EXP	PUNGGOL SECONDARY SCHOOL SECONDARY 4/5 EXPRESS 2022 PRELIMINARY EXAMINATION QUESTION & ANSWER BOOKLET	· 道 · · · · · · · ·
NAME		
CLASS	INDEX NUMBER	
Science Chemis	stry	5076/03
Paper 3		26 August 2022

READ THESE INSTRUCTIONS FIRST

Write your class, register number and name on all the work you hand in. You may use a HB pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black ink. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A (45 marks)

Answer **all** questions. Write your answers in the spaces provided on the question paper.

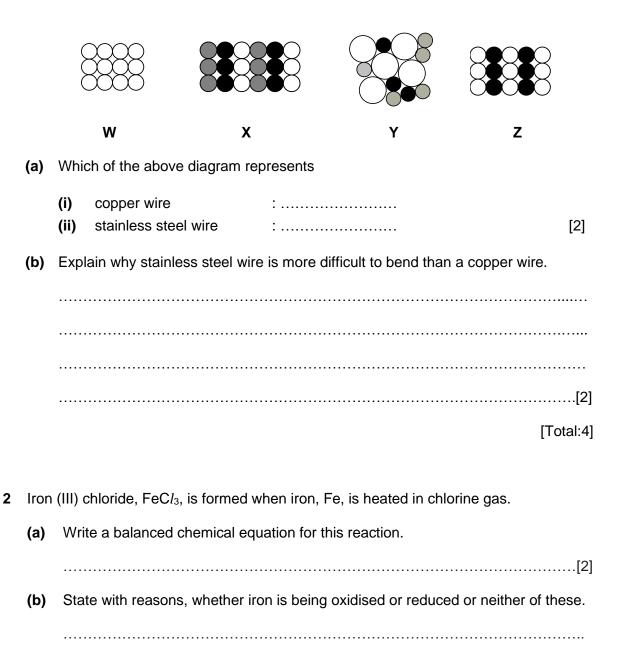
Section B (20 marks)

Answer any **two** questions. Write your answers in the spaces provided on the question paper.

A copy of the Periodic Table is printed on page **14.** The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's use			
Section A	/45		
Section B	/20		
-	-		
Total	/65		

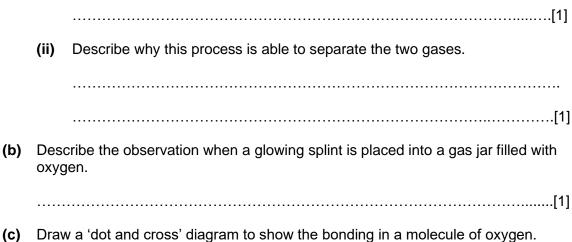
Parent's Signature
i alone o olgnataro


1 hour 15 minutes

This paper consists of **14** printed pages and <u>**0**</u> blank page.

Section A

Answer **all** the questions in the spaces provided.


1 The diagrams show the atoms in four substances, W, X, Y and Z.

.....[2]

[Total:4]

- **3** Separating atmospheric air into its constituent gases is an important process for obtaining nitrogen and oxygen.
 - (a) (i) State the process used to separate air to obtain nitrogen and oxygen.

(c) Draw a 'dot and cross' diagram to show the bonding in a molecule of oxygen Show only the outer shell electrons.

[Total:5]

4 Table 4.1 describes three different oxides. Complete the table.

Table 4.1

oxides	formula of oxide	nature of oxide (acidic /basic /amphoteric)	solubility in water
sulfur	SO ₂	acidic	
magnesium	MgO		
zinc			No

[Total:5]

5 Table 5.1 contains details of seven different atoms.

The letters do not represent chemical symbols of elements.

	S	т	v	W	x
nucleon number	3	19	14	19	40
proton number	2	9	7	10	20
electronic configuration	2	2.7	2.5	2.8	2.8.8.2

Table 5.1

Use **Table 5.1** to state which atom(s) **S**, **T**, **V**, **W**, and **X**.

(a)	has only one neutron	
(b)	can form positive ions	
(c)	forms covalent compounds that are diatomic	and
(d)	are noble gases	and [6]
		[Total:6]

6 **Table 6.1** shows some properties of lithium and other Group I elements.

Table 6	5.1
---------	-----

metal	density g/cm ³	melting point /°C	boiling point /°C
lithium	0.53	181	1342
sodium	0.97	98	883
potassium	0.86	63	759
rubidium	1.53	39	686

Use the information in Table 6.1 to answer the following when relevant.

(a) (i) Write the balanced equation for the reaction of lithium with water.

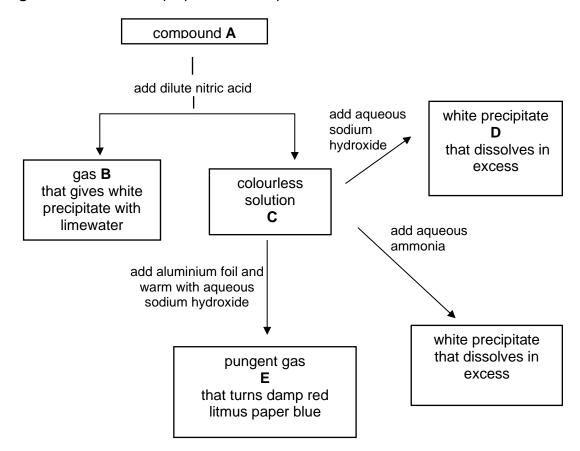
.....[2]

(ii) Explain why Group I elements are also known as alkali metals.

.....[1]

(b)	(i)	Explain why rubidium is a liquid at a temperature of 40 °C.
		[1]
	(ii)	Explain why a piece of rubidium strip will not float on a beaker of water.
		[1]
(c)		Describe two observations when sodium reacts with water.
		[2]
		[Total:7]

7 A homologous series is a group of compounds that have similar chemical properties and the same general formula.


Complete **Table 7.1.** Show all the bonds in the structures.

homologous series	name of compound	structures
alkanes		Н Н-С-Н Н
alkenes	propene	
	propanol	

Table 7.1

[4]

[Total:4]

8 Fig 8.1 describes some properties of compound A.

Suggest the identity of substances A, B, C, D and E.

- A: B: C:
- D:
- E:

[5]

[Total:5]

9 Table 9.1 shows some information about the compounds in a homologous series.

compound	molecular formula	relative molecular mass <i>, M</i> r	boiling points / °C
methanol	CH₃OH	32	65
ethanol	C₂H₅OH	46	78
propanol	C ₃ H ₇ OH	60	97
butanol	C₄H ₉ OH	74	117

Table 9.1

(a) What is a homologous series?

			[2]
(b)	Des	cribe the change in the flammability from methanol to propanol.	
			.[1]
(c)	(i)	Calculate the relative molecular mass of pentanol, which has five carbon atoms in a molecule.	

(ii) Predict the boiling point of pentanol.	[1]
	[1]
[Total	:5]

Section B

Answer any two questions from this section in the spaces provided.

10 A student investigates how the speed of a reaction changes over time.

100 ml of 1 mol/dm³ dilute hydrochloric acid, HC*l*, is added into a conical flask. Excess powdered sodium carbonate is added to the acid in the flask.

A gas syringe is immediately attached to the conical flask with suitable connectors and the volume of gas produced over time was measured with a stop watch regularly. The measurement was stopped after 10 mins when no more fizzing was observed.

(a) (i) Sketch the graph that you would obtain from the data collected.

Name the axes correctly and label the curve as X.

[2] (ii) The experiment was repeated a second time. This time the experiment was conducted with the acid warm to 50 °C. The volume and concentration of the acid remains the same for the two experiments. Sketch the graph that you would obtain on the same axes in (i) Label this curve **W**. [1] (b) Explain why the initial speed of the reaction has changed in (a)(ii).[3] Excess sodium bicarbonate, NaHCO₃, reacts with 100 cm³ of 38.4 g/dm³ of citric acid, $C_3H_5O(COOH)_3$, to produce sodium citrate, carbon dioxide and water.

 $3NaHCO_3(s) + C_3H_5O(COOH)_3(aq) \rightarrow C_3H_5O(COONa)_3(aq) + 3CO_2(g) + 3H_2O(I)$

[Relative atomic mass: Ar: C,12; H,1; O,16]

(c) (i) Calculate the M_r of citric acid, $C_3H_5O(COOH)_3$

relative molecular mass =[1]

(ii) Calculate the concentration of the citric acid solution in mol/dm³.

concentration =mol/dm³ [1]

(iii) Calculate the number of moles of citric acid, $C_3H_5O(COOH)_3$, that has reacted.

number of moles =mol [1]

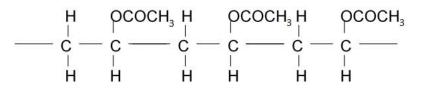
(iv) Calculate the volume of carbon dioxide, CO₂, produced at room temperature and pressure.

[The volume of one mole of any gas is 24 dm³ at room temperature and pressure.]

volume = dm³ [1]

[Total:10]

11 Polyvinyl chloride, PVC, is an example of non-biodegradable plastics. It is a versatile material that can be used to produce drainage pipe, water service pipe, medical devices, cable and wire insulation, stationery and footwear,


The structure of the monomer of PVC is shown:

$$\begin{array}{c}
\mathsf{H} & \mathsf{C}i\\
\mathsf{I} & \mathsf{I}\\
\mathsf{C} = \mathsf{C}\\
\mathsf{I} & \mathsf{I}\\
\mathsf{H} & \mathsf{H}
\end{array}$$

(a) Draw the full structural formula of PVC, showing three repeated units of the polymer.

[2]

(b) Another polymer known as polyvinyl acetate (PVA) is shown:

Draw the structure of the monomer of PVA.

[1]

(c) As much as 650 000 tonnes of non-biodegradable plastics waste are produced each year.

State two of the problems caused by disposal of non-biodegradable plastics.

	•
[2]	

An organic acid is formed when ethanol is left open to the air for a few days. Oxidation of ethanol has taken place.

(d) Draw the structure of this acid.

[1]

Ethanol can be oxidised to the acid formed in (d) by an oxidising agent in the laboratory.
(e) (i) Identify the reagent: [1]
(ii) Describe how the acid can be prepared by this reagent and state any colour changes during the process.

.....[3]

[Total:10]

- 12 Aqueous sodium hydroxide, NaOH, is an alkali.
- (a) State two properties of alkalis.

(b)

(i)

Aqueous sodium hydroxide, NaOH, reacts with ammonium sulfate, $(NH_4)_2SO_4$, to form ammonia, sodium sulfate and water.

 $2NaOH(aq) + (NH_4)_2SO_4(s) \rightarrow Na_2SO_4(aq) + 2NH_3(g) + H_2O(l)$ [relative atomic mass: A_r : Na, 23; H, 1; N,14; S,32; O,16] Calculate the relative molecular mass of ammonium sulfate.

relative molecular mass = [1]

(ii) Calculate the mass of sodium sulfate that will be produced when 264 g of ammonium sulfate react with sodium hydroxide.

mass of sodium sulfate =..... g [2]

(c) To prepare crystals of sodium sulfate, a neutral and colourless solution of sodium sulfate must be prepared first using titration.

Outline how you would prepare a neutral sodium sulfate solution with sodium hydroxide, sulfuric acid and methyl orange as an indicator.

Methyl orange is red in acidic solution, orange in neutral solution and yellow in alkaline solution.

	.[5]
[Tota	l:10]

End of paper

The Periodic Table of Elements

Group																	
I	II											III	IV	V	VI	VII	0
				Key			1 H hydrogen 1						<u>.</u>				2 He ^{helium} 4
3 Li ^{lithium} 7 11 Na	4 Be beryllium 9 12 Mg	proton (atomic) number atomic symbol _{name} relative atomic mass										5 B boron 11 13 A <i>l</i>	6 C carbon 12 14 Si	7 N nitrogen 14 15 P	8 O oxygen 16 16 S	9 F fluorine 19 17 C <i>l</i>	10 Ne neon 20 18 Ar
sodium 23	magnesium 24											aluminum 27	silicon 28	phosphorus 31		chlorine 35.5	argon 40
19 K potassium 39	20 Ca calcium 40	21 Sc scandium 45	22 Ti titanium 48	23 V vanadium 51	24 Cr chromium 52	25 Mn ^{manganese} 55	26 Fe iron 56	27 Co cobalt 59	28 Ni ^{nickel} 59	29 Cu _{copper} 64	30 Zn ^{zinc} 65	31 Ga _{gallium} 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	35 Br bromine 80	36 Kr ^{krypton} 84
37 Rb ^{rubidium} 85	38 Sr strontium 88	39 Y yttrium 89	40 Zr zirconium 91	41 Nb niobium 93	42 Mo molybdenum 96	43 Tc technetium -	44 Ru ruthenium 101	45 Rh ^{rhodium} 103	46 Pd palladium 106	47 Ag ^{silver} 108	48 Cd cadmium 112	49 In ^{indium} 115	50 Sn ^{tin} 119	51 Sb antimony 122	52 Te tellurium 128	53 I iodine 127	54 Xe _{xenon} 131
55 Cs caesium 133	56 Ba barium 137	57 – 71 lanthanoids	72 Hf hafnium 178	73 Ta tantalum 181	74 W tungsten 184	75 Re ^{rhenium} 186	76 Os osmium 190	77 Ir iridium 192	78 Pt platinum 195	79 Au ^{gold} 197	80 Hg mercury 201	81 T <i>l</i> thallium 204	82 Pb lead 207	83 Bi bismuth 209	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium –	88 Ra radium	89 – 103 actinoids	104 Rf Rutherfordium	105 Db dubnium	106 Sg seaborgium -	107 Bh bohrium –	108 Hs hassium	109 Mt	110 Ds	111 Rg roentgenium -	112 Cn		114 F <i>l</i> flerovium	200	116 Lv livermorium –		
lanthanoids			57 La ^{Ianthanum} 139	58 Ce cerium 140	59 Pr ^{praseodymium} 141	60 Nd neodymium 144	61 Pm promethium –	62 Sm samarium 150	63 Eu europium 152	64 Gd gadolinium 157	65 Tb ^{terbium} 159	66 Dy dysprosium 163	67 Ho ^{holmium} 165	68 Er ^{erbium} 167	69 Tm ^{thulium} 169	70 Yb ytterbium 173	71 Lu ^{Iutetium} 175
actinoids			89 Ac actinium -	90 Th thorium 232	91 Pa protactinium 231	92 U uranium 238	93 Np neptunium –	_	95 Am americium –	96 Cm curium –	97 Bk berkelium –	98 Cf californium –	99 Es einsteinium –	100 Fm fermium –	101 Md mendelevium –	102 No nobelium –	103 Lr lawrencium –

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).