and deduced that for a circular orbit of a planet around the Sun, if T is the period of rotation and r is the radius of the orbit, then

$$T^2 = 4\pi^2 r^3 / GM$$

where $\,$ G is the gravitational constant which has a value of 6.67 x 10⁻¹¹ N m² kg⁻² M is the mass of the Sun.

The relation $T^2 = 4\pi^2 r^3$ / GM is also true for the moons of the planet Jupiter.

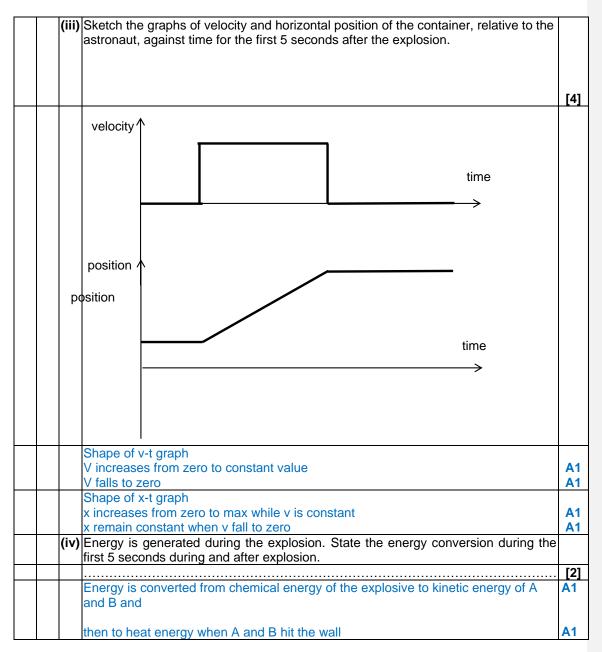
Data for some of the moons of Jupiter is given in Fig.6.1

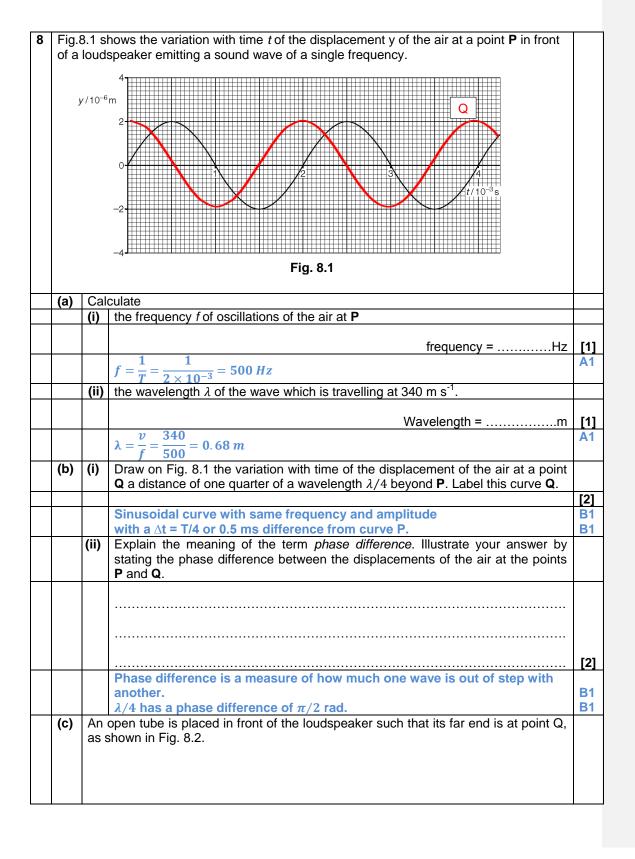

Moon of Jupiter	Period T/days	Mean distance from centre of Jupiter r / 10 ⁹ m	log (T/days)	log (r/m)
Sinope	758	23.7	2.88	10.37
Leda	239	11.1	2.38	10.05

	Ca	allisto	16.7	1.88	1.22	9.27		
	- 00	Lo	1.77	0.422	0.248	8.63		
	N	1etis	0.295	0.128	-0.53	8.11		
				Fig.6.	1			
	(a) (i	Compl	oto Fig 6.1 k	by calculating the valu	use for log (T/day	vs) and log (r/m	a) and plot	
	(a) (i			Leda on Fig.6.2.	les for log (1/da	ys) and log (I/II	i) and plot	
				J				[1]
	(i	i) On the	axes of Fig	.6.2, draw the line of I	best fit of log (T/	days) against l		
			A					[1]
		log(Γ/days)					
			3.0					
			0.0					
				×				
			20					
			2.0	*				
			1.0					
				×				

			0.07	90	10.0	110	\rightarrow	
			/ . U ×	0.0	10.0	11.0	g (r/m)	
			-1.0 					
			1.0					
		I		Fig.	.6.2			
	(ii	i) Detern	nine the grad	dient of the graph in F	ia.6.2			
	,	1	<u></u>	<u> </u>	3 -			
						gradient = .		[1]
-	/:-	Gradie	ent = (3.8 – 0	0.8) / (11-9) =1.55	2	2 4 2 3 / 0 4	4	A1
	(1)	/) Discus	s whether the	ne data Fig.6.1 suppo	rt the relation 15	$f = 4\pi^2 r^3 / GM$		
								[2]
			$\pi^2 r^3 / GM$					
			og both side					
		2logT	$= \log (4\pi^2/6)$	6M) + 3 log r				
		log I =	log (4π²/ Gľ	M) + 3/2 log r orrect, gradient = 3/2	- 0.667			
				e gradient = 0.667	= 0.007			М4
		The da	ata support t	he relation				M1 A1
								-
	(b)	Obser	vation show	s that the moon Gany	mede orbits Jup	iter with a perio	od of 7.16	

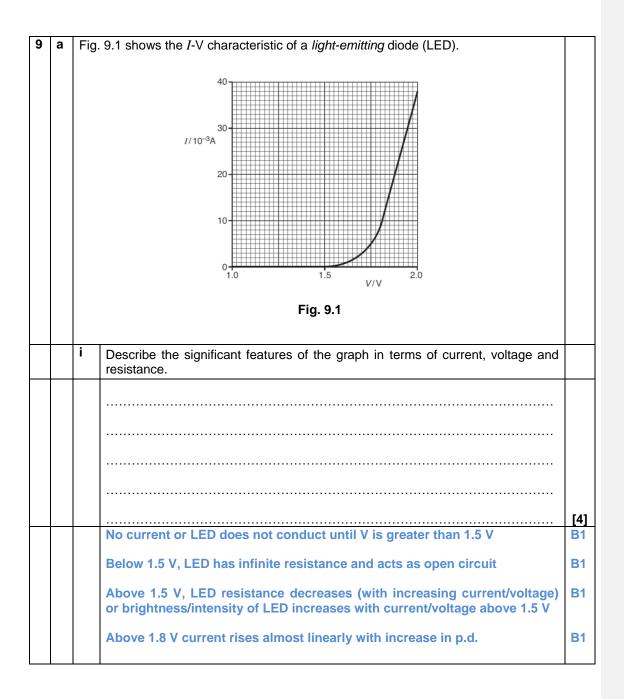
	days. Use the graphs of Fig.6.2 to estimate the orbital radius of Ganymede	
	orbital radius =m	[2]
	log 7.16 = 0.855 from graph $log r = 9.05$ $r = 1.12 \times 10^9$ m	M1 A1
(c)	Explain how you can use the graph on Fig.6.2 to determine the mass of Jupiter.	
		[1]
	Determine Y- intercept from the graph Since y intercept = $log (4\pi^2/GM)$	
	M can be found	A1

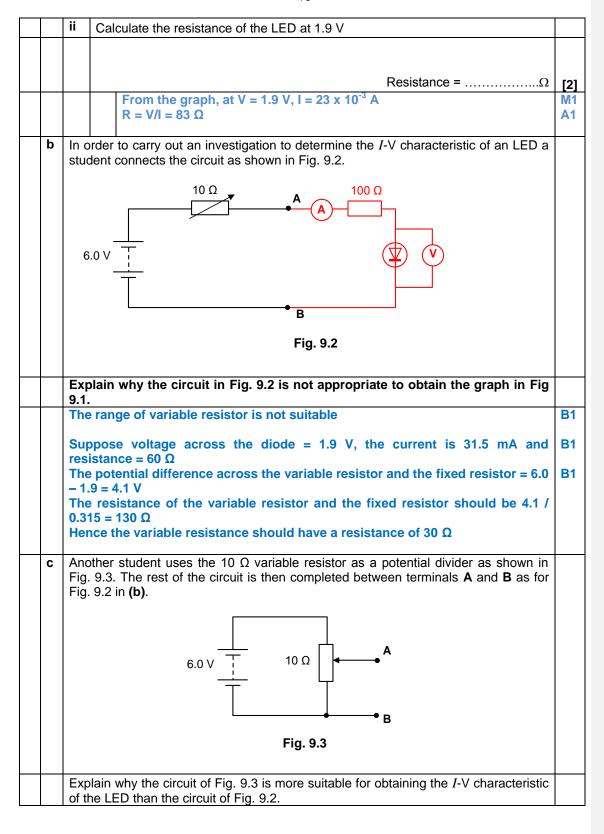

SECTION B (40 marks)


Answer only 2 out of 3 questions.

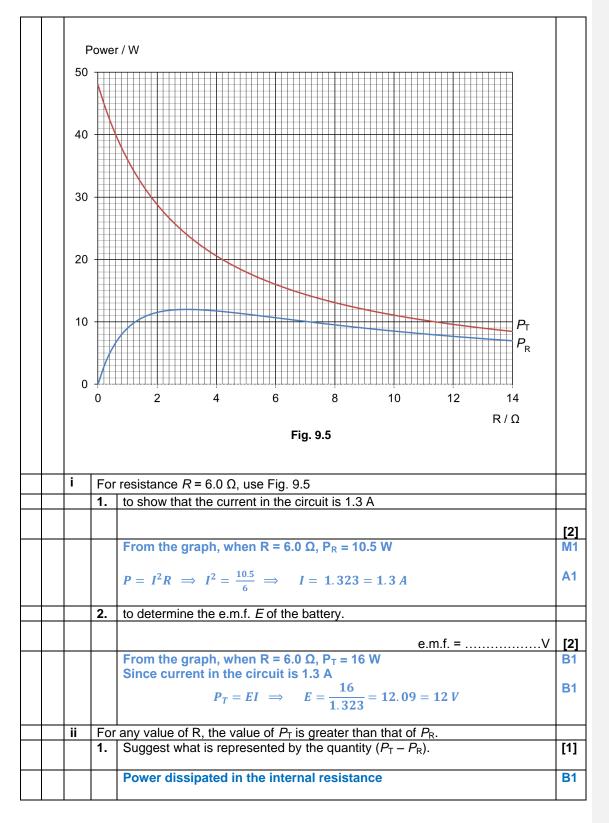
cause a rate of change in the momentum of the air on, force on air is equal and opposite to the force on a sht of the helicopter. If the helicopter while hovering is given by π $r^2\rho v^2$ where ρ and r is the length of the rotor blades. Int force = 0 In helicopter by air In of air If change ty of air x velocity change If the helicopter by air In of air If the helicopter by air In of air If the helicopter by air If the helicopte
In, force on air is equal and opposite to the force on the of the helicopter. If the helicopter while hovering is given by $\pi r^2 \rho v^2$ where ρ and r is the length of the rotor blades. Int force = 0 In helicopter by air of air In change the of air x velocity change In power increase for the helicopter to hold up a load equal power increase by =
In, force on air is equal and opposite to the force on the of the helicopter. If the helicopter while hovering is given by $\pi r^2 \rho v^2$ where ρ and r is the length of the rotor blades. Int force = 0 In helicopter by air of air In change the of air x velocity change In power increase for the helicopter to hold up a load equal power increase by =
ight of the helicopter. If the helicopter while hovering is given by π $r^2 \rho v^2$ where ρ and r is the length of the rotor blades. Int force = 0 In helicopter by air In of air In change try of air x velocity change Expower increase for the helicopter to hold up a load equal power increase by =
If the helicopter while hovering is given by π $r^2 \rho v^2$ where ρ and r is the length of the rotor blades. Int force = 0 In helicopter by air In of air In change ty of air x velocity change Expower increase for the helicopter to hold up a load equal power increase by =times
rand r is the length of the rotor blades. Int force = 0 In helicopter by air In of air In change It y of air x velocity change Expower increase for the helicopter to hold up a load equal power increase by =times In the length of the rotor blades. In the length of the
nt force = 0 n helicopter by air m of air change ty of air x velocity change power increase for the helicopter to hold up a load equal power increase by =times
n helicopter by air m of air change ty of air x velocity change power increase for the helicopter to hold up a load equal power increase by =times
change ty of air x velocity change power increase for the helicopter to hold up a load equal power increase by =times
change ty of air x velocity change power increase for the helicopter to hold up a load equal power increase by =times
change ty of air x velocity change E power increase for the helicopter to hold up a load equal power increase by =times T
change ty of air x velocity change E power increase for the helicopter to hold up a load equal power increase by =times T
power increase for the helicopter to hold up a load equal power increase by =times
power increase for the helicopter to hold up a load equal power increase by =times
power increase for the helicopter to hold up a load equal power increase by =times
power increase for the helicopter to hold up a load equal power increase by =times
power increase by =times
r V
r V
r IV
$(F / \pi r^2 \rho)^{1/2}]^3$
(F / M p)]
onstant
ce = F'
A
ions to derive the principle of conservation of momentum podies.
posite to force on B
uct of force and time on A is equal but opposite to B
uct of force and time on A is equal but opposite to B
of A is equal and opposite to that of B
the two bodies is consant

(c)	grav floa kg frag	7.1 shows a container of mass 45 kg floating in deep space where the effect of vity is negligible. An astronaut, looking into it, observes an object of mass 15 kg, ting inside the container, explode into two fragments A and B of mass 5.0 kg and 10 respectively. The two fragments apart in the direction shown in Fig. 7.1. The ments adhere to the walls after impact. Initially, the astronaut, container and object e no relative motion.)
		B A container	
		$\longleftrightarrow 3.4 \text{ m} \longrightarrow \longleftrightarrow 2.0 \text{ m} \longrightarrow$ astronaut $Fig. 7.1$	
		The impulse from the explosion on A is 10 kg m s ⁻¹ . Calculate the speeds of the fragments after explosion.	
		speed of A =	[3] A1
		Impulse on A = change in momentum of A 10 = 5 v → v= 2.0 m s ⁻¹ For B: Impulse on B = Impulse on A = change in momentum of B 10 = 10v → v = 1.0 ms ⁻¹	M1 A1





		loudspeakertube	
		7	
		Fig. 8.2	
	(i)	Explain why the frequency of the loudspeaker has to be adjusted to a particular value for a stationary sound wave to be formed in the tube.	
		·	[2]
		Q must be a node	[-]
		Length of tube must be such that PQ = $\frac{1}{4} \lambda$, λ = wavelength	B1
		Wavelength depends on frequency because speed is constant and $\lambda = v / f$	B1
		Frequency must be of a certain value	
	(ii)	A stationary wave is set up in the tube. The distance between the points P and Q is $\lambda/4$. Compare and contrast the motion of the air particles at P, Q and R.	
		Compare and contract the motion of the all particles at 1, & and 1.	
		P & Q	
		P&R	
			[4]
		Air molecules oscillate/vibrate along the axis of the tube	B1
		at maximum amplitude at Q	B1
		They are at rest at P.	
		Amplitude of P > that of R	B1
		Phase of P same as R	B1


		(iii) A student attempts to determine the speed of the sound in the tube by calculating the wavelength of the waves by measuring the distance between P and Q and using the expression $\lambda = 4$ x distance PQ. Give two reasons why his measurement of the speed is unlikely to be accurate and suggest the improvements to reduce the uncertainty.			
			Due to the fact that the antinode is at a distance outside the rim,	B1	
			·	B1	
			wavelength λ/4 > PQ	ы	
			To include the end correction c such that $\lambda/4 = PQ + c$		
			Due to the fact that the position of node is difficult to detect, there is an	B1	
			uncertainty in the measurement of the length PQ	B1	
			Consider measuring the distance D between 1 st node and Nth node along		
			the tube		
			Use the expression (N-1) $\lambda/2$ = D to calculate the wavelength		
	(d)		t can be polarised using a polarizer, such as a sheet of Polaroid. A polariser has		
			xis for the 'easy' transmission of light (the easy axis). It transmits the component		
			e electric field (E-field) of light which is parallel to this axis. In a perfect polariser,		
			component is transmitted without absorption. The component perpendicular to		
			easy axis is completely absorbed.		
		Fig.8	3.3 shows a perfect polarizer A with its easy axis vertical.		
			and the second s		
			easy axis $ extit{polarised}$ incident light of intensity I_0		
			$E_0 \setminus g$		
		I E,			
			Polariod		
			A		
			transmitted		
			light intensity I. Fig.8.3		
			inglicition (i.e., i.e.,		
		A pa	rallel beam of polarised light of intensity I_0 is incident on the polarizer A with its		
		E-fie	eld, of amplitude E_0 , at an angle θ to the vertical. The transmitted light has		
			litude E _t .		
		(i)	Show that I_1 is given by $I_t = I_0 \cos^2 \theta$		
		(1)	The that I_1 is given by $I_1 = I_0 \cos \theta$		
				[3]	
			Transmitted amplitude $E_t = E_o \cos \theta$	B1	
			Transmitted intensity L = k E ²	NA4	
			Transmitted intensity $I_t = k E_t^2$	M1	
			Incident intensity $I_0 = k E_0^2$		
			Hence $I = k E^2 - k (E \cos \theta)^2 = k E^2 \cos^2 \theta = L \cos^2 \theta$	M1	
\vdash		(ii)	Hence $I_t = k E_t^2 = k (E_0 \cos \theta)^2 = k E_0^2 \cos^2 \theta = I_0 \cos^2 \theta$ The polarised light of intensity I_0 is now incident on A with its E-field parallel to	IVI	
Ш		(11)	The polarised light of interisity 10 is now incluent on A with its E-field parallel to		

the easy axis (i.e. the angle θ is set at 0°). A second polarizer B is now placed in front of A, with its easy axis parallel to that of A. Keeping the polarizer A fixed, polarizer B is then rotated so that its easy axis makes an increasing angle ϕ with the easy axis of Polaroid A. On Fig.8.4, sketch a graph to show how the intensity I_t of the light transmitted by the polariser combination varies with the angle ϕ , for values of ϕ between 0 and 2π rad. Label the axes with appropriate values.	
I_1 0 $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ $2\pi \phi / \text{rad}$ Fig. 7.4	[2]
$I_{\rm t}$ / W m ⁻²	[Z]
I_0 0 $\frac{\pi}{2}$ $\frac{3\pi}{2}$ 2π ϕ / rad	
Fig. 6.4 Correct shape of graph	B1
Axes are labelled with appropriate values Zero intensity at $\frac{\pi}{2}$, $\frac{3\pi}{2}$ rad and I_0 intensity at $0, \pi, 2\pi$ rad.	B1

		[2]
	The p.d. across LED can be adjust from zero to maximum value of 2 V The current in the LED is not affect by the position of the contact.	B1 B1
d	Fig. 9.4 shows a battery of e.m.f E and internal resistance r is connected to a variable resistor of resistance R . Fig. 9.4 The total power produced in the battery is P_T . The power dissipated in the variable resistor is P_R .	
	The variation of P_T and of P_R with resistance R of the variable resistor are show in Fig. 9.5.	

	2.	Use your values of P_T and P_R at $R = 6.0 \Omega$ and you answer to (i)(1) to determine the internal resistance r of the battery.	
			[2]
		internal resistance = Ω	
		$P_T - P_R = I^2 r$	M1
		$\Rightarrow r = \frac{16 - 10.5}{1.323^2} = 3.142 = 3.1 \Omega$	A1
iii	1.	Use Fig 9.5 to determine the efficiency of power transfer from the battery to the variable resistor when $R = 3.0 \ \Omega$.	
			[1]
		efficiency =	
		efficiency of power transfer = $\frac{12}{24} \times 100 \% = 50 \%$	A1
	2.	Discuss, based on Fig 9.5 but without mathematical calculations, how the efficiency changes with R.	
			[3]
		PR increases from zero to a maximum and then decreases to a very low value	B1
		PT decreases continuously As efficiency = PR/PT, At R = 0, PR = 0, efficiency = 0	B1
		As R increases, PR increases and PT decreases hence Efficiency increases	
		Beyond max value of PR, both PT and PR decreases but PT decreases faster than PR, hence efficiency increases further When R increases further, PR approaches the value of PT, hence efficiency approaches 1	B1