2024 Sec 4 Preliminary Examination Mark Scheme

1	2	3	4	5	6	7	8	9	10
В	А	D	А	В	А	D	В	С	С
11	12	13	14	15	16	17	18	19	20
С	А	С	С	D	D	D	D	С	А
21	22	23	24	25	26	27	28	29	30
D	С	В	В	В	С	С	D	А	А
31	32	33	34	35	36	37	38	39	40
В	А	С	D	В	В	В	D	В	А

Paper 1

Paper 2 Section A

Qn	Answers	Mark	Guidance
1a	D	1	R: multiple answers
1b	В	1	
1c	J	1	
1d	1	1	
1e	Н	1	
2	Polymer A Structure of repeat unit $\begin{array}{ccc} \mathcal{A}_{3} & \mathcal{A}_{1} \\ - & \mathcal{C}_{-} & \mathcal{C}_{-} \\ \mathcal{A}_{-} & \mathcal{A}_{-} \\ \mathcal{A}_{-} & \mathcal{A}_{-} \\ \end{array}$; Type of reaction : addition ; Polymer B Structure of repeat unit $\begin{array}{ccc} \mathcal{O}_{-} & \mathcal{O}_{-} \\ \mathcal{O}_{-} & \mathcal{O}_{-}$	4	R: structure of polymer

Qn	Answers	Mark	Guidance
3a	At lower temperatures, less/slower reaction between nitrogen and oxygen ;	1	OWTTE
3b	More oxygen + less incomplete combustion / more complete combustion ;	1	
3ci	$2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2$	1	
3cii	catalysts provide an alternative reaction pathway with lower activation energy;	3	
	greater proportion of molecules with energy greater than or equal to activation energy ;		A: number & particles
	greater frequency of effective collisions ;		
4ai	filter out excess solid / CuO / to obtain filtrate ;	3	
	heat filtrate to saturation + leave to cool (for crystals to form) ;		
	filter out crystals + wash crystals with little cold distilled water + dry between pieces of filter paper ;		
4aii	Copper is unreactive / does not react with dilute acids	1	
4bi	NaOH(aq) / Na ₂ CO ₃ (aq) ;	2	
	H ₂ SO ₄ (aq) ;		
4bii	solid Na_2O is soluble in water + not possible to separate excess reagent from Na_2SO_4 (by filtration);	1	OWTTE
5ai	Hydrogen / H ₂ ;	2	
	Place a <u>lighted splint</u> at the mouth of test-tube + gas extinguishes a lighted splint with a <u>'pop'</u> sound ;		
5aii	Mass of solid increases ;		
	Iron gains oxygen to form iron oxide ;		OWTTE
5aiii	(order of change in mass) Pb, Mg, Fe ;	3	
	Pb does not react with steam + no change in mass ;		
	1 mole of Mg gains 16 g while 1 mole of Fe gains 21.3 g ;		OWTTE R: no mention of numbers

Qn	Answers	Mark	Guidance	
5b	Iron is more reactive than copper ;	2	ORA	
	Iron loses electrons / oxidises more readily + provides <u>sacrificial</u> protection to copper ;			
6ai	Sodium nucleus contains <u>11</u> protons + 12 neutrons	1	A: crosses to represent electrons	
6aii	The electron removed for ΔH_2 is from a shell which is closer to the nucleus ;	1	R: Na attained noble gas electronic configuration	
6b	Reactivity increases + melting point decreases down Group 1;	1		
6c	Energy is absorbed to overcome repulsion between like charges / negatively-charged ions and electrons ;	1		
6d	energy A $A^+(g) + e^-$ energy AH $O(g) + e^ \Delta H$	0-	- <u>(g)</u>	
	progress of reaction progr	ress of I	reaction	
	first ionisation energy of sodium first electro	on affir	nity of oxygen	
	correct diagram for first ionisation energy of sodium -1 m correct diagram for first electron affinity of oxygen -1 m labels -1 m (I: E_a)			

Qn	Answers	Mark	Guidance
7a	<u>Mobile</u> electrons in graphite acts as charge carriers + <u>mobile</u> ions in dilute aqueous sodium chloride act as charge carriers ;	2	
	Graphite electrodes remain chemically unchanged + water (in dilute aqueous sodium chloride) decomposes (to form hydrogen and oxygen gas) ;		A: H ⁺ and OH [−] ions selectively discharged A: chemically changed
7bi	(gas collected in test-tube Y) oxygen / O ₂ +	1	
	(gas collected in test-tube Z) hydrogen / H_2 ;		
7bii	(anode / positive electrode) $4OH^{-}(aq) \rightarrow 2H_2O(I) + O_2(g) + 4e^{-}$;	4	
	(cathode / negative electrode) $2H^+(aq) + 2e^- \rightarrow H_2(g)$;		
	Number of moles of electrons lost at anode is the same as the number of moles of electrons gained at the cathode + 2 moles of H_2 is produced with 1 mole of O_2 ;		OWTTE A: balanced overall equation
	same amount of gas occupies the same volume at the same temperature and pressure (and so, volume ratio is the same as mole ratio) ;		A: for every 4 moles of electrons transferred
7ci	(gas collected in test-tube W) chlorine / Cl_2 +	1	
	(gas collected in test-tube X) hydrogen / H_2 ;		
7cii	1:1	1	
7d	(colour in beaker 1) violet / purple + (colour in beaker 2) green ;	3	A: blue
	In beaker 1, H ⁺ and Cl ⁻ ions are selectively discharged (at the cathode and anode respectively) + leaving behind <u>alkaline</u> <u>NaOH</u> solution ;		A: comparison of concentration of H ⁺ and OH ⁻
	In beaker 2, H ⁺ and OH ⁻ ions are selectively discharged (at the cathode and anode respectively) + leaving behind a (more concentrated) solution of <u>neutral NaCl</u> ;		ions
8ai	$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \star & \cdot \end{bmatrix}^{3+} = 3 \begin{bmatrix} \times & \times & \cdot \\ \times & F \times & \cdot \\ \times & \times & \times \end{bmatrix}^{-}$	2	
	 Correct arrangement of electrons for Al³⁺ & '3+' charge Correct arrangement of electrons for F⁻ & '-' charge Charges balanced 		

Qn	Answers	Mark	Guidance
	All 3 correct – 2 m 1 – 2 correct – 1 m		
8aii	 (any 3) Compounds formed between metals and non-metals are usually ionic (so, they have high melting points and conduct electricity when molten); Aluminium chloride has a simple molecular structure Less energy is needed to overcome weak intermolecular forces of attraction (resulting in low melting points) Exists as (electrically neutral) molecules when molten / no mobile charge carriers when molten (resulting in poor electrical conductivity) OR Compounds formed between metals and non-metals are usually ionic (so, they have high melting points and conduct electricity when molten); Aluminium chloride should have a giant ionic structure; More energy is needed to overcome strong electrostatic forces of attraction between (oppositely-charged) ions (resulting in high melting points but melting point of aluminium chloride is low) Ionic compounds conduct electricity when molten due to mobile ions (but aluminium chloride is a poor electrical conduct or when molten) 	3	
8bi	Beryllium oxide is amphoteric + magnesium oxide is basic	1	A: reacts with acids & alkalis + reacts with acids
8bii	 (any 2) High melting/boiling point Semi-conductor / non-conductor of electricity Insoluble in water / organic solvents Brittle / Hard 	1	R: High density
9ai	Sulfur is oxidised as oxidation state of sulfur increases from +2 in $S_2O_3^{2-}$ to +2.5 in $S_4O_6^{2-}$; lodine is reduced as oxidation state of iodine decreases from 0 in I_2 to -1 in I^- ;	2	

Qn	Answers	Mark	Guidance
9aii	No. of moles of $S_2O_3^{2^-} = 24.70 \times 10^{-3} \times 0.100$ = 2.47 × 10 ⁻³ mol/dm ³ ;	2	
	No. of moles of HC/O = no. of moles of I_2 = 2.47 × 10 ⁻³ ÷ 2 = 1.24 × 10 ⁻³ mol ;		Allow ECF
9b	(Yes)	2	
90		2	
	% Cl in NaClO = $\frac{35.5}{74.5}$ ×100 = 47.7 %		
	% Cl in Ca(ClO) ₂ = $\frac{71}{143}$ ×100 = 49.7 %		
	Cl ₂ contains 100% chlorine		
	2 correct calculations + statement – 2m		
	Any one correct calculation – 1m		
9ci	 (any one) Different precisions/significant figures Different volumes of water used 	1	
9cii	Mass of chlorine = $2.86 \times 177 \times 10^{-3} = 0.50622 \text{ g}$;	2	
	Solubility = $0.50622 \div 71 \div 100 \times 10^{-3} = 0.0713 \text{ mol/dm}^3$;		Allow ECF
9ciii	 (any one) higher solubility of chlorine + less harmful chlorine (gas) released (OWTTE) lower water evaporation + less harmful chlorine (gas) released (OWTTE) reduces energy consumption/less energy needed + less crude oil / fossil fuels used less CO₂ produced from burning fuels to heat the pool + which causes global warming 		
9di	$NH_3(aq) + 2HOCl(aq) \rightarrow NHCl_2(aq) + 2H_2O(I) ;$	1	State symbols not required
9dii	 (any one) pH > 5.5 / 6 or pH between 5.5 / 6 to 8 ; □ low concentration of Cl₂/HOCl/NH₃ ; 	1	A: ensure swimmers shower before entering the pool R: High pH

Paper 2 Section B

Qn	Answers	Mark	Guidance
10a	Both acids ionise in water / aqueous solution to form H ⁺ ions / are dibasic acids ;	1	
10b	Difference: pH of malonic acid is higher than that of sulfuric acid / ORA	5	
	malonic acid reacts slower with sodium carbonate		
	Both differences – 1m		
	explanation: malonic acid is a weak acid which ionises partially in water + sulfuric acid is a strong acid which ionises completely in water ;		
	malonic acid has a lower concentration of H ⁺ ions compared to sulfuric acid (at any point in time) ;		
	similarity: both acids produce the same volume of CO_2 gas ;		
	explanation: same amount of H ⁺ ions that react with sodium carbonate ;		
10ci	Oxidation ;	1	
10cii	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - 0 - C - C - C - 0 - H \\ H & H & H \end{array}$	1	
10ciii	alcohol	1	A: diol
10civ	No + different molecular formula + $C_3H_4O_4$ (malonic acid) vs $C_3H_4O_2$ (compound B) ;	1	A: compare no. of O atoms
11ai	Yes + same molecular formula of C_6H_{12} + different structural formula ;	1	A: structure A: same no. of C and H atoms
11aii	Similarity: Both undergo complete combustion to give CO_2 and $H_2O\ ;$	5	
	$C_6H_{12} + 9O_2 \to 6CO_2 + 6H_2O \ ;$		

Qn	Answers	Mark	Guidance
	Difference: Hexene undergoes <u>addition</u> reaction with aqueous bromine + cyclohexane does not react ; Observations: hexene decolourises orange/red-brown aqueous bromine + no observable change for cyclohexane ; $C_6H_{12} + Br_2 \rightarrow C_6H_{12}Br_2$;		A: aqueous Br ₂ remains orange / red- brown R: compare sooty flame R: orange- brown
11bi	Ester	1	
11bii	$ \boxed{ \begin{array}{c} & H \\ - & - & - \\ H \end{array} } $	1	
11biii	Plants used to make vegetable oil for biofuel can be regrown / / replanted / replaced (renewable)	2	
	OR		
	Crude oil is finite / a limited resource ;		
	CO ₂ is absorbed during <u>photosynthesis</u> which offsets the CO ₂ produced when biofuel is burnt (environmentally sustainable) ; OWTTE		R: equal / net is zero