
Pei Hwa Secondary School 4N Science (Chemistry) Revision 1 Chp 4 & 5: Chemical Bonding & Structure and Properties of Materials

	Class /	
Name:	TG:	Date:

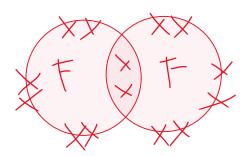
Ionic Bonding:

- Transfer of electron(s) from metal atom(s) to non-metal atom(s).
- Structure: giant ionic lattice structure

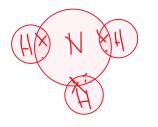
"Dot and cross" diagram of ionic compounds

Properties of ionic compound:

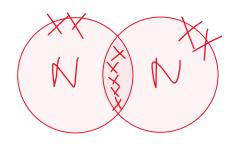
Properties		Explanation	
1.	High melting and boiling point	Large amount of <u>energy</u> is needed to overcome <u>Strong electrostatic forces of attraction between oppositely</u> <u>charged ions</u> Held in a <u>giant lattice structure</u>	
2.	Poor conductor of electricity in solid state	lons are held in fixed positions and are not mobile.	
	Good conductor of electricity in aqueous or liquid (molten) state	Giant lattice structure has broken down and <u>ions are mobile to</u> act as charge carriers	

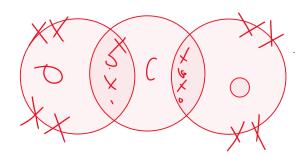

- 3. Hard but brittle
- 4. Usually soluble in water. Usually insoluble in organic solvent

Covalent Bonding:


- <u>sharing</u> of electrons between <u>non-metal atoms</u>.
- Structure: simple covalent molecule

Drawing of covalent molecules using "dot and cross":

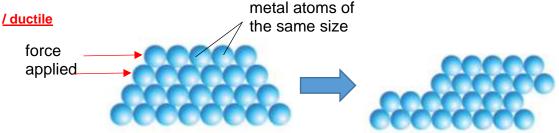

1. A molecule of fluorine, F_2


3. A molecule of ammonia, NH₃

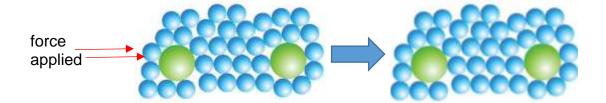
2. A molecule of nitrogen, N_2

4. A molecule of carbon dioxide, CO₂

Properties of covalent molecules


Properties	Explanation	
low melting and boiling point	A <u>small amount of energy</u> is needed to overcome <u>Weak intermolecular forces of attraction</u> between molecules held In <u>simple molecular structure</u>	
Poor conductor of electricity in all states	No mobile ions or electrons to act as charge carriers	
Usually insoluble in water Usually soluble in organic solvent		

Metals and Alloys:


- High melting point and boiling point. Alloys, being a mixture, melt over a range of temperatures.
- Good conductor of heat
- Good conductor of electricity due to sea of delocalised electrons that are mobile throughout the giant metallic lattice structure.
- Alloys are harder and stronger than the pure metals.

In a pure metal, atoms are of the same size and packed regularly in neat rows. Layers of atoms

<u>slide</u> over one another easily when a force is applied. Hence, pure metals are too <u>malleable</u>

In an alloy, atoms are of <u>different</u> sizes, hence the regular arrangement of atoms is <u>disrupted</u>. Layers of atoms cannot <u>slide</u> easily over each other when a force is applied, and so an alloy is <u>harder</u> and stronger.

Practice Questions

- 1 Which two elements combine to form an ionic compound?
 - A calcium and fluorine
 - **B** hydrogen and carbon
 - **C** hydrogen and chlorine
 - **D** sulfur and oxygen
- 2 (a) When atoms combine with other atoms, they either gain, lose or share a number of electrons. Showing only valence electrons, draw 'dot and cross' diagrams to show the electronic structure of
 - (ii) oxygen gas;

(ii) magnesium chloride.

(b) Magnesium ribbon burned in oxygen to form a white solid, magnesium [2] oxide. Write a balanced chemical equation, including state symbols for the reaction.

 $2 \text{ Mg (s)} + O_2 (g) \rightarrow 2 \text{MgO (s)}$

[2]

[2]

(c) The physical properties of different compounds are shown in the table below.

name of substance	boiling point (°C)
magnesium oxide	3600
oxygen gas	-183

Explain, in terms of bonding, the difference in boiling points between magnesium oxide and oxygen gas.

MgO has a higher melting point than oxygen gas.

Larger amount of energy is needed to overcome strong electrostatic forces of attraction between oppositely charged ions in giant lattice structure of MgO. [1]

Less energy is needed to overcome weak intermolecular forces of attraction between simple molecules in O_2 gas. [1]