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Mathematical Formulae 

 

1.    ALGEBRA 

Quadratic Equation 

For the equation   ax2 + bx + c = 0, 

. 

 

Binomial Expansion 
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where n is a positive integer and 
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2.    TRIGONOMETRY 

Identities 

1cossin 22 =+ AA  

AA 22 tan1sec +=  

AAec 22 cot1cos +=  

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

 

Formulae for ABC 

C

c

B

b

A

a
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Abccba cos2222 −+=  

Cabsin
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1 A cone with base radius ( )5 2 3+  cm and a slant height l cm has a curved surface area of 

( )51 3 3−   cm2. Without using a calculator, obtain an expression for l in the form of 

( )3a b+ , where a and b are integers.       [4] 

 

Solution: 

Curved surface area of cone rl=   

( ) ( )5 2 3 51 3 3l + = −   

( )
( )

51 3 3

5 2 3
l

− 
=
 +

   [M1] – Correct use of formula 

  
51 3 3 5 2 3

5 2 3 5 2 3

− −
= 

+ −
  [M1] – Correct use of conjugate surds 

  
( )

( )

255 102 3 15 3 6 3

25 4 3

− − +
=

−
 [M1]  

  
273 117 3

13

−
=     

  ( )21 9 3= −  cm   [A1] 

 

 

2 The acute angles A and B are such that ( )tan 8A B+ =  and 
1

tan
5

A = . Without using a 

calculator, find the exact value of cos B .         [5] 

 

 Solution: 

 ( )tan 8A B+ =  

 
tan tan

8
1 tan tan

A B

A B

+
=

−
 

 

1
tan

5 8
1

1 tan
5

B

B

+

=

−

     [M1] – Correct use of double angle formula 

 
1 1

tan 8 1 tan
5 5

B B
 

+ = − 
 

   [M1] 

 
1 8

tan 8 tan
5 5

B B+ = −  

 
13 39

tan
5 5

B =  

 tan 3B =      [M1] 

 

 By Pythagoras’ Theorem, 
2 21 3r = +      [M1] 

3 

1 

B 

r 
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10r =       

1 10
cos

10 10
B =   

10
cos

10
B =      [A1] 

 

 

3 (i) Find the range of values of m for which the curve 2(4 ) 4 1y m x x m= + − + +  has a  

maximum point.          [1] 

 

Solution: 

For curve to have a maximum point,    
4 0m+   

4m  −         [B1] 

 

(ii) Find the range of values of m for which the curve 
2(4 ) 4 1y m x x m= + − + +  is  

always negative for all real values of x.       [3] 

 

Solution: 

For curve to be always negative, 
2 4 0b ac−   

( ) ( )( )
2

4 4 4 1 0m m− − + +        [M1] – Either seen for correct use of discriminant 

( )216 4 5 4 0m m− + +   

216 4 20 16 0m m− − −   
24 20 0m m− −         [M1]  

2 5 0m m+   

( )5 0m m+   

5m  −  or  0m         [A1] 

 

(iii) Hence state the range of values of m for which the curve has a maximum point  

and is always negative for all values of x.      [1] 

 

Solution: 

5m  −   [B1]  

 

         

  

 

 

 

 

 

 

 

 

x 
  

  0 
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4 (a) It is given that ( ) 2 2f d 3 lnx x x x kx c= + +  where k and c are constants. 

(i) If ( ) 2

1
f d 2

e

x x e= + , show that 2k = − .      [3] 

 

Solution: 

( ) 2

1
f d 2

e

x x e= +  

2 2 2

1
3 ln 2

e

x x kx c e + + = +     [M1]  

( )2 2 23 ln 3ln1 2e e ke c k c e + + − + + = +    

( )2 2 23 2e ke c k c e+ + − + = +  

  2 2 23 2e ke k e+ − = +     [M1] 
2 2 23 2e e k ke− − = −  
2 22 2e k ke− = −  

( ) ( )2 22 1 1e k e− = − −  

2k = −      [A1] 

 

(ii) Find ( )f x .          [2] 

 

Solution:  

( ) 2 2f d 3 ln 2x x x x x c= − +  

( ) 2 1
f 6 ln 3 4x x x x x

x

 
= + − 

 
  [M1] – Correct use of product rule 

        6 lnx x x= −    [A1] – Either seen 

        ( )6ln 1x x= −  
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(b) The figure shows part of the curve ( )fy x= . ( )10, 2−  and ( )4, 9−  are two points on 

the curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 Given that 
4

10
d 30y x

−

−
= , find 

9

2
d .x y                   [2] 

 

 Solution: 

  

 

 

 

 

 

 

 

 

 

 

 

 Area of A + B 30=  

  

Area of B ( )6 2=  

      12=  
  

 Area of A 30 12= −    [M1] 

       18=  

 

Area of C ( )7 4=  

                28=  

 

  
9

2
dx y = Area of A + C 

           28 18= +  

           46=     [A1] 

 

 

 

 

y 

x 

 

 

 

y 

x 

 

 

 
A 

B 

C 
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5   

 

 

 

 

 

 

 

 

 

 

 

 The diagram shows a triangle PQR in which the point P is ( )2, 8− , the point R lies on the      

x-axis and angle PQR is 90 . The equation of QR is 2 5 64y x+ = .   

 (i) Find the coordinates of Q.                    [5] 

 

  Solution: 
  2 5 64y x+ =  

  2 5 64y x= − +  

  
5

32
2

y x= − +  

  Gradient of QR 
5

2
= −  

  Gradient of PQ 
2

5
=    [B1] 

 

  Equation of PQ: 

  ( )
2

8 2
5

c= − +     [M1] – Attempt to find c 

  ( )
2

8 2
5

c= − +  

  
44

5
c =  

   Equation of PQ is 
2 44

5 5
y x= + . [A1] 

 

  
5

32
2

y x= − +   ---- (1) 

  
2 44

5 5
y x= +   ---- (2) 

 

(1) = (2) 

  
5 2 44

32
2 5 5

x x− + = +    [M1]  

  
29 116

10 5
x

−
− =  

  8x =       
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  Subst. 8x =  into (1) 

  ( )
5

8 32
2

y = − +  

     12=   
 

   ( )8,12Q     [A1] 

 

 (ii) Given that M is the midpoint of PR and that PQRS is a rectangle, find the coordinates  

of M and of S.           [3] 

 

  Solution: 

  When 0y = , 

  ( )2 0 5 64x+ =  

  12.8x =      [M1] 

 

   ( )12.8, 0R      

 

Coordinates of M 
2 12.8 8 0

,
2 2

− + + 
=  
 

  

       ( )5.4, 4=    [A1] 

 

  Let ( ),S x y  

  ( )
8 12

, 5.4, 4
2 2

x y+ + 
= 

 
 

  
8

5.4
2

x +
=   and  

12
4

2

y +
=  

  8 10.8x+ =     12 8y + =  

  2.8x =     4y = −     

 

   ( )2.8, 4S −      [A1] 
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6 (a) Solve the equation ( ) ( )lg 20 5 lg 10 1x x+ − − = .      [3] 

 

  Solution: 

  ( ) ( )lg 20 5 lg 10 1x x+ − − =    

  
20 5

lg 1
10

x

x

+ 
= 

− 
  [M1] 

  
20 5

10
10

x

x

+
=

−
   [M1] 

  20 5 100 10x x+ = −  

  15 80x =  

  
1

5
3

x =    [A1] 

 

 (b) Given that loga p x=  and loga q y= , express in terms of x and y, 

  (i) log pq a ,          [2] 

 

   Solution: 

   
log

log
log

a
pq

a

a
a

pq
=   [M1] 

               
1

1 loga aog p q
=

+
 

            
1

x y
=

+
  [A1] 

 

 (ii) log p aq .          [3] 

 

  Solution: 

  log log logp p paq a q= +   [M1] 

               
log log

log log

a a

a a

a q

p p
= +   [M1] 

   
1 y

x

+
=    [A1] 

 

  Or 

 

  
log

log
log

a
p

a

aq
aq

p
=    [M1] 

               
log log

log

a a

a

a q

p

+
=   [M1] 

   
1 y

x

+
=    [A1] 

 

 

 



10 
 

JWSS Preliminary Examinations 2020 Additional Mathematics (4047/01) Secondary 4E/ 5NA 

 

 

7 (i) Express 24 12 5x x− +  in the form of ( )
2

a x b c− − .      [2] 

 

  Solution: 

  2 2 5
4 12 5 4 3

4
x x x x

 
− + = − + 

 
 

                       

2 2

2 3 3 5
4 3

2 2 4
x x
    

= − + − − − +    
     

 

         

2
3

4 1
2

x
  

= − −  
   

 

         

2
3

4 4
2

x
 

= − − 
 

  [B1] – For 

2
3

4
2

x
 

− 
 

 seen  

[B1] – For 4−  seen 

 

(ii) Sketch the graph of 24 12 5y x x= − + , indicating the intercepts of both axes and  

the coordinates of the turning point.         [3] 

 

Solution: 

 

 

        [B1] – Correct shape 

        [B1] – Turning point at (1.5, 4) 

        [B1] – Correct intercepts 

 

 

 

 

 

 

 

 

 (iii) Determine the set of values of m for which the equation 24 12 5x x m− + = has  

  4 solutions.                      [1] 

 

  Solution: 

  0 4m    [B1]  

    

 (iv) Solve  24 12 5 5x x− + = .         [2] 

 

  Solution: 

  24 12 5 5x x− + =   

  24 12 5 5x x− + =  or 24 12 5 5x x− + = −    [M1] 

  
24 12 0x x− =    24 12 10 0x x− + =  (N.A) 

  ( )4 3 0x x− =    ( ) ( )( )
22 4 12 4 4 10b ac− = − −  

y 

x 
0.5 2.5 1.5 

4 

5 (1.5, 4) 
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  0x =  or 3x =                  16= −    [A1] 

 

 

8 A curve is such that 
2

2 3

16
2

d y

dx x
= +  and ( )2, 7  is a minimum point on the curve. 

 (i) Find the equation of the curve.                   [5] 

 

  Solution 

  
2

2 3

16
2

d y

dx x
= +   

  32 16 d
dy

x x
dx

−= +  

       
216

2
2

x
x c

−

= + +
−

   [M1] – Correct differentiation 

    
2

8
2x c

x
= − +  

 

  At ( )2, 7 , 0
dy

dx
=  

  ( )
( )

2

8
2 2 0

2
c− + =    [M1] – Attempt to find c 

  4 2 0c− + =  

  2c = −  

  
2

8
2 2

dy
x

dx x
= − −  

 

  22 8 2 dy x x x−= − −   

     
( )

2 12 8
2

2 1

x x
x c

−

= − − +
−

  [M1] – Correct differentiation 

     2 8
2x x c

x
= + − +  

 

  At ( )2, 7 , 

  ( ) ( )
2 8

7 2 2 2
2

c= + − +   [M1] – Attempt to find c 

  7 4 4 4 c= + − +  

  3c =  

 

  2 8
2 3y x x

x
 = + − +    [A1] 
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(ii) Find the value of x for which the curve has a maximum gradient, and find this  

maximum gradient.                      [3] 

(You are not required to show that gradient is maximum.) 

 

Solution: 

For maximum gradient,  
2

2
0

d y

dx
=    [M1] – Either seen 

3

16
2 0

x
+ =  

 32 16 0x + =  

 32 16x = −  

 3 8x = −  

 2x = −     [A1] 

 

 When 2x = − , 

 ( )
( )

2

8
2 2 2

2

dy

dx
= − − −

−
 

      8= −    [A1] 

  

 Maximum gradient 8= −  
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9 The diagram shows a windmill with blades 20 m in length. The centre of their circular motion 

is a point 25 m above the ground. One of the blades has been painted with stripes and the tip 

of the stripped blade is currently at point P, 45 m above the ground. When in operation, the 

windmill takes 6 seconds to complete one revolution. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

(i) The height above the ground, y m, of the tip of the stripped blade is modelled by the 

equation cosy a kt b= + , where t in the time in seconds after leaving point P. 

 Find the value of a and of b.         [2] 

 

 Solution: 

 Amplitude 
45 5

2

−
=  

      20=  

  
 20a =    [B1] 

 

25b =     [B1] 

 

(ii) Show that the value of k is 
3


 radians per second.      [1] 

 Solution: 

 
2

6
k


=  

 
3

k


=   (shown) [B1] 

 

 

 

 

 

 

 

P 

 

20 m 
 

25 m 
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[B1] – Correct 

amplitude and 

positioned correctly 

(iii) Sketch the graph of cosy a kt b= +  for 0 6t  .      [2] 

 

 Solution: 

  

 

 

         [B1] – 1 cosine 

   

 

 

 

 

 

 

 

 

(iv) Find the length of time for which the tip of the stripped blade is at most 15 m above  

the ground.           [3] 

 

  Solution: 

  20cos 25 15
3

t + =


   [M1] 

20cos 10
3

t = −


 

cos 0.5
3

t = −


 

 Basic angle ( )1cos 0.5−=  

       
3


=    [M1] 

 
3 3

t = −
 

 ,        
3


 +  

 2t = ,  4  

  

  Length of time 2= s          [A1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y/m 

1.5 3 4.5 6 

45 

25 

5 

t/s 
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Minus 1 for each error  

including + c 

10 (i) Express 
( )

2

1

2 1

x

x x

+

−
 in partial fractions.       [5] 

 

  Solution: 

  
( ) ( )

2 2

1

2 12 1 2 1

x A B C

x xx x x

+
= + +

−− −
 

         [M1] – Either seen 

  ( ) ( )
2

1 2 1 2 1x A x Bx x Cx+ = − + − +  

   

  Let 0x =     

  1A=     [M1] – For evaluating A and C 

  

  Let 
1

2
x =  

  
3 1

2 2
C=  

  3C =  

 

  Let 1x =      

  ( ) ( )
2

2 1 1 1 3B= + +   [M1] – For evaluating B 

  4 2B+ =  

  2B = −  
 

  
( ) ( )

2 2

1 1 2 3

2 12 1 2 1

x

x xx x x

+
 = − +

−− −
  [A1] – At least 1 term correct 

        [A1] – Remaining 2 terms correct 

 

 (ii) Hence find 
( )

2

1
d

2 1

x
x

x x

+

−
 .         [4] 

 

  Solution: 

  
( ) ( )

2 2

1 1 2 3
d d

2 12 1 2 1

x
x x

x xx x x

+
= − +

−− −
     [M1] 

            ( )
21 2

3 2 1 d
2 1

x x
x x

−
= − + −

−  

            ( )
( )

( )( )

1
3 2 1

ln ln 2 1
1 2

x
x x c

−
−

= − − + +
−

 

 ( )
( )

3
ln ln 2 1

2 2 1
x x c

x
= − − − +

−
   [A3] – Either seen 

 
( )

3
ln

2 1 2 2 1

x
c

x x
= − +

− −
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11         

 

 

 

 

 

 

 

 

 

 

 

 The diagram shows the trajectory of an athlete during a long jump which can be represented 

by the equation ( )3y x x= −  where x and y are the horizontal distance and vertical height of 

the jump respectively. O is the point where the athlete takes-off from the ground. When  
x r=  m, the athlete is at point P.      

 (i) Show that the distance, s m, between O and P is given by 4 3 26 10s r r r= − +  .   [3] 

 

  Solution: 

  When x r= , 

  ( )3y r r= −     [B1] 

 

  ( )
22 2 3s r r r= + −      [M1] – Use of Pythagoras’ Theorem 

  ( )
2

2 2 23s r r r= + −  

  2 2 2 3 49 6s r r r r= + − +  

  2 2 3 410 6s r r r= − +  

  4 3 26 10s r r r= − +  (shown) [A1] 

 

 (ii) Show that 
( )2

4 3 2

2 9 10

6 10

r r rds

dr r r r

− +
=

− +
.        [2] 

  

  Solution: 

  4 3 26 10s r r r= − +  

  ( )
1

4 3 2 26 10s r r r= − +  

  ( ) ( )
1

4 3 2 3 22
1

6 10 4 18 20
2

ds
r r r r r r

dr

−

= − + − +   [M1] 

     ( ) ( )
1

4 3 2 3 226 10 2 9 10r r r r r r
−

= − + − +  

     
( )2

4 3 2

2 9 10

6 10

r r r

r r r

− +
=

− +
    [A1] 

 

 

 



17 
 

JWSS Preliminary Examinations 2020 Additional Mathematics (4047/01) Secondary 4E/ 5NA 

 

 

(iii) Given that r can vary, find the values of r for which s is stationary.    [3] 

 

  Solution: 

  For stationary value of s, 0
ds

dr
= .   

  
( )2

4 3 2

2 9 10
0

6 10

r r r

r r r

− +
=

− +
   [M1] – Knowledge of stationary value 

  ( )22 9 10 0r r r− + =  

  ( )( )2 5 2 0r r r− − =  

  0r =  (N.A)  or  2r =   or  2.5r =  [A2] – Minus 1 for each error 

 

(iv) By using the first derivative test, determine whether the smaller of these values of        

r will give a maximum or a minimum value of s.      [2] 

 

 Solution: 

  

     

   

   

 

 

 

 

 

   

           [M1] 

   s is maximum when 2r = .   [A1] 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

End of Paper  

 

 
 

r < 2 

 

2 > 2  

ds

dr
 

> 0 = 0 < 0 

Sketch of 

tangent 

 

 

  

Outline of 

graph 

 

 


