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Real Vector Spaces (Real Linear Spaces)

Definition 1.1

A non- : : g
n-empty set ¥ of vectors equipped with two operations:

vector addition, denoted by ® and scalar multiplication denoted by ® ,

is called a vect . i
Or space over R (or linear space over R or real vector space or real linear

Space) if the following 10 axioms are satisfied:
[Al] u®
VeV forallu,ve vy, (We say Vis closed under @ .)
[A2] uev=
v @ uforall uveVl. (We say vector addition, @ , is commutative.)
[A3]

There exists a zero element , denoted by 0, in ¥ such that
0D@u=u and v @ O=u forallue V.
A4l Forea i
iA4l Forecachu e V, there exists an additive inverse, denoted by —u, in ¥ such that
u® (-u)=(-u) ® u=0.
(A5} v (ve W) =(u

D Vv) D w f
W6 sayrvestimmis orallu,vandw e V.

ition, @, is associative.)

[M1] a®ueV forallo e R andu e V. (We say Vis closed under ® 2)

[M2] 1®u=u forallue V.

[M3] a® (B®u)=(af)®u forall a,fe RanducV,

[P1] oa® (u @ v)=(a® u) @ (a®v) foralla e R and u, v e V. (distributive)

[D2] (atf)@u=(a®u) ® (BRu) forall a, BeR andueV. (distributive)

(AvatOé .;pace V, equipped with vector addition ® and scalar multiplication ® , is denoted by

Remarks : - ‘

. Mt

(a) When we say vector space “over R”, it means the scalar used in the scalar ppednﬂt{?:“
taken from the set of real numbers. For our syllabus, we will only consider real scalar

values. So, we will omit the phrase “over R ” from now onwards.

(b)  Usually, the symbol ® is omitted , i.e. a®u is simply denoted by au , if there is no
possibility of confusion.

(c) If there is a possibility of confusion, you could denote zero element and additive inverse
by other notations such as e and f. Whatever notation you used for zero element and
additive inverse, you should first define them in your solution.

Chapter 13B: Linear Spaces
Page 2 of 33



Raffles Institution H2 Further Mathematics 2019 Year 6

Example 1

5 . X
(R",+,+ ) is a vector space over R where the set R? = {( !

X,

]: x ,xze]R} and + and - are the

standard operations on R defined as follows :

G a)e) o
xZ yz x2+y2 x2 axz

Proocf

To prove that (R? +,+ ) is a vector space over R , all we need to do is to check that all the 10
axioms are satisfied.

o ; : 0
First of all, note that R? is a non-empty set since ( e R.
: 0

u
Letu= 1},'«: VI'le r2.
U3, L)

[Al] o +v

~ :(U +\,) eR"RJl"q"u ,\A/JGI?\

bR

Sincg Vit e R

for j=

e o =V+u b I -

NFER ~

IS +hot
[a3] (herowigt 0 2o element C3e Such

(0\ + \u\;J = ((::U:)‘ (u) —9\71\ a\ (\:;J EW\L

0

[Ad] W®or eqch ( i’ A there exlsiy en acﬂcﬂrf_m ”‘verse( )élk Judh Jﬁq,
-V, 0
()l (k)
B VLR U, (-0 .
vhere (3 she ol elonest Wr A graoded Fetior s 7
AS] mor an v v and welR?™ y

0+ (o) = () (Cop(e) = () + () = (4567

(0wt = (8 () () <[t) H () <[ imnn)

'“QI‘ 4 U ¥ ( “t W ) ( ) ® W Chapter 13B: Linear Spaces
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¥ W QU). 'FDra
av, eR \Cm_

[M2]
[M3]
[D1]

[D2]

- 2 - :
Since (R*,+,+ ) satisfies all the 10 axioms, (R? +,» ) is a vector space over R

{ ~4
§
5
(%
affles Institution H2 Further Mathematics § ﬁ
\\a: §'
&
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Remarks :

Let 1 be a positive integer. (R”,+,") is a vector space where the set R" =4

and + and - are the standard operations on R” are defined as follows :

X

%

X

n

by
Y2

Yn

X+

X+,

x"+y?7

Xy

)

\ X

n

X
X2
L x"
(ax,
ax,
, aeR.

s X, ER

n

In particular, the set of real numbers, R , is a vector space with respect to +and - where + and -

are the usual real number addition and multiplication, and

()
:

) i ; . .
R= L yJ :x, y,ze R} is a vector space with respect to the standard operations on R*.
L

A

Example 2

Let ¥ be the set of all positive real numbers. Define @ by u @ v=uv and ® bya®v=v",

where u, v € ¥ and a.e R . Prove that Vis a vector space over R .

[Proof :

Chapter 13B: Linear Spaces
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Example 3

(@)  Let ¥={0}. Define0 ® 0=0 and a®0=0forany €R.

ro linear
Then (V, ®, ®) forms a vector space called the zero vector space (or z¢
space).

(b)

. ) stn,i.e.
Let P, denote the set of all polynomials with real coefficients of degree ét fflo g
y+ax+ax" +...+a,x" where a, € R, with addition @ and scalar multiplication

defined as the usual addition and scalar multiplication of polynomials:

(@ +ax+a,x? +oota,x") @ (b +bx+byx’ fo4bx")

=(a, +b,)+(a,+8)x+(a, +b,)x* +...+(a, +b,)x"

a®(a, +ax+ax +otax")=(aa,)+(aa)x+(aa,)x* +...+(aa,)x"

Then (P, , ®, ®) forms a vector space.

Proof :

(a) ¥ is non-empty since 0c

[A1]
[A2]
[A3]
[A4]

[AS)

(M1]
[M2]

[M3]

[D1]

[D2]

0V, 0eV=0@ 0= 0cV. Hence V is closed under @ .
0@20=0=0® 0foro €V. The vector addition is commutative.
0 is the zero element wr.t. ® since

The additive inverse of 0 eVis 0 since

For0eV,0© (00 0)=0® 0=0:
0D®0)®0=0a 0=0.

Hence 0 ® 0 ® 0)=(0 @ 0) @ 0for0 eV,
The vector addition is associative.

a®0=0¢cV forallaeR ,0cV. Hence ¥ is closed under ® .

I1®0=0for0 V.

Forallo,f e R and 0c V,a® B®0)=a®0=0;(@p)®0 =0
Hence a® (B®0)=(ap)®0 foralla, p e R and0e V.

Foralloe R and 0 e V,
al) (ofo) = x@®Q=0

Hence

Forallo,Be R and0 e V,

Hence

({0}, ©, ®) forms a vector space with respect to the operations ® and ®.

Chapter 13B: Linear Spaces

Page 6 of 33




Raffles Institution H2 Further Mathematics

2019 Year 6

(b)

P, is non-empty since 0+0x+0x*+...+0x" =0e Ea

tet Yozt b S et e P /}%f
et;a,x ;!x Zcrxe » ,/%/‘/

[A1]

[A2]

[A3]

[A4]

[AS5]

(Zar_x] {be J_Z (a,+b,)x' € P,,since a,+b, R forall i€{0,1,2,...,n}
i=0

i=0

Hence P isclosed under @ .

n

[ia.x‘)@(ib,x’]

- Z(arh)y
- z ( biFo)R —<Zaﬂ) (Zl”‘)

0 is the zero element w.r.t. @ since

oc-B@a,.x*]: (Z ox‘) @F 0; X")“ :E(Ofai)xi

= Z": ax'
i=0
4

n

The additive inverse of Zax is Z( x e P since

i=0 i=0
n

Zax @( bx @icx"]

= 2 (aab A G N
= Z(phi @ Tok
(sar O35

Chapter 13B: Linear Spaces
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p ‘ —
[M1] a®Zax _Z (aa)x’' e# forallaeR since ag, €R forall f=0) 2t

i=0
Hence P, is closed under ® .

[M2] 1®Zax _Z (1-a)x _Zax

i=0

[M3] « ®(ﬁ ®§: a,.x’] =q ®i(,8a,.)x" — i(aﬁa,.)x" = (aﬁ)@ia,.x"

[D1] "
a®(§aixi®§1),.xij=a®§(a,.+b,.)xi
—Zc?(a +b,)x '" (aq, +ab) ‘
—g(aa x@Z(ab ), x —(a@Zax] (a@éb,x")
B2}
(a+ﬁ)®§aix"—;((a+ﬁ)a)x'=’:0 (aa,+Ba)x
4 (Zﬂ aa,.x'] ® [zﬂ ﬁa,x’J

(P, , ®, ®) forms a vector space.

Not all sets with given operations form a vector space, as some of the 10 axioms may not satisfy.

Chapter 13B: Linear Spaces
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Example 4

Determine whether each of the following sets with the given operations forms a vector space over
R.

(a)  Theset of integers Z with the standard integer addition and real number multiplication.

(b)  The set of all real numbers with the operations : u® v=u—v + 1, 0. ® u=cw
-

(©0 S=1:|y|eR’:x+y+z=1} with the standard operations on R’.
z

(d) ThesetV= {[ZJ eR’:a> 0} under the standard operations on R?.

Solution :

~

Chapter 13B: Linear Spaces
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Notes : V such
v € F such that
1) To show Vis not closed under ®, find an example of au € Vanda
u®dvey
2)

V such that
To show @ is not commutative, find an example of au € Vandav e
U@ vy @ u.

3) To show [A3] fails, either show that there is no zero element 0 such that0 @ u=u
andu ® 0=u forall y ev;
or show that there is a zero element, 0, with respectto @ ,but0 ¢ V.

4) To show [A4] fails, either fing an example of a u eV such that its additive inverse
does not exist or find an example of a u € ¥ such that its additive inverse exists but
g V.

5) To show @ is not associative , find an example ofau € ¥, ave Vandaw € Vsuch
thatu@(v@w);e(u@v)@w. s had A3 el

6) To show Vis not closed under ®, find an example ofau € Vandao € R SUCh\ that
oa®u g V.

£ To show [M2] fails, find an example of a u eV such that lLuzu.

8) To show

[M3] fails, find an €Xample ofau €¥,a0 ¢ R anda B € R such that

a® (B®u) = (af)® .

9) To show [D1) fails, find an example ofau eV, avy ey andaa € R such that
o® (u @ V) #(a®@u) @ (e ®v).

10)  To show [D2] fails, find an example ofau eV, a0 e R anda B € R such that

(a+B)®u # (o ® u) @ BOu).

Useful Result |

Let V'be a vector space and let u, v and w be vectorsin V. If u®v=u®w or VOu=w®u,

then v=w.

Proof:

Chapter 13B: Linear Spaces
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2 Vector Subspaces

Definition 2.1

Let (V, @, ®) be areal vector space and Ube a non-empty subset of V.

Uis called a vector subspace (or simply called a subspace) of Vif U itself is also a vector space
over R under the same operations ® and ®.

) 0
For example, let us consider ¥ =R? and U = {(O]} From Examples 1 and 3(a), we have shown

that (V,+,-) and (U, +,") are vector spaces under the same standard operations. Clearly, UcV .

0
So, we can say that H(O]}ﬁ,} is a subspace of (]RZ,+,.)_

To show that U is a subspace, we must show that U satisfies all the 10 axioms of a vector space.
However, since U is part of a larger vector space ¥, only the closure for vector addition and
multiplication in U need to be checked since the rest of the properties are inherited from V.

‘Theorem 2.2 (Subspace Criteria)

Given a non-empty subset U of a real vector space (V, ®,®), Thergs a zoo
ifu®veUforallu,v €U and a®u e Uforallae R andu € U,

then U is a subspace of ¥/ with respect to the same operations @ and ® .

Proof
If u®veUforallu,ve U and a®u e Uforallaa € R andu € U,

then the axioms [A1] and [M1] hold. Hence we need only show that U satisfies the remaining 8
axioms.

Axioms [A2], [AS], [M2], [M3], [D1], [D2] are automatically satisfied by the vectors in U since
they are satisfied by all vectors in V. Therefore, to complete the proof, we need only verify that
axioms [A3] and [A4] are satisfied by vectors in U. See tutorial 13b Qn 4

Notes :

. If a non-empty subset U of a real vector space (¥, @, @) does not satisfy any one of the
10 axioms as stated in Definition 1.1, then U is not a vector space with respect to the same
operations @ and ®, and so Uis NOT a subspace of V.

Remarks

(a)  Every vector space V has at least 2 subspaces, namely V itself and the zero vector space

{0}.

(b)  Every subspace of ¥ must contain the zero element 0.

Chapter 13B: Linear Spaces
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Example §

7

For each of the following subsets of R*, determine whether or not it is a subspace with Tes

e
the stand i } Gi i
Standard operations on R Give reasons for your answers.

” £

G) Fdl 5 eR}:1x=] . (ii) T={|yl|leR:x=p=2z};
z z

e x x

(i) o Y|eR :Tx =\ i) V={yleR:x+y* =1}
- z

Describe geometrically the sets T and U.

NOTE :

For R

* A nothing is mentioned about the o

shealsy . perations + and - , we shall take the operations to be
the standard Operations defined on R".

Solution -

() The zero element ip R’is|o

(i) T'is non-empty as

0|eT since0=0=0.
0
X y
Let | x|, | y |eT. Then,
X))\
X y xX+y .
x|t yi=|x+y|eT (Closed under vector addition) i
x) \y) \x+y '
x) (ax '
a| x (=|ax |eT forany a e R (Closed under scalar multiplication)
x ax

Hence T is a subspace of R*.

1
T'is a line which passes through the origin with direction vector | 1 |.

1

Chapter 13B: Linear Spaces
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U ic non enpty as
Let (-,E)gt@(

() + () -

z

) (-,’i

|

dy

:b:[q

—

) € u SingR 7(0):

x t4a

(n—a)) ¢ U

vl+th

x) £ W g onjc\,gfb\

H&nqu & Q sq\;sPuQ of R

u [ Q?\Gne ~\»l1\(4"‘ asses 'H(\'M Orljln &
WH\« Alrec{-lcm VPCJYMS ﬁ(_,) onco( )
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3 Linear Span
3.1 Linear Combination

Let (V, ® , ® ) be a vector space and {vi, va,..., va} be a set of n elements in V.

Then for any real scalars al, o,..., Ox, the vector

(1®v)® (02 ®v2)D ... D (0tn ®Vn)

is called a linear combination of v, V2,..., Vn.

3 2) (1 3
For example, | 3| can be written as a linear combination of | 1 ,|=1| and 0] as
4
3 2 1 3
3[=2|1|-|-1|+0]l0].
4 3 2 5

Example 6

1 0
Let e; = (01 and e2=| 1| be vectors in R? . Determine whether each of the following vectors
o) 0
can be written as a linear combination of e; and ex.
2 I
(a) u=|3|, (b) v=|2
0

1
(@) By ohservation, H,=(% )= 1(‘%);i3(2) £ 48 $3E,
(

Thus—g—<on—be _ivpdren—03—d_\(y,

Thus, u can be written as a linear combination of e; and e».

(b) Suppose v can be written as a linear combination of e1 and ez, that s, there exists

'Proo? a,,a, € R suchthat v=ae +a.e,.
Cont - Then, (3"): %, (00)1‘ A |O) Z DJ.
VOJ\CH\

As he z-comporent 1S net copsistent, ¥ Cannot be
S
writen as o LRERR (oubinodn oF € and €5

Chapter 13B: Linear Spaces
Page 14 of 33




Raffles Institution H2 Further Mathematics

2019 Year 6
Example 7
2
Determine whether each of the following vectors can be written as a linear combination of | 1 ,
3
1 3
-1| and [0].
2 5
0 1
@@ |0}, ®» |2].
0 4
Solution :

0 2 1 3
(a) Consider | 0 |=al| 1 [+b| -1 |+c| 0|, where a,b,cecR.
0 3 2 5
From &C . WO gey q=-t, L=-t, 2=t where t€R

" persslr, (2] () [4)+ Q)

= (2,) Can be written as a

rcar corbinatn o (1), (4) and (3).

(T

1 2 1 3
(b)  Consider |2 |=a| 1 [+b]| =1 +c]| O |, where a,b,ceR.
4 3 2 5
From GC, there 1§ ho Soln o +his eqn.

So ('1) Connot B¢ Watea Aas o
&

lneor combinatn uf @) (i) ond C)

Chapter 13B: Linear Spaces
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Linear Span of a Finite Set of Vectors

Let(V, @ , ® ) be a vector space over R and {vi, va,..., va} be a set of n elements in V.
The linear span of {vi, v,

-»» Vn}, denoted by span{vi, v2,..., va}, is the set of all elements of
the form (o, ® v)®(a,®

V2)®'--@(an ®v,), where a,,a,,...,a, € R.

(basically, it means al] the possible linear combinations of vi, vz,..., Va) ‘

That s, span{vi, va,..., vi}={(«, ®v,)®(a, ®v,)®--B(a,®V,):a,a,...,a, R}

Note: Since (V, @ , ®) is a vector space over R, all elements of the form

M®V)® (2 @v)e .. @ (0 ®vn) e V if vi,v2, ..., Ve V.

Example 8
1 L} =32 1) (0

Find the linear span of @ ol in R?, M) <(of,] 0 |}in R ,(©<|0],[1][}in R,
1 =, 1)1{2

For each case, describe the locus,

Solution :

1 1 o
(a) Span 0= al0 aeR} = 0 aelR
1 1 a
1
The locus is a line which passes through the origin with direction vector 0].
1
1) (-2 1 -2 d, 20
(b) span<(0|,| 0 |'= a|0|+a,| 0 la,a,eRt= 0 ;pl”DQEfD\ |
?, - 20, i
1) -2 1 -2 l
~1
Noheg thay (9):—1(‘3‘\ )o@ o W B Con smp':—ﬁ.yt\-\? \nean

(0“’\\3‘\'\0-‘1&‘\ a

w ST RSN !
d\,(‘g‘) t i, (%1) :c". (L\ )_lm @;(« =20, (c;) * 5(&\) / whege g0 2% €l

1) (0 1 0 a,
() spanq| 01,1 1 [p =3¢, 0| +a,| | |:@,,@, R} = a, |a,a,eR
112 1 2 a, +2a,

The Lacusts “\)Llh[’ (qucl\ quse& rkl\m M oﬂomh WH'!\EQM

{ 0
\(9‘:"\3‘3 (\? \ #od (-‘l\ Chapter 13B: Linear Spaces
I l Page 16 of 33
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_Theorem 3.1

Let (¥, ® , ® ) be a vector space over R , and {v1,v2, ..., v} be a set of n elements in V.

Then the linear span of {v1, va,

.-, Vn} is @ subspace of ¥ over R with respect to the same
operations @ and ® .

Definition 3.2
Let (V, ® , ® ) be a vector space over R .

Suppose there exists a finite set of elements {vi, va,..., va} such that linear span of

{vi,vo, ..., vn} = V.

(In other words, every element in ¥ can be written as a linear combination of V1, V2, ...,Vn.)
Then we say that {v1, v2, ..., va} spans V

OR Vis spanned by {vi,v2, ..., vn}

OR {v1,v2, ..., va} is a finite spanning set for V.
Example 9

X
(a) R*= {[ J: X,y € R} , the set of all real 2-dimensional vectors, with respect to the standard
B4

1) (0
operations , is spanned by {(0}[1]} since any Vecior (;) in R con be
Writren Qg k&\o\*j("l\ where Y SR

AR spen I(4), (33 - {‘*(L)* 80 «, perd= (%) o pemf-r>

(b) The vector space R”, with respect to the standard operations, is equal to the linear span of

1Y(0Y[(0) (o0
oll1(lo] |0

9 0 3 0 ’ 1 177 O r

0 0)10 \ 1 J

L

) u
5.1 (5 = 2. .
This is because any vector in R”", say . |» can be written as

0 0 u, )| ¢
At “1(%)*“1(.}\,_.. S EYARIE:

o) o A

st \!‘\EW\’G Tl 6 W

Chapter 13B: Linear Spaces
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In particular, R = linear span of {1};
0) (0
R =linear span of [0 |.| 1[,| 0 3 \
\0) \0) {1
(1) (0) (0 (o
¥ =1 g Of(1]1]0]]0
‘i" =1 i 9 E] » 3
Inear span o ol'lo[1]]0o
N0/ \0) (0] |1
3.3 Methed to Check Whether a Real Vector Space V is Spanned by {v1, vz, ..., Va}
Let (7, @ , ®)be areal vector Space and u be any element in V.
Suppose u = (1@ v NS (@)D ... @ (0 ® wi).
It there 1s a real solution for every i, then Vis spanned by {vi, vz, ..., Va}.
If there is no real solution for some of the o 's, or there is a restriction on u,
then ¥is not spanned by {vi,vs,..., V).
Example 10
Determine whether R® is spanned by
2 1 1 1 1 0
(a) v=|1|,w=|0|andu=]1 3 ® v=|1[,w=|0]|andu=]1
. ¥ 0 0 1 1
Solution :
x X 2 1 1
(a) Let |y |eR’ suchthat | y [=a] 1 +p| 0 |+¥| 1| for some a,B,yeR.
z 5 2 2 0
X
eq 31 ™
14516
2 Q Y Z
ALAY 'y I -
det ‘\ 2| -af3 = a-a=0
380
. Not unigue
1 B I i i, TS
Rugmented Matnx i '1 %L 3)
10 5 o | 3
K: 'o ‘| B)?@pl () ' |\i) -}.lzkll (0 ! |\ —QB)R;‘?%IR’( f : \‘125
< [se-2y)
19 0 1102————9 8 & | mayl— ob o
-T\'\E' Rm U hsient | AINFTY=

be soluhons -E>r ou 32, Prow

e -\here Wil

\So qﬂ\! Ql\.\@r -R\i—m sl not have o\n
f 4

f\f\us (Pu nok 5 WJ \39 1- ;),

) [#2\5 =0 (bh“_’)
)

Chapt
of

wr (1)

er 13B: Lincar Spaces
f@ ﬁ,.,,‘(,{’uge 18 0f 33
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(b)

z
[y v 9 o
g ! 3)
(Lll)(T

ushg G, det

y
Y
Z

1

1
—

pl=

L

ul\— - ~Y-
pl o~

)

0

1

—Thvs “he 5:-]8‘\&01 "\ag a U\f\\c\ub-go\r\_ = ?(

3)-

Let | y [eR’ suchthat |y [=a| 1 +ﬂ 0|+y| 1| forsome a,B,y R

=2,

XEYy-2

2

0] s v

—_— |

Note :

Some vector spaces have a finite spanning set. Likewise, some vector spaces have an infinite
spanning set. For the current syllabus, we will only look at finite spanning sets

Chapter 13B: Linear Spaces
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4.1

Linear Dependence and Independence
Linear Dependence and Independence
Let (V, ® , ®)be a real vector space and 0 be the zero element in V.

. ve i
The set S={v v,,.. vn} is a linearly dependent set of elements if at least one of the vectors ip
S can be written as a linear combination of the other vectors in S.

If no vector in § can be written as a linear combination of the other vectors in S, then § is called a
linearly independent set

If § ={v,} (that is S is a singleton), then S is linearly independent if v, #0 and linearly
dependent if ¥, =1

1Y [0
For example, this set || 7 |00 7Y s linearly dependent since
1)1-1
LY 10 1
The set S=4|7|l0|l i linearly independent, since it is clear that | 7| is not a linear
0 0
0
combination of | 0 |.
1

Remark

(2) If a set S has exactly two

nonzero vectors, then § is linearly independent if and only if any one
of the vectors is not a sca

lar multiple of the other vector.

LY 2y 1=
(b) Consider the set of vectors 011, 3 [}inR®and we want to check if the set is linearly
2181109

independent or not. Then we need to check that whe

ther there are solutions to the following
equations:

Chapter 13B: Linear Spaces
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Theorem
(a) {v1, v2,..., va} is a linearly dependent set of clements if and only if there exists real scalars
o, 02,..., tx, not all of them are zero, such that
(@1 ®@v)® (2®v2)@ ... ®(an®vn)=0.

(b)  {V1,Va,..., vu} is a linearly independent set of elements whenever there exists real scalars
a1, 02,..., o such that (a1 @ v1)® (2@ v2)® ... ® (@ vn) =0 then =02 =... = 0tn =
0.

Proof

SUWOSGM i\f.“) ~-Vo)"5 }“‘tu*’ug &elm({ef»\ S& . Jhe
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d -
42 Method to Check If {v, , v1,..., v} is Linearly Independent or Dependent in

Let (1®v)® (@)@ ... ® (0@ ve) = 0.

o upon solving for a1, @z, ..., oy and ALL o, 0, ..., 0 are zeros ONLY IS THE ONLY

SOLUTION, then {Vi,v2, ..., va} is linearly independent in V.

If some of the a's are not zeros, then {vi,Vv2,..., va}is linearly dependentin V.

Example 11

Which of the following sets are linearly dependent in the respective vector spaces ?

(1) (1) (0)
@ 41|01 in R:
L 0 1} 1)
1 ’2) 0
0 4 5
® i 2 |0 o[ R s
\2) o) {3
(0
0
C < in R4
(© o |f DR
\0
Solution ;
(@)  Method 1 (by hand):
1 1 0 0
Suppose o 1 [+B|0|+y |1]|=|0|
0 1 1 0
Then a+B=0 .. (1)
at+ty=0 _..(2)
By =) ...(3)
(D=2 B-v=0 ..
3)+@ 26=0, ie.p=0
From(4) & (1), y=0and a=0.
1 1} (0
Hence {| 1 [, [0, | 11} is linearly independent in R® | i.c. not linearly dependent in
0 1) 11
R’
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Method 2 (by GC):
1 1 0 0
Suppose 0 1 |[+B[0 [+y |1 |=[0[
0 1 1 0 704 B -Q
Then o+B=0 ...(1) 9 Yy i
at+y=0 ..(2) ot tY -0
B+y =0 ...(3)
From GC, o=0, p=0andy= 0 is the only solution.
1 1) (0

Method 3 (by determinant) :

0
Supposeal +[3 0 +y 11=[01
0
0
1
1

Hence 4| 1 [y | Oy | 1| islinearly independent in R? , i.e. not linearly dependent in

11
Considerdet|1 0
01
1 10 :
Sicedet|1 0 1= =L . uﬂtﬂue Soln
0 11
1 1% [0 7
1], |0}, | 1|} is linearly independent in R® , i.e. not linearly dependent in R’.
0 1 1

Chapter 13B: Linear Spaces
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\A
T \\ \
(b) Method 1 (by hand):

1 2 0
0 4 2
0
3

5‘\ oW

Suppose & 1 2f ) Ty

2 10
Then, @+2f =0 e 0y
4+2y =0 —————(2)

a+2f =0
20+108+3y =0 _____ (3)

From (1), a=-2p43

Subst (4) into (3), 68+3y=0

In fact, (2) and (5) are the same.
1 ) 0

4

+p +y

0
a
ot )
2

In particular, if we choose B=1, we get —2

Hence is linearly dependent in R*

N = O
w o N o

Method 2 (by GC):
1 2

0
Suppose @| _ |+ ¥

a+2p =
20+10B8+3y =0 ————— 3

1
From GC, o=1y,p= *5}’ andy=vy.

Chapter 13B: Linear Spaces
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Hence

W O N O

Method 3 (by Row Operations):

Method 4 (by Observation)

©

is linearly dependent in R*.
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Useful Results

Letvi.va, ....v. be elements in a real vector space .

(a) If one of the v;'s is 0. then IV VI as vr} is linearly dcpen_dent in V. _

(b) In particular, {vi, v>} js linearly dependent if and only if vi or vz can be written as a
scalar multiple of the other. 2 .

(o) The columns or rows of a square matrix are linearly independent if and only if the
determinant is non-zero.
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5  Basis and Dimension of a Real Vector Space

Al

Basis

Let (V, © , ® ) be a vector space over R.

Suppose that there exists a finite set of e]emcnts {vi, v, .
rgrg) (3
Vn} 18 lmearly mdependent.

v»} is said to be a finite basis for V.

(a) {v1, va, ...
(b) {vi,v2, ...,

Then the set of elements {vi, vz, ...,

s Vi) spans! IV and (

b pa

Note: For the current syllabus, we consider finite basis only.

Example 12
1
Show that 4| 0
0

2

0) (0 (LY (0
1 3 0 and 1 ’ 1
0)\1 0) {1

to the standard operations.

Thus,

Consider

J]
So, 3( 0
L0
(1
0
L0

So, 1

Solution :

| 0 0
Consider ER then ; y(%) + 3(6 )-]-2(? )

1) (0) (0)]
0f,/1/,0
0) \1

1
al0
0

>

£

0
.1
0
0
0

+b

O\
0
1
0
0
1

+ spans R.

0) 0 0
1|+ec|0]=
0 1 0

s

=
P

s linearly independent.

1

,| 0 |pare bases (plural for ba

1

.., Vn} such that

Fxt)

sis) for R? with respect

0| Then, the onlig solution to Hhs eqn s &=b=c=

*is a basis for R’ with respect to the standard operations.

L\
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x b

Consider | y |€ R®, then

Z
X 1 0 1
y =(J:.-')‘*J-‘I‘3"%Z) 1|+ (-%Y‘*ﬁ.‘j'*‘iz 1 +(‘§¥-’k.‘3‘f"§.’2 0
z 0 1 ]
1) (0) (1
So, 3| 1 |,{ 1 [,{ O |} spans R?.
0) {111

1 0 1 0
Consider a| 1 |+b| 1 |+c|0]|=]0

. Then, USmS 6C, Jhe oY soln is Q=L=C¢o
0 1 1 0

1) (0) (1
So, | 1'{s| 1 || O|¢ is linearly independent.
of (1) (1}
(] 0 \ §
3 [ P\ ""3 J \ [ I\- X
So, 4| 1{,| 1, 0|} is another basis for R W}th respect to the standard operations.
0 |1 ' S L

Note
1) Basis of a vector space is not unique.

2) A basis for a vector space ¥ contains the smallest possible number of vectors that span V.
1) (0 (0))

3) 410,/ 11,| 0|} is known as the standard basis for R®.
0) \O) \LJ) tnfoe pilne off
(1) (0) (0 0} (0)]
0 1 0 0
4) The set 1 0 , 0 , %) - 0 , .: Lisa(ﬁnite) standard basis for R"” with
. ” z 1 0
o) o) o) o) L

respect to the standard operations.

In particular, {1} is a basis for the set of real numbers with respect to the usual real
number addition and scalar multiplication.
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Theorem 5.1 (Uniqueness of Basis Representation)

_ - Vn} is a basis of a vector space V. Th d
; . Then every vector ¥ can be expresse

}'L‘(_Elilx as a linear combination of VI, V2, ...,V P i

1.e.if veV such that ,

V=(4@V)0(0,0v,)0--0(q,8v,)= (4 ©,)0(5,©v,)0O(5,0v,),

ne

then a, = ﬁl,az = ﬂz,,..,a" =ﬁn.
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5.2 Dimension of a Vector Space

Theorem 5.2

Let ¥ be a real vector space with basis {vi, vz, ..., va}. Let S={ui, uz, ..., us} be a set of k
vectors in V.

(a) If k> n, then S is linearly dependent.
(b) If & <, then S does not span V.

Theorem 5.3 (Uniqueness of Dimension)

Let V' be a real vector space with two bases {vi, vy, ..., v»} and {ui, u2, ..., Um}, where m and n
are positive integers. Then m = pn.

By virtue of the above Theorem, the following is well-defined:
Let V' be a real vector space spanned by a (finite) basis {vi, vz, ..., Va}.

The dimension of V' is defined as the number of spanning elements in a basis, i.e. n, and is
denoted by dim V. .

We define the dimension of the trivial vector space {0} to be zero.

Example 13

__ (R", +, -), with the usual addition and scalar multiplication, is a vector space of dimension » over
B

In particular, R with the standard operations is a vector space of dimension 1 over R
R with the standard operations is a vector space of dimension 2 over R ;
R’ with the standard operations is a vector space of dimension 3 over R .

b

Example 14
a a
Let U= lc) eR*:b+c+d=0prand W= lc) €R*:a+b=0,c=2d} be subspaces of
d d |
J spaa R*. Find a basis for U and W, and determine their dimensions.

J lmeorly | Solution:

nd o 5
U= {('ﬂ elrt: L:*(-ol}

, |
- (‘c{ d l
; |

| ] ]
. ”( 3)* c (7’ -1&(1 e
6

6 |

\
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Useful Result

Let Ube a subspace of a vector space V. Then 0 < dim U < dim 7.
IfU+ {0} or U=V, then 0<dim U<dim V.

Theorem 5.4

A vector space (V, @ , ®) has dimension n, and S is a set of vectors in ¥ with exactly » vectors.
Then, S'is a basis for ¥ if and only if either § spans ¥ or §is linearly independent. That is,

(a) If S spans V, then S is linearly independent.

(b) If S is linearly independent, then S spans V.

0\

For example, is linearly independent in R*.

’ ) b

1)1} (0
Oj|1]]1
11'10(|0
0)0) (1)1
R*is a vector space of dimension 4 with respect to the standard operations.
(1 0) (0

0 1

1 0f
0)10) 1

a basis for R* although we did not check whether the set spans R*.

1
1
Hence from the above theorem, 1ol

0
1 which are linearly independent, can also be
1

Theorem 5.5

Let V' be a nonzero vector space. _
| (a) Every set of linearly independent vectors in ¥ can be enlarged to a basis of V.
(b) Every spanning set for ¥ can be reduced to a basis of V.

Example 15
Find a basis of R’ that contains the vector (1,2,3). Justify your answer.
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Summary
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