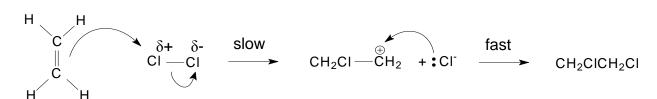
AJC H2 Chemistry Prelim 2008 - Paper 2 Suggested Answers

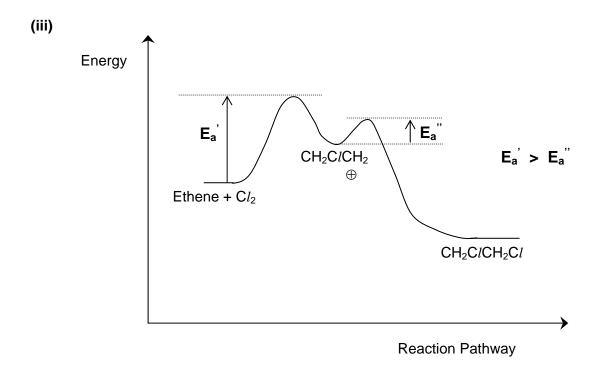
- (a) (i) $M(g) \rightarrow M^{+}(g) + e$
 - (ii) lodine has a higher nuclear charge and exerts a higher screening effect Hence, the valence electrons in iodine experiences the **similar effective nuclear charge** as that for the valence electron in phosphorus.
 - (b) (i) $P_4 + 6I_2 \rightarrow 4PI_3$

(ii) trigonal pyramidal

- (iii) Energetically unfavorable to arrange five iodine atoms around small central P Atom, OR Steric hindrance prevents five iodine atoms to be bonded to P atom
- (c) (i) Η


Shape of molecule

- $H_3PO_3 \Leftrightarrow H_2PO_3^- + H^+$ (ii) $H_2PO_3^- \Leftrightarrow HPO_3^{2-} + H^+$
- (iii) More **difficult** to dissociate another **H**⁺ from a **negatively** charged ion.
- (iv) P-H bond is non-polar, hence H⁺ cannot be formed easily.


- 2 (a) (i) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$
 - (ii) HI is more reducing than HCl, hence it is oxidized to I_2 by conc H_2SO_4
 - **(b) (i)** 0.0500 mol min⁻¹
 - (ii) 0.0250 mol
 - (iii) 0.0750 mol
 - (iv) 25%
 - (v) Any **one** of the following:
 - All the HCl that emerged from chamber was absorbed by NaOH
 - C₂H₄ does not undergo combustion inside the chamber
 - (c) (i) reagent(s) CI₂

 condition(s) Room temperature

(ii)

Type of reaction mechanism Electrophilic addition

- (iv) By-product, CH₂ClCH₂OH, can be formed because H₂O is a nucleophile and will react with the CH₂ClCH₂ carbocation.
- 3 (a) (i) Mg reacts with slowly with hot water,

 effervescence observed and a white ppt is formed.

 Ba reacts rapidly with cold water

 effervescence observed and a colourless solution is formed.
 - (ii) $M(NO_3)_2 \rightarrow MO + 2NO_2 + \frac{1}{2}O_2$
 - Mg(NO₃)₂ decomposes at the lower temperature

 Mg²⁺ is smaller than Ba²⁺, hence possesses higher charge density / higher

 polarizing power

Electron cloud of NO₃ is distorted more easily

N-O bond in NO_3^- breaks more easily / is more weakened in $Mg(NO_3)_2$

(iii)

- **(b) (i)** $K_{sp} = [Mg^{2+}][F^-]^2$
 - (ii) $2.10 \times 10^{-3} \text{ mol dm}^{-3}$
 - (iii) [F] in fluoridated drinking water = 5.26×10^{-5} mol dm⁻³ Good source.
 - (iv) $7.40 \times 10^{-4} \text{ mol dm}^{-3}$
- 4 (a) (i) $K_p = \frac{P_{NO_2}^2}{P_{NO}^2.P_{O_2}}$
 - (ii) 300K K is the largest at 300K,
 - (iii) 0.1
 - by the high temperature in car engines.

 The formation of NO₂ is exothermic which is favoured by the lower temperature outside.
 - (c) Time is needed for the NO emitted from the car engine to cool down to 300K
 - (d) Lowering the pressure will **not reduce** the formation of NO

 Pressure has **no effect on the position** of equilibrium between N₂, O₂ and NO as

there is no change in the number of gas molecules.

5 (a)

	structural formula	no. of stereoisomers
Carvone	CH ₃ CH ₂	2
Menthol	CH ₃ OH CH ₃	8

(b)	terpenoid	reagent and condition	structural formula of the product
	Carvone	2,4-dinitrophenylhydrazine, room temperature	$N-NH$ O_2N CH_3 CH_2
	Menthol	CH₃CH₂COC <i>l</i> , room temperature	O—C—CH ₂ CH ₃ H ₃ C CH ₃

$$CH_3$$
 CH_3 CH_2Br Br Br

(c) (i)
$$\underline{H_2C_2O_4} + [O] \rightarrow 2CO_2 + H_2O$$

CH₃—C—CH₃

O

compound B

$$\begin{array}{c|c} \mathsf{HO_2C} - \mathsf{CH_2CH_2} - \mathsf{C} - \mathsf{CH_3} \\ \parallel & \mathsf{O} \\ \\ \mathsf{compound} \ \mathbf{C} \end{array}$$

test Na test / Na₂CO₃ test / PC*l* or SOC*l*₂ test

observations For **C**: H₂ / CO₂ / HCl fumes produced

For **B**: **No** H₂ / CO₂ / HCl fumes produced