H2 CHEMISTRY PRELIMS SUGGESTED SOLUTIONS PAPER II

1	(a)	(i)	Nucleophilic addition.	[1]
		(ii)	The gas is HF.	[1]
		(111)	$COF_{2}(g) + H_{2}O(I) \rightarrow 2HF(g) + CO_{2}(g)$	[1]
	(b)	(i)	Amt of NaOH that has reacted = $\frac{25.00}{1000} \times 0.100$ = 2.50 x 10 ⁻³ mol	[1]
		(ii)	1CO₂ ≡ 2HF 1CO₂ ≡ 2OH ⁻ 2HF ≡ 2OH ⁻	
			No of moles of CO ₂ produced = ½ x ½ x (25.0/ 1000) x 0.100 = 6.25 x 10 ⁻⁴ moles	[3]
		(iii)	PV = nRT V = nRT / P = (6.25 x 10 ⁻⁴)(8.314)(273+30) / 1.01 X 10 ⁵ = 1.559 x 10 ⁻⁵ m ³ = 1.56 x 10 ⁻⁵ m ³	[0]
		(iv)	Mass of COF₂ = 6.25 x 10 ⁻⁴ x Mr = 6.25 x 10 ⁻⁴ x 66.0 = 0.0413 g	[1]

(c) (i)

	2 COF ₂	\$ CO ₂	+	CF₄
Initial / mol	0.500	0		0
Change / mol	-2x	+ <i>X</i>		+ <i>X</i>
Eqm / mol	0.500 – 2x	X		X

$$\frac{x^2/V^2}{(0.500-2x)^2/V^2} = 2.00$$

Solving, x = 0.1847 mol [1]No of moles of COF₂ that remains undissociated at eqm = 0.500 - 2(0.1847)= 0.131 mol

9746/02/Prelim/09

[Turn over

[4]

	- 2 -						
		(ii)	There is no change in the yield of CO₂. There are equal number of moles of gaseous products and reactants.	[2]			
2	(a)	X = Mg					
		$\mathbf{Y} = \mathbf{Ca}$ or Sr or Ba					
		Reason: Reducing power increases down the group.					
	(b)) High melting point of MgO					
	(c)	(i)	SiO ₂ does not dissolve in water. pH \approx 7				
			Na ₂ O dissolves readily in water to give a colourless solution. Na ₂ O + H ₂ O \rightarrow 2NaOH				
			pH ≈ 13-14				
			CaO dissolves sparingly in water. CaO + $H_2O \implies$ Ca(OH) ₂				
			pH ≈ 9-12	[5]			
		(ii)	The basic metal oxide will react / undergo neutralisation with the acidic SO ₂ . OR	[4]			
	(4)	(1)	Acid-base reaction	נין			
	(a)	(1)	 Br₂ has a smaller electron cloud size than I₂. electron cloud of Br₂ is less polarisable weaker Van der Waals' forces between the molecules More energy is required to overcome the interaction between I₂ molecules, leading to a higher boiling point. 	[2]			
		(ii)	 Cl⁻ has one more electron; hence its p/e ratio is smaller attraction of the nucleus for the outer electrons is weaker. Therefore it has a bigger radius. OR electron-electron repulsion 	[2]			
	(e)	Disp 3Cl ₂	roportionation (g) + $6OH^{-}(aq) \rightarrow 5CI^{-}(aq) + CIO_{3}^{-}(aq) + 3H_{2}O(I)$	[2]			
		Sme gree	II of CI_2 disappears OR nish-yellow/pale green/green colour of CI_2 disappears (hard to observe)	[2]			

- 3 (a) (i) Slow decolourisation of reddish brown solution of bromine. OR [2] Intensity of reddish brown color of bromine fades with time.
 White fumes of HBr.
 - (ii) Free radical is a particle with <u>an unpaired electron / a lone electron</u>. [1]

(b) (i)
$$CH_4 + Cl^2 \longrightarrow CH_3 + HCl$$

 $\dot{C}H_3 + Cl_2 \longrightarrow CH_3Cl + Cl^2$
(ii) Energy/kJmol⁻¹
 $fransition State 1$
 $fransition State 1$
 $fransition State 1$
 $fransition State 2$
 $fransition State 2$
 $fransition State 1$
 $fransition State 1$
 $fransition State 2$
 $fransition State$

 $\frac{Comparing Experiment 1 \& III where [KOH] is constant}{Rate_{expt1}}$ $\frac{Rate_{expt1}}{Rate_{expt3}} = \frac{k[CH_3CI]_{expt1}^n[KOH]_{expt1}}{k[CH_3CI]_{expt3}^n[KOH]_{expt3}}$ $\frac{0.024}{0.096} = \frac{k[0.10]^n[0.10]}{k[0.20]^n[0.20]}$ $\frac{1}{4} = \left(\frac{1}{2}\right)^n \times \frac{1}{2}$ n = 1Hence 1st order with respect to CH₃CI. Rate equation = k [CH₃CI][KOH]

(ii) HCOO⁻K⁺ [1]

[3]

Step 1: NaOH(aq), heat Step 2: I₂(aq), NaOH(aq), warm

COOCH₂CH₃ Observation: Yellow precipitate formed for -OCOCH₂CH₃ but not for

4

Balanced Equation:

(b)

ÓН

9746/02/Prelim/09

ÒΗ

[Turn over

0 K⁺

Step 1:

Reagent(s): Sn, conc HCI

Condition(s): Heat under reflux

Step 2:

Reagent(s): Dilute HNO₃(aq)

Condition(s): Room temperature

Step 3:

Reagent(s): KMnO₄, dilute H₂SO₄(aq)

Condition(s): Heat under reflux

Step 4:

Reagent(s): KCN

Condition(s): Ethanol, Heat under reflux

Step 5:

Reagent(s): KOH(aq)

Condition(s): Heat under reflux