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Key Questions to Answer:

1. How do we use matrices to represent a set off linear equations?

2. What are the common operations on matrices?

3. How do we find the determinant ofa 2x 2 or 3x3 matrix?

4. How do we find the inverse of a non-singular 2x2 or 3x3 matrix?

5. How do we use matrices to solve a set of linear equations? What is the geometrical

interpretation of the solution?

6. What is a linear space? What is a subspace?

7. What are the axioms for a linear space?

8. What is a span? What is linear independence?

9. How do we find the basis and dimension of a linear space?

10. How do we find the column space, row space, range space and null space of a matrix?

11. What is the rank of a square matrix? What is the relation between the rank, dimension of

null space and the order of the matrix?

12. What are linear transformations?

13. What are the eigenvalues and eigenvectors of a 2x2 or 3x3 matrix?

14. How do we diagonalize a square matrix? What are the applications of diagonalization?
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§1 System of Linear Equations

Systems of linear equations arise in a wide variety of applications, such as polynomial curve fitting,
network analysis and optimisation. You may refer to Appendix III for more details.

1.1 Linear Systems

Definition

A system of m linear equations in n unknown xi, X2, X3, ..., Xn 1s a set of m linear equations each
in 7 unknowns:

a,x, +a,x, +..+a,x, =b
ay, X, +ayx, +..+a, x, =b, *)
a,x +a,x,+..+a,x =b,,

where a; and b,, 1<i<m, 1< j<n are constants.

A sequence of numbers s, s,,..., s, (or X, =s,,x, =5,,..., x, =5, )1s called a solution of the system

(*) if every equation in the system is satisfied when we substitute x, =5, x, =5,,...,x, =5, .

Example 1.1.1

Verify that x=1, y=2 and z =-2 1s a solution of the linear system

x+y—z=35
x-3z=1.

Determine whether x=2, y=3 and z=0 is also a solution of the system. Suggest another solution
of the system.

Solution:
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Example 1.1.2

Suggest the number of solution(s) of each of the following linear systems:

@ x+y=2 b)) x-—-y=1 ) x+2y=1
x—y=4 —2x+2y=6 2x+4y=2

Solution:

(a) (b) © !

Theorem 1.1.1

Every system of linear equations has either no solution, exactly one solution or infinitely many
solutions. (There are no other possibilities)

. The theorem is not true if the equations are not all linear. Can you give an example?

. For a system of linear equations in 2 unknowns, what is the geometrical interpretation of the
theorem?

. For a system of linear equations in 3 unknowns, what is the geometrical interpretation of the
theorem?

Definition

If a system of equations has no solution, they we say that it is inconsistent; if the system has at
least one solution, they we say that it is consistent.

In Example 1.1.2, (a) and (c¢) are consistent, but (b) is consistent.

Example 1.1.3
Solve the following linear system by elimination

3x-2y=1
x+4y=6

Solution:
x+4y=6
3 (1
3x-2y=1
x+4y=6
B (2)
-14y =-17
x+4y=6
7 G)
T4

By backward substitution, we obtain the solution of the linear system: x = g and y = 17

14
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Example 1.1.4
Solve the following linear system by elimination

x 3y =2
-x +y 45z =2
2x =Sy +z =0

Solution:

-2y 45z =4 (1)
2x -5y +z =0

x 3y =2
-2y +5z =4 (2)
y +z =-4
X -3y =2
y 4z =-4 3)
-2y +5z =4
x 3y =2
y 4z =-4 4)
7z =-4
x 3y =2
y 4z =-4 (5)
4
z =——=
7
By backward substitution, we obtain the solution of the linear system:
58 24 4
x=——, y=——and z=——.
7 7 7

. In the processes of solving Example 1.1.3 and Example 1.1.4, what types of operations have
we performed in each step?

Note that the method of elimination is to simplify a system of linear equations to another system of
linear equations that has exactly the same set of solution(s), but is easier to solve.

In the method of elimination, we perform the following three types of operations:
1.  Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a multiple of one equation to another.
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1.2 Gaussian and Gauss-Jordan Elimination

Definition

Given a linear system (*) above, the rectangle array of numbers

al 1 al 2 Cl] n b]
a2 1 a22 a2 n b 2
aml am2 amn bm

is called the augmented matrix of the linear system (*).

Example 1.2.1

Write down the augmented matrix of each of the following linear systems:

-2x +z =5 x=1
(@ 2x +3y -4z =7 (b) y=2
3x  +2y =3 z=3
Solution:
(a) (b)
Definition

Corresponding to the three types of operations in the method of elimination, the following
operations on the rows of the augmented matrix are called elementary row operations:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3.  Add a multiple of one row to another row.

Example 1.2.2
Solve the linear system in Example 1.1.4 by performing elementary row operations:

X -3y =2
-x +y 45z =2
2x -5y +z =0
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Solution:
1 3 0 2
The augmented matrix of the linear systemis [ -1 1 5 2.
2 510
1 -3 0 2
-1 1 5 2 R2+R1 R3+(-2)R1 | R26R3 |
2 510
& 1 -3 0 2
_ R3+2R2 o1 —7.5/0 1 1 -4
' o 0 1 -4

7

By backward substitution, we obtain the solution of the linear system:

Consider the following two linear systems:

X +2y —z 45w =-1 X =3
y 3z -w =2 y =1
(D ()
z +2W :3 zZ :2
w =1 w =5

The solution to (1) can be obtained by backward substitution, while the solution to (2) is immediate.
In solving a linear system by the method of elimination, the aim is to reduce the linear system (by
performing the three operations stated in Section 1.1) to an equivalent system (having the same set

of solution(s) as the original system) similar to (1), or to further reduce it to a system similar to (2).

The augmented matrices of the linear systems (1) and (2) are respectively

1 2 -1 5 -1 1 0 0 0 3
01 3 -1 2 01 0 0 1

and .
0 0 2 3 0O 01 0 2
0 0 O 0 0 01 5

The first matrix is an example of a matrix in row-echelon form, while the second matrix is an example
of a matrix in reduced row-echelon form.
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Definition

A matrix is said to be in row-echelon form if it satisfies all the following properties:

1. If there are any rows that consist entirely of zeros, then they are grouped together at the
bottom of the matrix.

2. If a row does not consist of entirely of zeros, then the first nonzero number in the row is a 1.
We call this a leading 1.

3. In any two successive rows that do not consists entirely of zeros, the leading 1 in the lower

row occurs further to the right than the leading 1 in the higher row.

The matrix is said to be in reduced row-echelon form if, in addition to the above three properties,
the following property is satisfied:

4. Each column that contains a leading 1 has zeros everywhere else in that column.

Here are some examples:

01 2 6 0
0 00
(O { Oj is not in row-echelon form; |0 O 1 1 0| is in row-echelon form but not in reduced
0 00 01
1 0 7
0 1 —-1}] . .
row-echelon form; 6 0 0 1s in reduced row-echelon form.
0 0 O
o Does a given matrix A have a unique row-echelon form?
o Does a given matrix A have a reduced unique row-echelon form?

Example 1.2.3

Determine if each of the following matrices is in row-echelon form. For those matrices in row-echelon
form, which are in reduced row-echelon form?

1 2 0 -1 1 0 3 4 01 0 3 0
1 2 0 4
@ 000 0 (b)0103 ()01—25 (d)00110
a C
0 0 0 1 o1 2 2 0 0 0 01
0 01 3
0 0 0 O 0 0 0 00 0 00O
Solution:
(a)
(b)
(©
(d)
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Example 1.2.4 (Linear system with a unique solution)

The augmented matrix of a linear system in (x, v, z) has been reduced to the given row-echelon form:

1 2 -1 2
01 3 -1
0 0 1 4

Solve the linear system.
Solution:

The corresponding linear system is

By backward substitution, we obtain the solution x =32, y=-13 and z=4.

Example 1.2.5 (Linear system with infinitely many solutions)

Write down all the solutions of x+2y—z=3.

Solution

Let y=s and z=1¢, then x=3—-2s+¢. Thus, all the solutions are x=3-2s+¢, y=s5 and z=1¢,
where s,teR.

Note that the quantities s and ¢ are called parameters, and the set of all solutions expressed in terms
of the parameters is called the general solution of the linear system.

Example 1.2.6

The augmented matrix of a linear system in (x, V,Z, w) has been reduced to the reduced-row echelon

form:
1 00 2 -7
01 0 1 5
0 01 3 1
0 00 0 O
Solve the linear system.
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Solution:

The corresponding linear system is

The variables (unknowns) that corresponding to the leading 1’s, namely x, y and z, are called leading
variables. The non-leading variables (w in this case) are called firee variables.

Solving for leading variables in terms of variables, we can assign any arbitrary value to the free
variable w, say ¢, which then determines the values of the leading variable. Thus this linear system
has infinitely many solutions given by

Definition

The method of solving a linear system by reducing the corresponding augmented matrix to row-
echelon form (respectively reduced row-echelon form) is unknown as Gaussian elimination
(respectively Gauss-Jordan elimination).

Example 1.2.7
Without using a calculator, solve the linear system

3x +4y 2z +13w=9
x 2y 2z +7w =5
2x +y +4z +6w =-3

Solution:

We write down the augmented matrix of the linear system and then perform elementary row
operations to reduce it to row-echelon form or reduced row-echelon form.

The linear system corresponding to the row-echelon form is
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Thus the general solution of the given linear system is
x=3+5t, y=—1-8t,z=-2-2t, w=t,where teR.

Alternatively, we can further reduce the row-echelon form to reduced row-echelon form:

1227 5y . (lL201 1 1 00 -5 3
0 1 -2 4 3 |—R=R2 J1g | o 8§ —]|—RRx2) g 1 0 8 -1,
00 1 2 =2 001 2 =2 001 2 =2

The corresponding linear system is now

X —Sw =3
v +8w =-1
z 2w =-2

We will be able to obtain the same general solution by assigning w=+ .
Example 1.2.8 (Geometrical interpretation)
The general solution of the system of linear equations

x 4y =-1
2x +y +z =3

X +z =4
isgivenby x=4—-¢, y=-5+¢, z=¢. What is the geometrical interpretation of the solution?

Solution:

. What are the geometrical interpretations of the solutions of Example 1.1.2 and Example 1.1.4?
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1.3 Homogenous Linear Systems

Definition

A linear system of the form
a,x, +a,x, +..+a,x, =0

ay X, +ayx, +..+a,,x, =0

a,x, +a,,x,+..+a,x, =0

is called a homogeneous linear system.

Every homogeneous linear system is consistent, since x, =0, x, =0, ..., x, =0 1s a solution. This

solution is called the trivial solution; if there are other solutions, then they are called nontrivial
solutions (i.e. a solution x, =s,, x, =s,, ..., X, =5, 1s a nontrivial solution if at least one of s,,

Sy, ..., S, 18 not equal to 0).

Example 1.3.1

Find the solutions of the homogeneous systems
x 4y 4z +w =0

x+2y=0
(a) (b) x +w =
-x+3y=0
x 2y 4z =0
Solution.

(a) This homogeneous system has only one solution, which is the trivial solution x=0, y=0.

(b) Using Gauss-Jordan elimination, we obtain an equivalent linear system

X +w =0
y -w =0
z +w =0
Let w=¢, where ¢ is an arbitrary real number. Then the general solution of the homogeneous
linear systemis x=—¢t, y=t, z=—t, w=t.

In Example 1.3.1(a), the homogeneous system has only one solution (the trivial solution); whereas
in Example 1.3.1(b), the homogeneous system has infinitely many solutions.
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Theorem 1.3.1

Every homogeneous system of linear equations with more unknowns than equations has infinity
many solutions.

. In the context of a homogeneous system of one/two linear equations in three unknowns, how
can we justify this theorem geometrically?

Example 1.3.2

Determine whether the homogeneous linear system has nontrivial solution

x +y 43z =0
-x 2y +6z =0 ...(1)
2x -y 3z =0

Solution:

Perform elementary row operations on the augmented matrix:

I 1 3 0
-1 2 6 0|———> —>
2 -1 30
) x +y 43z =0 )
The corresponding homogeneous system has 3 unknowns and 2 equations.

3y +9z =0
Hence the homogenous linear system has nontrivial solution by Theorem 1.3.1. Since it is equivalent
to the homogeneous system (1), (1) also has nontrivial solution.
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§2 Matrices and Matrix Operations

2.1 Notation and Terminology

Definition

A matrix is a rectangle array of numbers. We say that a matrix is of size m by n (written mxn ) 1f
it has m rows (the horizontal lines) and » columns (the vertical lines).

A matrix with only one row is called a row matrix, and a matrix with only one column is called a
column matrix.

The numbers in the array are called the entries in the matrix. The entry in the ith row and jth column
of a matrix is called the (i, j) entry of the matrix. A general mx n matrix is written as

al 1 al 2 aln
A= ay a?z a.Zn
aml amZ amn

Note that a; is the (i, j) entry of the matrix A, commonly denoted by (A)

Definition

A matrix with n rows and n columns (so the number of rows = number of columns) is called a
square matrix of order n, the entries q,, a,,, ..., a,, n the matrix below are said to be the main

nn

diagonal of A.

The trace if a square matrix A, denoted by tr(A) , 1s defined to be the sum of all entries on the

main diagonal of A.

For example, let

I -1 3
A= 5 2
3 6 7

Then the trace of the square matrix 4is 1+5+7 =13.

2016 — 2017 / H2 FMaths / Matrices and Linear Spaces (Student’s Version) Page 13 of 99
www.KiasuExamPaper.com
440



National Junior College Mathematics Department 2016

2.2 Operations on Matrices

Definition

If A and B are matrices of the same size, then the sum A + B is the matrix obtained by adding the
entries of B to the corresponding entries of A; and the difference A —B is the matrix obtained by
subtracting the entries of B from the corresponding entries of A.

In matrix notation,

Definition

If A is any matrix and k is any scalar (real number), then the scalar multiple of A, by &, denoted by
kA, is the matrix obtained by multiplying each entry of A by £.

In matrix notation,

(kA), =k(A), .
1 -2 4 0 2 -4
For example, let A = and B = .
2 -1 3 1 3 1
1 00 1 4 8 -2 4 -8
Then A+B = , A-B= and (-2)A = .
3 2 4 1 4 2 -4 2 -6

Definition

If A is an mx r matrix and B is an » x n matrix, then the product AB is the m x n matrix whose
entries are determined as follows:

(AB),=(A),(B), +(A),(B),, +..+(A), (B),.

. For the product AB to be defined, the number of columns of A must be equal to the number of

rows of B.

Example 2.2.1

3 0

1 4 2

Let A=|-1 2| and B= 31 s/ Compute AB and BA.

1 1
Solution:
AB= and BA = ( ] .
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In Example 2.2.1, multiplying A with the first, second and third columns of B, we obtain respectively
the first, second and third columns of AB, 1.e.

3 12 6
1 4 2
Al _|=|5 A =| -2 A =8 .
3 1 5
4 5 7

Similarly, multiplying the first, second, third rows of 4 with the matrix B, we obtain respectively the
first, second and third rows of AB, i.c.

(3 0)B=(3 12 6) (-1 2)B=(5 -2 8){+—HB=(4—-5—7 (1 )B=(4 5 7)

In general, if A and B are matrices such that AB is defined, then
j th column of AB = A (j th column of B), and
i th row of AB = (i th row of 4) B.

Example 2.2.2
. 1 4 3

LetA:( Lo 4] and B=|0 -2 5 |, find the 2" column of AB.
B 7 1 -1

Solution:

2" column of AB =

Matrix Form of a Linear System

Now a linear system
a,x, +a,x, +..+a,x, =b

ay, X, +ayx, +..+a, x, =b,

*)
a,x +a,x,+..+a,x =b,,
can be rewritten in the form
a] 1 al 2 aln x] b]
a2| a22 a2n x2 _ b2
aml Clm2 amn xn bm

Thus the original system of m equations in n unknowns can be replaced by a single matrix equation
Ax =b. The matrix A is called the coefficient matrix of the linear system.

Do not confuse the matrix form of the linear system (*) with its augmented matrix, which is (A b) .
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Example 2.2.3

Write down the matrix equation of the linear system
2x +z =5

-x 44y 3z =1~

Solution:

Definition

If A is any mx n matrix, then the transpose of A, denoted by A7, is defined to be the n xm matrix

that results from interchanging the rows and columns of A, i.e. (AT)“ = (A)]AA .
ij Jt

2 3
) ; (21 =5
For example, if A=| 1 4|, then A" = .
s 6 3 4 6

2.3 Properties of Matrix Operations
For any real numbers a, b and ¢, we know that

a+b=b+a [commutative Law for Addition]
a+(b+c)=(a+b)+c [associative Law for Addition]

Theorem 2.3.1

Let A, B and C be m xn matrices, then

A+B=B+A [commutative law for addition]
A+(B+C)=(A+B)+C [associative law for addition]

Because of the associate law for matrix addition, we may write A+ B+ C without ambiguity if A, B
and C have the same size. Similarly for the sum of more than 3 matrices.

With regard to matrix multiplication, some, but not all, properties of real number multiplication carry
over to matrix multiplication:

Theorem 2.3.2

Assume A, B and C are matrices of appropriate sizes so that the indicated operations are defined,
then

A(BC)=(AB)C [associative law for multiplication]
A(B+C)=AB+AC [left distributive law]
(A+B)C=AC+BC [right distributive law]
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Proof for the associative law for multiplication:

Let A = (al.j ), B= (by) and C = (cy) be matrices of sizes mxn, nxr and rxs respectively.

Next we show that the any corresponding entries of the two matrices are equal:

|A(BC)]| =a,(BC), +a,(BC), +..+a,(BC)

ij Y

=(AB), ¢, +(AB) ¢, +..+(AB) ¢

[am)c], ”

Since both matrices have the same size, and their corresponding entries are equal, A(BC)=(AB)C.

Associate law for matrix multiplication allows us to write ABC without ambiguity if A, B and C are
matrices of appropriate sizes.

The commutative law for matrix, AB =BA , is obviously not true if A is of size mxn, B is of size
nxm and m # n, as the products are matrices of different sizes.

Example 2.3.1
Prove or disprove the statement: AB =BA for any matrices A and B of the same size nxn.
Solution:

The statement is false. (We just need to provide a counterexample)

1 0 0 1 0 1 0 0
Let A= and B= ,then AB= and BA = , AB#BA.
0 0 0 0 0 0 0 0
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The above example shows that in general, matrix multiplication is not commutative, that is, AB need
not be equal to BA, even if both AB and BA are defined and of the same size.

Theorem 2.3.3

Let » and s be real numbers and let A and B be matrices of appropriate sizes so that the indicated
operations are defined, then

r(sA):(rs)A
(r+s)A:rA+sA
r(A+B) =rA+rB
r(AB) :(rA)B = A(rB)

Theorem 2.3.4

Let £ be a real number and let A and B be matrices of appropriate sizes so that the indicated
operations are defined, then

(A7) =4
A+B) =A" +B’

(
(kA) =k(A)
(

AB) =B"A’

Proof (for (AB)' =B"A”):

Let A and B be mxn and nxr matrices respectively.
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Zero Matrices
We know that the real number 0 has the special property that for any real number a, we have
a+0=0+a=a .

We have matrices that play similar role as that of 0 for real numbers.

Definition

A matrix of all whose entries are zero is called a zero matrix.

0

0 0 0 0 O )
For example, , , (0 0) and | 0| are all zero matrices.
0 0 0 0 O 0

A zero matrix is denoted by O. If it is important to emphasize the size, we shall write O, = for the

mxn Zzero matrix.

Theorem 2.3.5

Assume the matrices are of appropriate sizes such that the indicated operations are defined, then

A+O=0+A=A
A-A=0
AO=0 and OA=0

Example 2.3.2
Prove or disprove the statement: if AB=0,then A=0 or B=0O.

Solution:

Example 2.3.3
Prove or disprove the statement: if AB=AC and A # O, then B=C .

Solution:
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Identity Matrices

For real numbers, the number 1 has the special property that 1xa=ax1=a for all numbers a. For
matrices, we also have matrices that have similar property.

Definition

A_square matrix with ‘1’s on the main diagonal and 0’s off the main diagonal is called an identity
matrix.

1 0
For example, (0 1] and are identity matrices.

S O =
S = O
- O O

An identity matrix is denoted by I. If it is important to emphasize the size, we shall write I, for the
nx n identity matrix.

Example 2.3.4

a b c
Let A= , evaluate Al and L,A.
d e f

Theorem 2.3.6

If Aisan mxn matrix, then AI =1 A = A . Inparticular, for any nxn square matrix B, we have
BI =1 B=B.

You may prove this theorem as a practice.
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Example 2.3.5

Prove or disprove the following statements.

(a) If AB=BA = A for some nonzero nxn matrice A, then B=1.
(b) If AC=A forall nxn matrices A, then C=1.

(¢c) If AD=DA forall nxn matrices A, then D=1 or D=0.

Solution:

(@)

(b)

(©)

o Considering the proof for (b), is it true that if UA = A for all nxn matrices A, then U=1?
o In (¢), can we find other matrices apart from A1 that have this property?
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Definition

Let A be a square matrix. Ifp is a positive integer, we define A” = AA...A . We also define A’ =1.

p factors

Example 2.3.6

Prove or disprove the statement: if k >1 be a positive integer, (AB)k = A“B" for all nxn matrices
A and B.

Solution:

Theorem 2.3.7

If A is a square matrix and » and s are nonnegative integers, then

ATAS — A
( A’ )S _A®
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§3 Inverse Matrix and Its Applications

3.1 Inverse of a Matrix
For any nonzero real number a, we can find a real number b such that ab=ba =1.
Since identity matrices play similar role for matrices as 1 for real numbers with respect to

multiplication, it is natural to ask the following question: given any nonzero nx n square matrix A,
can we find an »nx n matrix B such that AB=BA =1 ?

Definition
Let A be an n x n square matrix. If there exists an n x n matrix B such that

AB=BA=1,,

then we say that A is invertible or nonsingular, and in this case, B is called an inverse of A. If no
such matrix B exists, the we say that A is noninvertible or singular.

3 2 1 2 I 0
For example, let A:(l 1]' Then B:( |3 ] is an inverse of A since AB:(0 1]21 and

10
BA = =1.

Theorem 3.1.1

If a matrix A is invertible, then its inverse is unique.

Proof:

Hence A has a unique inverse.

In view of Theorem 3.1.1, we shall now speak of ‘the’ inverse of an invertible matrix.

Notation: If A be an invertible matrix, then the inverse of A is denoted by A™".

. Given a square matrix A, how do we determine whether it is invertible?
° If A 1s invertible, how do we find its inverse?
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Theorem 3.1.2

a

Let A:(

] .If ad —bc # 0, then A is invertible, and its inverse is given by

A = 1 d -b
ad-bc\—c a |

c

Proof:

Theorem 3.1.3

(a) IfA is an invertible matrix, then A~ is invertible and
(A7) =A.
If A and B are invertible matrices of the same size, then AB is invertible and
(AB)_l =B'A™". (Sock-Shoes rule)

If A is invertible, then kA is invertible for any nonzero scalar &, and

P
KA) =—A".
(ka) " =+

If A is invertible, then A’ is invertible and

(W) =(a)

If A is invertible, then it cannot a row or a column of zeros.

Proof:

(@)

(b)

° If A, B and C are invertible matrices of the same size, then is ABC invertible?

The proofs for (¢) and (d) are similar.

(e)
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Example 3.1.1

1 2 2 1
Suppose A and B are matrices such that A™' = (0 1] and B = (3 2], find the inverse of AB.

Solution:

Example 3.1.2

-40 16 9

Suppose A is a 3x3 matrix such that A™ =| 13 -5 -3 |. Find the inverses of 2A and A”.

5 2 -1

Solution:

Recall that we have defined the powers of a matrix A" for nonnegative integer n. We can extend the

definition to negative integer powers if the matrix is invertible.

Definition

Let A be an invertible matrix and let » be a positive integer. Then we define
A7=(A") =A"A A
%/—/

n factors

For example, A” =A"A7A™".

Theorem 3.1.4 (Comparing to Theorem 2.3.7)

If A is an invertible matrix and  and s are integers, then

ATAS = AT
( A’ )S _A®

-1
° Is A = (A3) , where A is an invertible matrix?
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3.2 Elementary Matrices

Definition

An nxn square matrix is called an elementary matrix if it can be obtained from the n x n identity
matrix by performing a single elementary row operation (recall its definition in Section 1.2).

Example 3.2.1

Determine whether each of the matrices below is an elementary matrix.

5y Lo 0 0 1 0 1 0 1 05 1 00
(a)(0 1],(b)(o 3],(c) 01 0,0 O 1{,(¢|0O 1 O|,(H|O0 1 O].
1 00 1 00 0 0 1 0 0 0
Solution:
Example 3.2.2
Consider a general 3x4 matrix
a b d
A=le f g h|,
i j ok
and three elementary matrices
0 0 1 1 0 1 00
E=01 O0,E,=|0 4 and E;=|0 1 0
1 00 0 0 3 01

(i) Fmnd EA, E,A and E;A.

(ii) Determine whether the results of (i) can be obtained by performing a certain elementary row
operation on A respectively.

(iii) Considering the respective elementary row operations to be performed on I to obtain E,, E,
and E,, what is the significance of the results of (ii)?
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Solution:

Theorem 3.2.1

If the elementary matrix E results from performing a certain row operation on I, and if A is an

mxn matrix, then the product EA is the matrix that results when this same row operation is
performed on A.

The above theorem is illustrated by the following diagram, where » denotes an elementary row
operation:

(1) A—>B
)1 —5>E
(3) EA=B

Given (2), (3) implies (1). Given (2), (1) implies (3).

Example 3.2.3
0 1 21
Consider the 3x4 matrix A=|0 4 0 1 |, and the elementary matrices
2 -2 6 4
0 0 1 05 0 1 0 O
E =01 0|,E,=| 0 and E;=0 1 O0].
1 00 0 1 0 2 1
Find E.E,E A and EE,E A.
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Solution:

Theorem 3.2.2

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem 3.2.3

Let A be a square matrix. Then A is invertible if and only if its reduced row-echelon form (recall
its definition in Section 1.2) is the identity matrix.

Proof (for Thereom 3.2.3)

Let R be the reduced row-echelon form of A. Thus R is obtained by performing a sequence of
elementary row operations on A.

By Theorem 3.2.1, there exist elementary matrices E , E,, ..., E, suchthat E,..E.EA=R.
Let B=E,..E,E , we have BA=R.

Since every elementary matrix is invertible by Theorem 3.2.2, their product, B, is invertible by
Theorem 3.1.3(b).

(To prove ‘if’) Suppose the reduced row-echelon formof A is I, .e. BA=R =1.

(To prove ‘only if”) Now suppose that A is invertible of size nxn.
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3.3 A Method for Finding Inverse

Suppose A is an invertible matrix. Then by Theorem 3.2.3, we can perform a sequence of elementary
row operations on A to produce I. By Theorem 3.2.1, we can find elementary matrices E, E,, ...,

E, such that E,..E,E A=1.
Multiplying both sides on the right by A™', we obtain E,..E,EI=A"".

This result gives us an algorithm for finding the inverse of an invertible matrix: perform a sequence
of elementary row operations on A to reduce it to I, then perform the same sequence of elementary

row operations on I to obtain A™".

Example 3.3.1
1 -1 2
Find the inverse of A=| -5 7 -11].
-2 3 -5
Solution:

We form the portioned matrix (A |I) by adjoining the identity matrix to the right of A, then perform

elementary row operations to the matrix till the left side is reduced to I, and the right side will be A™".

I -1 2|1 00
-5 7 ~-1110 1 0 |->—
-2 3 =510 0 1

1 0 0|2 -1 3

-0 1 013 1 -1

0 0 Ij1 1 =2
2 -1 3
Thus A" =|3 1 -1
1 1 2

o What will happen if we use the algorithm on a noninvertible square matrix?
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3.4 Results on Linear System and Invertibility
We have seen in Section 2.2 that every linear system can be written as a matrix equation Ax=Db.

Using this matrix equation and the properties of matrix operations, we are able to prove Theorem
1.1.1.

Theorem 1.1.1

Every system of linear equations has either no solution, exactly one solution or infinitely many
solutions. (There are no other possibilities)

Proof:

Let Ax=b ... (1) be a linear system. If the linear system has no solution or exactly one solution
(which can happen), then we have completed the proof.

This shows that x, +£x,, is also a solution of (1). Since x, # 0 and there are infinitely many values
for k, we conclude that (1) now has infinitely many solutions. (Does this idea sound look familiar?)

Theorem 3.4.1

If A is an invertible nxn matrix, then for any nx1 matrix b, the system of linear equations
Ax =b has exactly one solution, namely x=A"'b.

Example 3.4.1
Find the solution of the following linear system using Theorem 3.4.1.

4x -3y =-3
2x -5y =9

Solution:

4 -3 B
A= . To find A™:

2 =5
4—310_)1—%%0_)1—%%0_)1—%%0_)10%—&
2 5|0 1 2 =510 1 0—%—%1 01%—% 01%—%
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S _3
A—l:[lf‘ I;J’X:A—lb:[l
7 77

Thus x=-3 and y=-3.

<|— _,;|u.

Theorem 3.4.2 (Compare with the definition in Section 3.1)

Let A be an n x n matrix.

(a) Ifthere exists an n x n matrix B such that BA =1, then A is invertible and B=A".

(b) Ifthere exists an n x n matrix B such that AB=1, then A is invertible and B=A"".

Proof:
(a) We can prove A is invertible by Theorem 3.2.3.

Consider the homogeneous linear system Ax=0.

(b)

Theorem 3.4.3
Let A be an n x n matrix. Then the following statements are equivalent:

(1) Aisinvertible.

(2) The linear system Ax =0 has only the trivial solution, i.e. x=0 is the only solution.
(3) The reduced row-echelon form of A is L.

(4) A can be expressed as a product of elementary matrices.

(5) Ax=Db is consistent for every nx1 matrix b.

(6) Ax=Db has exactly one solution for every nx1 matrix b.
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§4 Determinants

4.1 Determinants by Cofactor Expansions

a

b
Recall the a 2x2 matrix A :( d] is invertible if ad —bc # 0. The number ad —bc is called he

c

determinant of A, and is noted by det (A) or |A| . Prior to defining the determinant of an n x n matrix,

we need to define a few relevant quantities first.

Definition

Suppose we have defined the determinant of (n—1)x(n—1) matrix, for n>2

a, 4, a,,
21 A a, .
Let A= : 2" 1...(1)be an nxn matrix for n>2.
anl anZ ann

Let M, be the determinant of the (n—1)x(n—1) submatrix obtained from A by deleting the row

and the column that contain a,, i.e. the ith row and jth column of A. The number M is called the

minor of the entry a,. The cofactor of entry a, is defined to be the number (—I)Hj M, and is
denoted by C;.

Example 4.1.1
5 0 8
Let A=|2 -1 3|.Find M,,, C,,, M,, and C,,.
4 1 0
Solution:
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Definition
Let A be an nxn matrix in (1).

The cofactor expansion of A along row i, 1 <i<n, is the expression

> a,C;=a,C,+a,C,+..+a,C, ...(2)

m m

The cofactor expansion of A column row j, 1< j <n, is the expression

Zal] ; =a,C,+a,,C +.+a,C . (3)

oy

Theorem 4.1.1

Let A be an nxn matrix in (1). The values given by expressions (2) and (3) are equal, regardless
of the row or column chosen.

Now we are ready to define the determinant of an » x n matrix inductively.

Definition

The determinant of a 1x1 matrix, (a) , 1S a.

Let A be an nxn matrix in (1) for n>2. Then we defined the common value in (2) and (3) to be
the determinant of A, and denote by det or |A|

Example 4.1.2
1 0 =2
Evaluate the determinant of the 3x3 matrix |3 1 4
5 2 3
Solution:
Example 4.1.3
1 0 2 0
. 1 0 3
Evaluate the determinant of the matrix 2 0 nE
0 -3 1
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Solution:

Definition

A square matrix in which all the entries below (respectively above) the main diagonal are zeros is
called an upper (respectively lower) triangular matrix. A square matrix in which all the entries
off the main diagonal are zeros is called a diagonal matrix.

1 -3 4 8 0 0 1 00
For example, the matrices |0 2 5|,|1 2 O|and |0 3 O] are upper triangular matrix,
0 0 O 3 3 4 0 0 7

lower triangular matrix and diagonal matrix respectively.

Theorem 4.1.2

If A= (%) is an nx n upper triangular, lower triangular or diagonal matrix, then det(A) is the

product of the entries on the main diagonal of A, i.e. det(A) =a,,a,,...q,,.

A Special Rule to Find the Determinant of a 3x3 Matrix

a2] a22 a23 = a]]a22a33 + a12a23a31 + al3a21a32 - a13a22a31 - a12a21a33 - a11a23a32 ’

ay 4y Ay

which can be memorised by the following mnemonic form

v, O, o |40 G
Ay M, Py | B, Ay

o (9 .
* " 0. " .
ak ay, e ﬁ31 ¥,

where we sum the products of the entries on the right downward arrows then subtract the products of
the entries on the left downward errors. (Does this look familiar?)

Important: This only works for 3x3 matrix!
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4.2 Evaluating Determinants by Row Reduction

Theorem 4.2.1

If A is a square matrix with a row or a column of zeros, then det(A)=0.

Proof:

Evaluating the determinant of A by cofactor expansion along that row or column of zeros, we can
show det(A)=0.

Theorem 4.2.2

If A is a square matrix, then det(A)= det(AT ) :

You may prove this theorem by mathematical induction.

Example 4.2.1

al 1 a] 2 al3
Let A=|a, a, a, |,investigate the effects of the elementary row operations on its determinant.

a3 Q3 4y
Investigation:

(a) Multiplying a row by a scalar &

(b) Interchanging two rows
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(¢) Adding a multiple of one row to another row

The following theorem describes the effect of an elementary row (or column) operation on the
determinant of a matrix.

Theorem 4.2.3

Let A be a square matrix.

(a) IfB is the matrix that results when a row (or a column) of A is multiplied by a scalar £, then
det(B)=kdet(A).

If B is the matrix that results when two rows (or two columns) of A are interchanged, then
det(B)=—det(A).

If B is the matrix that results when a multiple of one row (or one column) of A is added to
another row (or another column), then det(B)=det(A).

Example 4.2.2
1 4 2

Evaluate |-2 8 -9| using Theorem 4.1.2 and Theorem 4.2.3.
-1 7 0

Solution:

o What can you say about the determinant of A if it has two identical rows (or columns)?

o What can you say about the determinant of kA?
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Corollary 4.2.3.1

If a square matrix A has two identical rows or two identical columns, then det( ) =0.

Corollary 4.2.3.2

If Aisa nxn square matrix, then for any scalar , det(kA)=k"det(A).

4.3 Properties of Determinant

o Investigate whether each of the following statements is true given that A and B are square
matrices of the same size:

(a) det(A+B)=det(A)+det(B).
(b) det(AB)=det(A)det(B).
(¢) A s invertible if and only if det(A) #0.

Theorem 4.3.1

Let A, B and C be nx n matrices that differs only in a single row, say the rth row, and suppose
that the rth row of C is the sum of the corresponding entries in the 7th rows of A and B. Then

det(C)=det(A)+det(B).

The same result hold for columns.

Important: det(A +B)#det(A)+det(B) in general!

Example 4.3.1
Use 3 matrices to illustrate Theorem 4.3.1.

Solution:
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Theorem 4.3.2

If A and B are n x n matrices, then
det(AB) =det(A)det(B).

Theorem 4.3.3

A square matrix A is invertible if and only if det(A) #0.

Example 4.3.2
cp e . 1
Prove that if A is invertible, then det(A“) =
det(A)
Proof:
Example 4.3.3
1 -1 3
Show that the matrix | 1 3 11 | is singular.
-2 2 -6
Solution:
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4.4 Adjoint of a Matrix

Definition

Let A = (%) be an nxn matrix and let C; be the cofactor of a, . The matrix

Cll Clz o Cln
G G - G,
Cnl CnZ Cnn

is called the matrix of cofactors from A.

The transpose of this matrix is called the adjoint of A and is denoted by adj(A).

Example 4.4.1
1 0 2
Find the adjointof |3 1 4
52 3
Solution:
-11 4 2
Therefore, the adjoint of the matrixis | 29 7 -10|.
I -2 1

Using the adjoint of a matrix, we are not able to give a formula for the inverse of an invertible matrix,
like the one for 2 x 2 matrix.

Theorem 4.4.1

If A is a square matrix, then
Aadj(A) =det(A)I.

In particular, if det(A)= 0, then A is invertible and

N g
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Proof:

The sizes are consistent on both sides obviously. The (i, j) entry of Aadj(A) is

a,C; +a,C;, +..a,C,

in~—jn*

Example 4.4.2
1 0 2
Use the result of Example 4.4.1 and Theorem 4.4.1 to find the inverseof |3 1 4
5 2 3
Solution:
det(A)=a, G, +a,C, +a,;,C, =1x(-11)+0+(-2)x1=-13.
. -11 -4 2
So the inverse is A™' = adj(A)=——| 29 7 -10|.
det(A) 13
1 =2 1
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4.5 Cramer’s Rule

The following theorem gives a formula for the solution of some linear systems with n equations and
n unknowns.

Theorem 4.5.1 (Cramer’s Rule)

Let Ax=b be a system of n linear equations in » unknowns such that det (A) # (. Then the linear

system has exactly one solution, and the solution is given by

det(A,)

X =——=

" det(A)

where A, is the matrix obtained by replacing the ith column of A by b.

,i=12,...n,

Example 4.5.1

Solve the following system of linear equations using Cramer’s Rule.
3x +5y =7
6x +2y +4z =10
-x 44y -3z =0

Solution:
3 5 0

Evaluating the determinant of the coefficient matrix | 6 2 4 |, we obtain det(A)=4.The linear
-1 4 3

system has exactly one solution.
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§5 Real Vector Spaces

5.1 Definition of Real Vector Spaces

Consider R* = {(x, y) IX,V€E R} , we can think of elements in R” algebraically as ordered pairs, or

geometrically as ‘vectors’. We can add any two elements in R, and multiply any element in R* by
a scalar (real number), i.e.

(xi, )+ (50, 0,) = (% +x,,3,+»,) and k(x,y)=(kx,ky), where k is a real number.

Similarly, for M, , (R), the set of all 2x2 matrices, we can add any two matrices and multiple a

matrix by a scalar (real number), i.e.

a b e f a+e b+ f a b ka kb .
+ = and k = , where k£ is a real number.
c d g h c+g d+h c d ke kd

The two sets, R* and M,, (R), together with addition and multiplication, share many common

properties. In fact, there are many sets with addition and scalar multiplication defined on them that
share these common properties. We shall make a general study of such system collectively.

Definition

A (real) vector space or (real) linear space is a nonempty set V' with two operations @ and &,
called addition and (real) scalar multiplication, that satisfy all the following axioms:

Al (Closure under Addition):
Ifuandvarein V, then u®vel .
A2 (Commutative Property for Addition):
u®v=vou.
A3 (Associative Property for Addition):
ud(vow)=(udv)dw
A4 (Additive Identity):

There is an element 0 in V' such that 0®@u=u and u@®0=u forall u in V. The element 0 is called
the zero vector.

AS (Additive Inverse):

For each u in V, there exists an element —u in V, called the megative of u, such that
u®(-u)=(-u)@u=0.

2016 — 2017 / H2 FMaths / Matrices and Linear Spaces (Student’s Version) Page 42 of 99
www.KiasuExamPaper.com
469



National Junior College Mathematics Department 2016

For any real numbers & and /,
A6 (Closure under Scalar Multiplication)

Ifuisin V, then k®uel .
A7 (Distributive Property of Scalar Multiplication over Addition):

k®(udV)=kQudk®v.

A8 (Distributive Property of Scalar Multiplication over Scalar Addition):
(k+])®@u=k®ud/®u.
A9 (Associative Property for Multiplication):
k®(I®u)=(kl)®u.

A10 (Multiplicative Identity):

1®u=u.

If V'is a vector space, then the elements in V are called vectors.

Important:

The axioms of a vector space do not specify the nature of the vectors nor the operations.

Here are some examples of vector spaces.
Example 5.1.1

(a) R?, with the usual addition and scalar multiplication, is a vector space.
More generally, R", with the usual addition and scalar multiplication, is a vector space.

(b) M,, (R) , with the usual addition and scalar multiplication, is a vector space.
More generally, the set of all mxn real matrices M, (R) with the operations of matrix

addition and scalar multiplication, is a vector space.

(c) Let Vbe the set of all functions f:R — R . We define addition and scalar multiplication on V'
as follows: For f,geV and ke R, (f+g)(x)=f(x)+g(x), (kf)(x)=Af(x).
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Example 5.1.2

Let P, denote the set of all polynomials with real coefficients of degree less or equal to 2, 1.e.

P, = {a+bx+cx2 ta,b,ce ]R} .
Show that, P, with the usual addition and scalar multiplication of polynomials, is a vector space.

Proof:

We need to verify that it satisfies the ten axioms.

Letu=a+bx+cx’eP,, v=d+ex+ fi’eP, and w=g+hx+ix’ eP,,and k,/eR.
Al u+Vz(a+bx+cx2)+(d+ex+fxz):(a+d)+(b+e)x+(c+f)x2 eP,.

A2

A3

A4 Let 0=0+0x+0x>cP, thenu+0=0+u=a+bx+cx’ =u.

A5 Let —u=-a-bx—cx’eP,, then u+(-u)=(-u)+u=0+0x+0x*=0.
A6

A7

A8

A9

Al10

Therefore, P, with the usual addition and scalar multiplication of polynomials, is a vector space.

More generally, let P, be the set of all polynomials with real coefficients of degree less or equal to
n. Then P, with the usual addition and scalar multiplication of polynomials, is a vector space.

o Is the set of all polynomials with real coefficient a vector space under the usual addition and
multiplication of polynomials?

Definition

A trivial vector space or zero vector space contains only the zero vector, i.e. {0} with the addition

@ and scalar multiplication ® defined by
0©0=0 and A ®0=0.

. Explain why a trivial vector space is a vector space.
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Example 5.1.3

Let V7 =R?, and define addition @ and scalar multiplication ® on ¥V by
(a,b)@(c,d) :(a +c,b+d+l), k®(a,b) :(ka,kb+k—l).

Show that V' is a vector space under @ and &.
Proof:

We need to verify that it satisfies the ten axioms.
Let u=(a,b)eV,v=(c,d)eV and w=(e, /) eV ,and k,/eR.

Al
A2

A3

A4
AS
A6
A7
A8

A9

Al0

Therefore V' is a vector space under @ and ®.

Example 5.1.4

Let U :{(x, y):xyzO}. Show that U is not a vector space under usual addition and scalar

multiplication.
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Proof:

We just need to identify an axiom that it fails to satisfy.

o Can you figure out another axiom that U under usual addition and scalar multiplication fails to
satisfy?

Example 5.1.5

Determine whether each of the following is a vector space.

(a) W under the usual matrix addition and scalar multiplication, where

a b
Wz{( j:a+b£c+d}.
c d

(b) QO under usual addition and scalar multiplication, where
0 :{(x,y,z):x+2y—3z = 0}.

(¢) Funder usual addition and scalar multiplication, where
Fz{f:R—)R:f’+f:0}.

(d) S={-1,0,1}, and define addition @ and scalar multiplication ® on S by
0 ifk=0

For a,beS and keR, a®b=ab, k®a= ) )
a ifk#0

Solution:

o Can you figure out other axioms that the non-examples do not satisfy?
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5.2 Basic Properties of Vector Spaces

We shall now state and prove some basic properties of vector space. Note that the proofs of these
properties use only the axioms of vector spaces, and NOT specific properties of any concrete vector

space such as R? (thus we cannot assume ¥ = R* or let v=(a,b) in our proofs).

Lemma 5.2.1

Let ¥ be a vector space and let u, v and w be vectors in V. f u®v=u®w or vbu=w®u,
then v=w.

This lemma allows us to ‘subtract’ the same vectors from both sides of an identity.

Proof:

The proof of the case when v u=w®u is similar.

Theorem 5.2.2

(a) (Uniqueness of 0) The vector 0 €V is the unique additive identity for any ue/ .
(b) (Uniqueness of —u ) The vector —u € V' is the unique additive inverse for a given uel .

(¢c) O0®u=0 forany uel .
(d £®0=0 forany keR.

() (-1)®u=-u forany uel .
) If k®u=0,theneither k=0 or u=90.

Proof:

(@)

(b)

(©)
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(d)

(e)

®

5.3 Subspaces

Consider the set U = {(x, 0) (X € R} . It can be easily verified that U 1s a vector space under the usual

addition and scalar multiplication. Note that U is a subset of R*, and R” is a vector space under the
same operations as that on U. We shall now defined a term to describe in general a relation between

two vector spaces such as that between U and R”.

Definition

Let V' be a vector space and let ¥ be a nonempty subset of V. Then W is called a subspace of V' if
W itself is a vector space under the same addition and scalar multiplication defined on V.

For example, the subset U of R” above is a subspace of R”.
Given a nonempty subset W of a vector space V, to prove W is a subspace of V, by right we should
show that W satisfies all the ten vector space axioms under the addition and scalar multiplication

defined on V, which is tedious.

o Which axiom(s) do we need to verify for W, knowing W is a subset of a vector space V?
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Theorem 5.3.1

Let I be a nonempty subset of a vector space V. Then W is a subspace of V'if and only if it satisfies
both of the following conditions:

(a) Foralluandvin W, u@v is in W (we say that W is closed under addition).

(b) For all u in W and all scalars k&, k®u is in W (we say that W is closed under scalar
multiplication.

The ‘only if* part is obviously true because of the definition of vector space.

To show the ‘if’ part, we need to show that the other 8 axioms are definitely true when (a) and (b)
hold for the nonempty subset W.

Example 5.3.1
It is given that V' is a vector space under © and ®. Show that forany W cV and W # @,
0 W if Wis closed under addition and scalar multiplication.

Proof:

o For any vector space V, {0} and J are its subspaces.

Example 5.3.2

Let W = {(x, y):2x-y= 0}. Show that W is a subspace of R under the same usual addition and

scalar multiplication.

Proof:

o What is the geometrical interpretation of Example 5.3.2?
e IsW'= {(x,y) 2x—y= 1} also a subspace of R*?
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Important:

Now we can shorten the proof to show that ¥ is a vector space sometimes:
Step 1: Explain that W is a subset of a well-known vector space.

Step 2: Show that W is nonempty (by finding an element in W, usually 0).

Step 3: Show that W is closed under both addition and scalar multiplication.

But note this method will not work if it is not obvious that /¥ is a subset of a well-known vector space.

Example 5.3.3

Show that I = {(x,y) x> 0} is not a subspace of R”.

Proof:

Example 5.3.4
Explain whether U = {A eM,,(R):A" = A} is a subspace of M, (R).

Solution:
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§6 Span, Linear Independence, Basis and Dimension

6.1 Span

Let W = {(a,b,c) ca,b,ceR,a+b :c}. Then it can be verified easily that ¥ is a subspace of R’.

Note that ¥ is an infinite set. Is there some way to represent the vectors in W using a finite number
of fixed vectors in W?

Let v, =(1,0,1) and v, =(0,1,1) be two vectors in .
Now consider another vector (1,1,2) in W, we can write
(11,2) =1(1,0,1)+1(0,1,1) = 1v, +1v,.
Example 6.1.1
Show that any vector u € W can be written in the form av, + fv, for some o, €R.
Proof:

u=(a,b,c)=(a,b,a+b)=a(1,0,1)+b(0,1,1)=av,+ Bv,, where a =a and B =b.

Thus we can use two fixed vectors v, =(1,0,1) and v, =(0,1,1) in I to represent an arbitrary vector
m w.

In general, given a vector space V, is it possible to represent } using a finite number of fixed vectors
in V, in the sense of the example above? To facilitate the discussion of this, we need to introduce
some technical terms.

Definition

Let V be a vector space and let v,, v,,...,v, be vectors in V. A vector v in V' is called a linear
combination of the vectors of the vectors v, v,, ..., v if there are scalars &, k,, ..., k, such that

Vv=k Qv Ok OVv,D..0k OV, .

Example 6.1.2
In R’, determine whether each of the vectors

(@ (10,9) and

(b) (151),

is a linear combination of (1,2,-1) and (3,5,2).

Solution:
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(a) To determine whether (1,0,9) is a linear combination of (1,2,—1) and (3,5,2), we need to

check whether the vector equation
(1,0,9)=k(1,2,-1)+1(3,5,2)

has a solution in k£ and /. This equation gives us a system of linear equations:

k +3/ =5
2k 451 =7
-k 21 =3

Solving the linear system (for example, by Gaussian elimination), we obtain the solution k£ =-35,
I=2. Since (1,0,9)=(-5)(12,-1)+(2)(3,5.2) , we conclude that (1,0,9) is a linear

combination of (1,2,-1) and (3,5,2).

(b) Similarly, consider the vector equation
(1,5,1)=m(1,2,-1)+n(3,5,2).

This leads to the linear system:
m +3n =1

2m +5n =5
-m +21 =1
I 3 1
The augmented matrix of the linear systemis | 2 5 5.
-1 2 1
1 3 1
Performing elementary row operations on this matrix gives its row-echelon form |0 1 -3 .
0 0 17

It 1s clear that the linear system has no solution as the last equation now is Om+0n=17.
Hence (1,5,1) is not a linear combination of (1,2,-1) and (3,5,2).

In the above example, we ask whether a particular vector is a linear combination of a set of vectors.
Now we want to study whether every vector in a vector space is a linear combination of a set of
vectors.

Definition

Let V be a vector space and let v, v,,...,v, be vectors in V. We say that V' is spanned by
Vi, Va, eV, (OF Vi, V,, ..V, span V, or {v,V,,..,v,} is a spanning set for V equivalently) if

every vector in V' is a linear combination of v, v,,...,v

ne

If Vis spanned by v,, v,, ..., v, , then we write V' =span{v,, v,,...,V,}.

If V'is spanned by v, v,,...,v, in V, then

n

V=span{v,,v,,...v,} ={k®V, @k, ®v,D..0k, OV, :k,k,,....k, e R}.
Example 6.1.3
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In Example 6.1.1, we can say W = {(a,b,c) ca,b,ceR,a+b :c} has a spanning set
{(1,0,1),(0, 1,1)} . Find another spanning set for W.

Solution:

. The spanning set for a vector space need not be unique.

e  Can we say that {(l,—l,O),(O, 1,1),(1,0,1)} is another spanning set for #?

e  Can we say that {(l,—l,O),(O,l,l),(1,0,0)} is another spanning set for #?

Example 6.1.4

Determine whether P, is spanned by the vectors 1+ x—2x”, —3x+x’.

Solution:

Example 6.1.5
Find a spanning set for the subspace V = {(a,b,c,d) ca+b-c=0,a+2c—d = 0} of R*.

Solution:
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a +2¢ —-d =0
b -3¢ +d =0

Let c=s and d =¢, where s and ¢ are real numbers. Then we obtain the general solution of the linear

system: a=-2s+t, b=3s—t, c=s and d =¢. Thus,
(a,b,c,d):(—2s+t,3s—t,s,t):s(—2,3,1,0)+t(1,—1,0,1).

So every vector in ¥ is a linear combination of (-2,3,1,0) and (1,—1,0,1). As these vectors lic in V.

We conclude that {(—2,3,1,0),(1,—1,0,1)} is a spanning set for V.

Consider the vector (1,2,1) in R’. Can we find a subspace of R* containing (1,2,1) that is as “small”

as possible?

Theorem 6.1.1

Let V'be a vector space can let v,, v,,...,v, be vectors in V. Let W be the subset of V' defined by
W={k®v&k®v,®.0k ®V, k,k,..k cR}.

Then W is a subspace of V' containing v,, v,,...,v, . Furthermore, W is the “smallest” subspace

that contains these vectors, in the sense that if U is a subspace of V' and U also contains
V., V...V, ,then WcU.

Note that W =span{v,, v,,...,V,} .

Example 6.1.6

Let 1+x, x—x” be vectors in P, . State the smallest subspace of P, that contains these two vectors.

Solution:

. Let u and v be nonzero vectors in R* , where u is not a scalar multiple of v. Geometrically,
what is span{u} and what is span{u,v}?
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6.2 Linear Independence

Consider Example 6.1.3, we have obtained {(l,—l,O),(O,l,l)} as a spanning set for . Let S denote
this spanning set.

We may also say that {(l,—l,O),(O, 1,1),(1,0,1)} is another spanning set of W. Let T denote this
spanning set.

S is a “smaller” spanning set than 7 in the sense that it has fewer vectors in 7. Note that S is obtained
from 7 by deleting the vector (1,0,1).

o Can we delete any vector from S to get an even ‘smaller’ spanning set for W?

In general, given a spanning set S for a vector space V, can we reduce a number of vectors in S to get
a “smaller” spanning set for V'? To help answer this question, we introduce the following concept.

Definition

A set of vectors S = {v], Voyeees vn} , r>1, 1s called linearly dependent, if one of the vector in S is

a linear combination of the other vectors in S, otherwise it is called linearly independent, i.e. none
of the vectors in § is a linear combination of the other vectors in S.

If S ={v}, then S is linearly independent if v # 0, and linearly dependent if v=0.

For example, T = {(1,—1,0),(0,1,1),(1, 0,1)} is linearly dependent as

(1,-1,0) = (=1)(0,1,1)+(1)(1,0,1).

S = {(l, -1,0) ,(0,1,1)} is linearly independent as neither vector is a multiple of the other.

Example 6.2.1

Let V be a vector space and suppose S :{v], V2,...,Vk} is a set of vectors in V. It is given that
V =span(S). Show that

(a) if v, is a linear combination of {v,,...,v, }, then ¥ =span{v,,..., v, };

(b) if Sis linearly independent and 7 is a set obtained by removing one vector from S, prove that 7'
does not span V.
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Solution:

(@)

(b)

Consider the set of vectors {V], v,, ...,Vk}. Suppose we want to check whether the set is linearly
independent or not.

. Can we just check whether v, is a linear combination of the other vectors, or must we check
successively whether each of the vectors is a linear combination of the others?

Theorem 6.2.1

Let = {V], Vo enes Vr} be a set of vectors in a vector space. Then S is linearly independent if an

only if the vector equation
k®Ov@k,Ov,®..0k ®v, =0

has only one solution, namely, the trivial solution k, =k, =...=k, =0.

Equivalently, S is linearly dependent if and only if the vector equation has more than one solution,
1.e. it has nontrivial solution where k, k,, ..., k. are not all zero.
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Proof:
The equivalent statement is easier to prove.

Suppose S is linearly dependent, we can find a vector in S, say v,, that can be written as a linear
combination of the others in S, i.e.

Conversely, suppose the equation
k®Ov@k,Ov,®..0k ®v, =0

has a solution where &, , k, , ..., k. are not all zero, say k, #0. Then

Example 6.2.2

Determine whether the set {(1,0,2),(2,1,0),(—1,3,2)} is linearly independent under the usual
addition and scalar multiplication.

Solution:
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Example 6.2.3

11y (=1 0)(2 1) (1 2 , , ,
Is the set , , , of the vectors in M, , (R) linearly independent?
0 1 1 1 1 -1)\3 2 ’

Solution:
Consider the vector equation
11 -1 0 2 1 1 2 0 0
k, +k, +k, +k, =
0 1 1 1 I -1 3 2 0 0

This leads to the following linear system

6.3 Basis

Having defined the concepts of span and linear independence, we now introduce a very important
concept for vector space.

Definition

Let V' be a vector space and let S = {v], Vo enes vr} be a set of vectors in V. Then § is called a basis

for V if it satisfies the following two conditions:
- S is linearly independent,
- S spans V.

In other word, a basic B of a vector space V' is a “minimal” spanning set for V, in the sense that if we
remove any vector from B, the resulting set is no longer a spanning set for V. For example, we say

the set S ={(1,0,0),(0,1,0),(0,0,1)} is a basis of R’.

In H2 FM syllabus, we only consider vector spaces that have finite number of vectors in a basis.
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Example 6.3.1

Show that the set T ={(1,0,1),(0,1,0),(0,1,1)} is also a basis of R’
Solution:

The vectors in T are in R,

We first show that 7 is linearly independent. Consider the equation
a(1,0,1)+ 3(0,1,0)+7(0,1,1)=(0,0,0).

We have a =0, f+y=0 and a+y =0. It is clear that « = f# =y =0 is the only solution to the
equation. This shows T is linearly independent.

Next we show that 7 spans R*. Take an arbitrary vector (a,b,c) in R*. Now consider the equation
k(1,0,1)+l(0,1,0) +m(0,1,1) = (a,b,c) )

Wehave k=a, [+m=b and k+m=c.Itisclearthat k=a, [=b—c+a and m =c—a . Thus,
(a,b,c):a(1,0,1)+(b—c+a)(0,1,0)+(c—a)(0,1,1).

Therefore every vector in R’ is a linear combination of the vectors in 7. Hence 7 spans R”.
Since T is linearly independent and it spans R*, we conclude that T is a basis for R”.

The above example show that R® has another basis. In fact, R’ has many different bases. Among the
bases of R’, the particular basis {(l, 0,0),(0,1,0),(0, 0,1)} is called the standard basis of R’. The

standard basis of R" is defined in a similar way.

The standard basis of P, is defined to be {1,x,x’} . The standard basis of M, , (R) is defined to be

I 0)(0O 1)(O0 O0Y(O O . o
: : : . The standard bases of P, and M (R) are defined in a similar
0 0){0 0)(1 0)(0 1 .

way.

Theorem 6.3.1

Suppose {V], Voyenes vn} is a basis of a vector space V. Then every vector in V' can be expressed

uniquely as a linear combination of v,, v,,..., v, . Uniqueness here means that if ve /" and
V=kO®OVvV®kOV,D. .0k OV, =¢c®V,®c,®v,D..Oc, OV, ,

then k, =¢,, k, =c,, ...

2016 — 2017 / H2 FMaths / Matrices and Linear Spaces (Student’s Version) Page 59 of 99
www.KiasuExamPaper.com
486



National Junior College Mathematics Department 2016

Proof:

Let £, ®v, @k, ®v,D.. 0k, OV, =, QV, ®c,®V,D..Oc, Qv,.

Le. ki =c, k,=c,, ..., k,=c,.

Example 6.3.2

Is S= {(1,0),(0,1),(1,—2)} a basis for R” ? Justify your answer.

Solution:

Example 6.3.3

Is S:{(l,—l,0,0),(0,0,l,l)} a basis for the vector space V:{(a,b,c,d):a+b:0,c—d:0} ?

Justify your answer.
Solution:

Yes.

Since S is linearly ihdependent and S spans V. § is a basis for V.

6.4 Dimension
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Theorem 6.4.1

Let V" be a vector space and let {v,, v,,...,v,} be a basis of V.

Let S ={u,,u,,...,u,} beaset of k vectors in V.

(a) If k>n, then S is linearly dependent.
(b) If £ <n,then S does not span V.

This theorem leads to the following:

Theorem 6.4.2

Suppose {V,, V,,...,v,} and {u,,u,,..,u,} are bases of a vector space V. Then n=k. In other

words, all bases of a vector space have the same number of vectors.

Since all the bases of a vector space have the same number of vectors, we can make the following
definition.

Definition

The dimension of a vector space V, denoted by dim(V), is defined to be the number of vectors in

any basis of V. If the dimension of V' is finite, we say that V is finite dimensional.

We define the dimension of the zero vector space {0} as 0, with & as its basis.

Example 6.4.1

What are the dimensions of R", P, and M, , (R)?

Solution:

Example 6.4.2

Find the dimension of the subspace {(a,b,c, d):a+b=0,c—d= 0} of R*.

Solution:

INOW wWe can rewrite 1heorem 06.4.1 usig dimension,
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Theorem 6.4.3

Let ¥ be a vector space with dim(V)=n>0

Let S={u,,u,,..,u,} beaset of k vectors in V.

(a) If k>n, then S is linearly dependent.
(b) If £ <n,then S does not span V.

o In Theorem 6.4.3, is it true that S is linearly independent if k£ <n?
o In Theorem 6.4.3, is it true that S spans Vif k>n?
° In Theorem 6.4.3, is it true that S is a basis for Vif k=n?

Theorem 6.4.3 says that the minimum number of vectors needed to span V is dim(V), and the

maximum number of vectors in J that are linearly independent is dim(V).

Example 6.4.3

Let §= {u,v,w} be a set of vectors in a vector space V. In each case below, can you say anything
about dim(V)?

(a) Sspans/V.

(b) S does not span V.

(¢) Sis linearly independent.
(d) Sis linearly dependent.

Solution:

(@)
(b)
()
(d)

Theorem 6.4.4

Let V' be a vector space with dim(V) =n>0. Let S be a set of vectors in V with exactly n vectors.

Then S is a basis for V if either S spans V or S is linearly independent. That is

(a) IfS spans V, then S is linearly independent.
(b) If S is linearly independent, then S spans V.

Example 6.4.4
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Prove that the set S = {1+x+x2,1+2x+3x2,x} is a basis of P, .

Proof:

Since dim(P,)=3, we only need to verify one of the following:
(a) Sspans P,,
(b) Sis linearly independent.

. Can you use Theorem 6.4.4 to construct another proof?

o Can you use the definition of basis to construct another proof?

Theorem 6.4.5
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Let V be a nonzero vector space.

(a) Every set of linearly independent vectors in ¥ can be enlarged to a basis of V, if necessary.
(b) Every spanning set of } can be reduced to a basis of V, if necessary.

Example 6.4.5
Find a basis of R® that contains the vector (1,2,1).
Solution:

Since the set {(1, 2,1)} is linearly independent, it can be enlarged to a basis of R’ by Theorem 6.4.5.

The following theorem gives a relationship between the dimensions of a vector space and its
subspaces.

Theorem 6.4.6

If W is a subspace if a vector space V, then

dim(W) < dim( ) .

Furthermore, dim(W) = dim(V) ifandonly ift W =V1".

Example 6.4.6

Let W = {a +bx+cex’ia-b+c= 0} . Prove, without finding a basis for 17, that dim (W) <3.

Proof:
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§7 Row Space, Column Space and Null Space

In this section, we define three vector spaces associated with a matrix. This will lead to the important
concept of rank of a matrix, which has connection with the solution of a system of linear equations.

7.1 Row Space and Column Space

Definition

Let A be the m x n matrix

al 1 a12 Cl] n
a a a
21 22 2
A= : ()
aml Clm2 amn

Let the rows of A, which are vectors in R" , be denoted by

I = (all a, - aln)
L :(aZI Ay, aZn)
l‘m = (aml amZ amn)

a]] a]Z aln

| 9n | 9 | %2
c] - ’ c2 - : ’ ’ cn -

aml am2 amn

(@) The row space of A is defined to be the subspace of R" spanned by the rows of A, i.c.
row space of A =span{r,,r,,....r, } ={kr +kx, +k.xr, k. k... k, cR}.

(b) The column space of A is defined to be the subspace of R” spanned by the columns of A,
i.e. column space of A =span{c,,¢,,....¢,} ={ke, +k,e, +ke, k. ky, ...k, eR}.

Example 7.1.1
I 1 -1
Write down the row space and column space of A=| -1 4 5
1 6 3
Solution:

rowspaceofA:span{(l 1 -1 3),(-1 4 5 -2),(1 6 3 4)}
={k(1 1 =1 3)+k, (-1 4 5 =2)+k(1 6 3 4):k,k.k eR}
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column space of A =span<q| —1|,| 4 |,| 5 [,| 2
1 1 4
1 1 -1 3
=3k | =1 |+k,| 4 |+k| 5 |+k,| 2|k, k), kk, eR
1 1 3 4
Example 7.1.2
2 1 1 2 -1
Determine whether the vectors | —1 | and | 1 | in the column space of A, where A=2 -1 3
4 1 7 -8 3
Solution:

7.2 Null Space

Definition

Let A be the m x n matrix in (1). The set of all solutions of the homogeneous linear system Ax=0
is a subspace of R", called the null space of A, i.c.

X a, 4 a, || %
X a a e a X.
null space of A = {x eR":Ax= 0} e =
xn aml am2 amn xn 0
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Example 7.2.1
I -2 -1

Find the null space of A, where A=|2 -1 3 |. Hence, write down a basis for the null space.
7 -8 3

Solution:

To find the null space of A, we solve the homogenous linear system Ax =0. The augmented matrix

I -2 -1 0
of the linear systemis |2 -1 3 O0].
7 8 3 0

7.3 Finding Bases

The following theorems give a method for finding a basis for the row space of a matrix.

Theorem 7.3.1

Let A and B be matrices. If B can be obtained from A by performing a sequence of elementary
row operations, then A and B have the same row space.

Theorem 7.3.2

If R is a matrix in row-echelon form, then the rows that containing the leading 1’s form a basis
for the row space of R.
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Example 7.3.1

State a basis for the row space of R, where R =

S O O =
S O O N
S O = =
oS O = O
S = W W

Solution:

Since the matrix R is in row-echelon form, the set
{1 2103)00115)0 000 1)
is a basis for the row space of R.

Example 7.3.2
1 -2 0 0 3
) ) 2 -5 -3 26
Find a basis for the row space of B, where B = .
0 5 15 10 0
2 6 18 8 6

Solution:

The following theorems give a method to find a basis for the column space of a matrix.

Theorem 7.3.3

If R is a matrix in row-echelon form, then the columns that containing the leading 1’s form a basis
for the column space of R.

Theorem 7.3.4

Let A and B be matrices. Suppose B can be obtained be obtained from A by performing a sequence
of elementary row operations. Then a given set of columns of A form a basis for the column space
of A if and only if the corresponding columns of B form a basis for the column space of B.

Example 7.3.3
1 21 0 3
. 0 01 1 5
State a basis for the column space of R, where R = .
0 0 0 01
00 0 0 O
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Solution:

Since the matrix R is in row-echelon form, is a basis for the column space of R.

S = N W

Example 7.3.4
1 -2 0 0 3 1 2 0 0 3
o 2 -5 3 26 0 1 3 20
It is given that B = can be reduced to row-echelon form .
0 5 15 10 O 0 1 10
2 6 18 8 6 0 0 00

State a basis for the column space of B.

Solution:

-2

2

0
3 :
] also a basis for the column space of B?
0

1
0
0 b
0
° Can you suggest another possible method to find a basis for the column space of a given matrix?

Now we can apply the method for finding a basis for the column space of a matrix to reduce a
spanning set for a subspace of R"” to a basis of that subspace.

Example 7.3.5

Let W be the subspace of R" spanned by the set

1 2 0 2 5
=215 (1||-1]|]|-8
S = 2 b b b
0 =313 4 1
3 6 0 7 16
Reduce S to a basis of W.
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Solution:
1 2 0 2 5
. ) -2 -5 1 -1 -8
Construct a matrix A whose columns are the vectors in S: A = 33 4 1
3 6 0 7 16

1 2 2
2| ==l
Thus, , , 1s a basis for W.
-3 4
3 6

7.4 Rank and Nullity

Theorem 7.4.1

For any matrix A, the dimension of the row space of A is equal to the dimension of the column
space of A.

o How can we justify this theorem?

Definition

The common dimension of the row space and column space of a matrix A is called the rank of A,
and is denoted by rank (A).

The dimension of the null space of A is called the nullity of A, and is denoted by nullity(A) .

Example 7.4.1
1 -2 -1
Itis giventhat A=|2 -1 3
7 -8 3

(a) Deduce the nullity of A from Example 7.2.1.
(b) Find the rank of A.
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Solution:

(a) nullity(A) =1 as there is only one vector in the basis of its null space.

1 -2 -1 1 -3 2
(b) Reduce A=|2 -1 3 |torow-echelon form: A={0 1 3|. Since there are 2 leading
7 -8 3 0 0 O

1’s, rank(A) =2.

Example 7.4.2
1 2 0 0 3

-5 3 2 6
0 5 15 10 0}

2 6 18 8 6

(a) Deduce the rank of B from the result of Example 7.3.4.
(b) Find the nullity of B.

It is given that B =

Solution:

(@)

(b)

If A is a matrix, then
rank (A) = the number of leading 1's in the row-echelon form of A ;

nullity (A ) = the number of parameters in the general solution of Ax =0.

o Can you make a conjecture for the relationship between the rank and nullity of a matrix
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Theorem 7.4.2

If A 1s an m x n matrix, then
rank (A) + nullity(A) =n.

The following theorem links the rank of A to the solutions of the linear system Ax=b.

Theorem 7.4.3
Let A be an m x n matrix. Then the following statements are equivalent.

(a) The linear system Ax=b is consistent.
(b) The rank of A is equal to the rank of the augmented matrix (A |b).

(¢) b s in the column space of A.

Example 7.4.2

Consider the linear system Ax =b. What can you say about the relationship between the rank of the
coefficient matrix and the rank of the augmented matrix, when the system is inconsistent?

Solution:
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Example 7.4.3

Consider the matrix equation Au=b that corresponds to the following system of two linear
equations and two unknowns:

a,x+a,y=b, %)

a,x+ay,y=>b,

Let the rank of its coefficient matrix be 7 and the rank of its augmented matrix be ¢g. It is assumed that
neither row of the coefficient matrix contains only 0.

(i)  Find all the possible values for the ordered pair (r,q).

Geometrically, each equation in (*) represents a line on 2-dimensional plane.

(ii) What can you say about the relationship between the values of (r, q) and the intersection of
the two lines?

Solution:

()

(i)

2016 — 2017 / H2 FMaths / Matrices and Linear Spaces (Student’s Version) Page 73 of 99
www.KiasuExamPaper.com
500



National Junior College Mathematics Department 2016

§8 Linear Transformations

In H2 Mathematics, we have learnt how to write descriptions for certain transformations of graphs,
but these graph transformations can be quantified! With linear transformations, we can quantify many
graph transformations such as reflections, scaling, shears and rotations on 2-D plane or even in 3-D
space. You may refer to Appendix III for more details.

8.1 Linear Transformations in General

Definition

If V' and W are vector spaces, then a linear transformation (also called linear map or linear
mapping) is a function T:V — W that preserves the operations of addition and scalar
multiplications, i.e. for all vectors u and v in V and all scalars £:

T(u®v)=T(u)®T(v) and T(k®u)=k®T(u).

Note that the addition and scalar multiplication on the left-hand side are defined for the vector space
V, and those on the right-hand side are defined for the vector space W. They need not be the same in
general.

Example 8.1.1

Prove that L: R — R is a linear transformation if L(x) = 2x.

Proof:

Consider x,,x,,keR.

L(x]):2x] , L(xz) =2x,, L(x] +x2) :2(x] +x2) =2x,+2x, :L(x])+L(x2) .
L(kv,)=2(ky,) =k (25,) = KL(x,).

Thus, L is a linear transformation.

Example 8.1.2

Determine whether each of the following function is a linear transformation. Justify your answers.

(@ T:RoR,T(x)=2x+1.
(b) T,:R>—>R?, T,(u)=Au where A isa fixed 2x2 matrix.
¢ T,:P >P _ (nx1), T3(p(x)):p'(x).
@ T,:R->R,T,(0)=sin6.
x+y

x
:]RZ—HR},T{ ]: x—y+1].

Y

Y

® T,:R’>P, Té(a,b,c):ax2+bx+c.

(e) T

w
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Solution:

(@)

(b)

(©)

(d)

(e)

)

Theorem 8.1.1

If T:¥ — W is a linear transformation, then T(0)=0.

o Are the 0 inside the brackets the same as the 0 on the right-hand side?

Proof:
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Theorem 8.1.2

If T:V — W 1s a linear transformation, then
T(a®u®b®v)=a®T(u)(—Db®T(V) forall u,veV and a,he R,

or more generally,

T(k ®V, ®k OV, ®..0k, ®V,) =k ®T(v,) &k, ®T(v,)®... 0k, ®T(v, )

for all V;, Vy,....V, €V and k, k,, ...,k €R.

Proof:

To prove the more general result, you may use mathematical induction.

Note if {Vl,VQ,...,Vn} is a basis for V, then this linear transformation T :J — W is uniquely

determined by T(Vl), T(VQ), - T(Vn) :

Use Example 8.1.2(c) to illustrate this point: since {l, X, x"} 1s a basis for P,,, as long as we know

how to differentiate (or transform) these vectors, we know how to differentiate all the other vectors

in P,.

8.2 Null Space and Range Space of Linear Transformation

Definition

Let T :V — W be a linear transformation. Then

null space of T ={X € V:T(X) =0} ,

range space of T = {T(X) ‘X € V} :

o The null space of T is a subset of  and the range space of T is a subset of .

Example 8.2.1
Let T:V — W be a linear transformation, prove that
(a) the null space of T is vector space,

(b) the range space of T is also a vector space.
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Proof:

(@)

(b)

Definition

Let T :V — W be a linear transformation. Then the rank of T 1s the dimension of the range space
of T, and the nullity of T is the dimension of the null space of T.

Example 8.2.2

Find the rank and nullity of each of the following linear transformation:

(a L:R->R,L(x)=2x
M T1,:r > P, L(abc)=ax’+bx+c.

© T:PB =P, (n21), T(p(x)=p(x).
Solution:

(a) Since the range space {2)6 ‘X€ R} =IR, the range space has a basis {1} , S0 its dimension is 1.

Thus, rank(L) =1.
L(x) =0 implies x =0, the null space has only a zero vector in it, so its dimension is 0. Thus,
nullity(L)=1.
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o What conjecture can you form about the rank and nullity of a linear transformation?

° What can you say about the rank and nullity of the linear transformation 1 :R?> > R?,

T, (u)=Au where A is a fixed 2x 2 matrix.

8.3 Linear Transformations from R” to R"”

We have seen some similarities between a linear transformation and a matrix. In this session, we shall
discuss the similarities in details.

Theorem 8.3.1

Any linear transformation T R" —>R" can be represented by a ,, x , matrix A, such that
T(X) = AX forall xe R”

Before proving this theorem, let us look at a few examples:

Example 8.3.1

Identify the matrices that represent the following linear transformations:

x x+2
@ T:R*5>R?,T =( y].
Y x=y
X
xX++2
(b) L:R°>R>,L|ly|= V2y .
3x-0.5z
z
Solution:
X X
T X x+2y I 2)\(x L x+\/§y ﬁ
y xX=y I -1)\y 3x—0.5z . |
z z
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Proof for Theorem 8.3.1:

a
Example 8.3.2
i . . 1 1 0 2
Let T:R? —» R? be a linear transformation with T 0 = . and T : = 3 )
i 2
(i) Find T(lj.
(ii) State the matrix A such that T(u) =Au forallue R?.
Solution: ) )
()
(ii)
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Theorem 8.3.2

Let T:RR" —>RR" be a linear transformation and let A be the matrix representing T, i.e.
T(X) = AX forall xeR".

null space of T = null space of A,
range space of T = column space of A,
and consequently,

nullity (T)+ rank (T) = dim(R")=n .

Example 8.3.3

The linear transformation o : R’ — R* is represented by the matrix

2 1 4
-1 3 -9
3 1 7

with respect to the standard basis of R’.

(i) Show that the range space of + has dimension 2, and state the nullity of 5 .

X

(ii) Given that | ¥ | is in the range space of 5 , obtain integers a, b, ¢, not all zero, such that
4

ax+by+cz=0.

(iii) Find the subset P of R’ whose image under , is the line

3 4
r=|2|+A|5
4 5
Show that P is a plane, and give its equation in the form kx + Iy + mz = n , where k, [, m, n are
integers.
Solution:
()
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X (04

ii) Since | ¥ | is in the range space of » , there must exist | S |€ R’ such that
ge Sp

z /4
a a X

ol B|=AlB|=|y].
/4 I4 z

(iii)

o Is P a vector space?

o Jf T:R? > R’ is a linear transformation, what is the image of a plane under T?
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§9 Eigenvalues and Eigenvectors

Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes,
eigenvectors. Control theory, vibration analysis, electric circuits, advanced dynamics and quantum
mechanics are just a few examples of the application areas. You may refer to Appendix III for more
details.

In Mathematics, eigenvalues and eigenvectors are used to transform a given matrix into a diagonal
matrix, which helps us to evaluate powers of a square matrix.

9.1 Eigenvalues and Eigenvectors

Example 9.1.1

3 -1
Consider the matrix A :( 5 5 ] .

Find in R*, two nonzero and nonparallel vectors, W; and W,, such that Au, is a scalar multiple of

U, and AL, is a scalar multiple of W,.

Solution:

o Can you suggest some other possible answers?

2016 — 2017 / H2 FMaths / Matrices and Linear Spaces (Student’s Version) Page 82 of 99
www.KiasuExamPaper.com
509



National Junior College Mathematics Department 2016

Definition

Let A bean , «» ,» matrix. A nonzero vector vin R" is called an eigenvector of A if

Av=Av

for some scalar A. The scalar A is called an eigenvalue of A, and v is side to be an eigenvector
corresponding to A.

In Example 9.1.1, ( 1] is an eigenvector of A corresponding to the eigenvalue 4.

o Is it possible for a matrix to have an eigenvector 0?
o Is it possible for a matrix to have an eigenvalue 0?

Example 9.1.2

1 2
Consider the matrix B:( 5 4] . Find the eigenvalues /11 and 12 , and corresponding

eigenvectors of B.

Solution:

x xX—2y . ) x
Let v= . Then Bv = which must be a scalar multiple of .
y —2x+4y y

x—2y X
Let =1 .Then x-2y=Ax...(1)and -2x+4y =24y ... (2).
—2x+4y y

This method can be very complex and tedious to apply when the size of the square matrix becomes
larger.

This applet allows you to explore visually, the eigenvalues and eigenvectors of a user-defined 2 x 2
matrix: https:// www.geogebra.org/m/KuMAuEnd.
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The following theorem can help us simplify the process of finding the eigenvalue(s) of a square matrix.

Theorem 9.1.1

Let A be an , « , matrix. Then A is an eigenvalue of A if and only if det(lI—A) =0.

Proof:

To find an eigenvector corresponding to a found eigenvalue, is equivalent to find a nontrivial solution

of the homogeneous linear system (ﬂ - A) v=0.

Example 9.1.3

1 =2
Use Theorem 9.1.1 to find all the eigenvalues and the corresponding eigenvectors of ( ] .

-2 4

Solution:

A-1 2
AI-B=

S

A-1 2
0=det(AI-B)= =(A-1)(1-4)-4=2>-5
N P I

So A=0or A=5.

-1 2)\(x 0
When A =0, we solve (2 4]( ]:(0] to find eigenvector. By observation, a corresponding

y
. 2
eigenvector ( : ] )

4 2\(x 0
When A =5, we solve (2 1]( ]:(Oj to find eigenvector. By observation, a corresponding

y
. -1
eigenvector ( 5 ]
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Definition

Let A bean , « , matrix. The equation

det(AM-A)=0

is called the characteristic equation of A. det(AI—A), when expanded, is a polynomial in A, and

is called the characteristic polynomial of A.

. What can you say about the number of eigenvalues that a square matrix has?

Example 9.1.4

1 2 -1
ILet A=|{1 0 1
4 4 5

(a) Find all the eigenvalues of A.
(b) Find an eigenvector corresponding to each eigenvalue in (a).

Solution:

(@)

(b)

o What can you say about the eigenvalues and eigenvectors of the matrix A+217?
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Eigenspace (not in H2 FM syllabus)
Theorem 9.1.2

Let Abean , « , matrix and let A be aneigenvalue of A. Let £, denote the set ofall eigenvectors
of A corresponding to the eigenvalue A, together with the zero vector 0. In other words,

El:{veR":AV:AV}.

Then £, is the null space of (AI—A) :

Proof:

Note that for ve R",
veE, ©Av=Av& (Al-A)v=0< venull space of (AI-A).

Therefore, £, =null space of (AI—A).

Definition

Consequently, E, :{VGIR" :AV:AV} as a subspace of R"is called the eigenspace of A

corresponding to the eigenvalue A.

Example 9.1.5
Determine whether the following statement is true:

“Let A be an nxn matrix and let A be an eigenvalue of A. If u and v are two eigenvectors
corresponding to A, then they must be parallel, i.e. one is a scalar multiple of another.”

Justify your answer.

Solution:
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9.2 Diagonalization

In many applications, it is desired to find the nth power of a given matrix A. If A is a diagonal matrix,
then it is relatively easy to compute A”.

Theorem 9.2.1

Let A be an , x » diagonal matrix

Then its mth power

Proof:

The result can be proven by mathematical induction (omitted).
. What if A is not diagonal?

Example 9.2.1

3 -1 1 1
From Example 9.1.1, it is known that A:( 5 2] has eigenvectors u, :(2] and u, :( ]

corresponding to the eigenvalues 1 and 4 respectively. Let

P=(u]|uz)=@ _11] andD:[/})l /(1)2]:[‘1) 2]

(i) Verify that AP=PD.
(i) Prove that (i) is true for any general 2 x 2 matrix.
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Proof:

()

(i)

o Can you extend the proof for a general ,, x ,» matrix?

Note that AP = PD = A = PDP ' if P is invertible. In this case

A" = (PDP-1 )'" = (PDP‘l)(PDP‘l)...(PDP‘I): PD"P'.

m times

Example 9.2.2

3 -1
Use the above result to find A> where A :( ] .

-2 2
Solution.
1 1 -1 -1 1 1
P=(u|u,)= and‘P‘=—3, SO po_l 1 . D= A0 (10}
2 -1 312 1 312 -1 0 A, 0 4
Now,

A’ =PD’P”’

o How do you check the answer effectively?
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Definition

A square matrix A is called diagonalizable if there is an invertible matrix P such that P~'AP is a
diagonal matrix. The matrix P is said to diagonalize A.

Note that the order of matrix multiplication is important in the results:

A=PDP "' and D=P 'AP.

Theorem 9.2.2

If A is an , x , matrix, then A is diagonalizable if and only if A has » linearly independent
eigenvectors.

Proof:
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Theorem 9.2.3

Ifan , « » matrix A has n distinct eigenvalues, then A is diagonalizable.

Important:
Theorem 9.2.3 gives a sufficient condition but not a necessary condition for A to be diagonalizable.

o Can you give an example, in which an , « , matrix A does not have n distinct eigenvalues but
it is still diagonalizable?

Example 9.2.3

For a 3x3 matrix B whose eigenvalues are 1, =2 and —3, and for which corresponding eigenvectors

0 1 1
are | 1,0 |and |1 | respectively,
1 1 0

The element in the first row and the first column of B" is denoted by & . Show that

(2 +(3)

o =

2
Proof:
Example 9.2.4
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I 12
Let A=/0 1 O |[. Determine whether A is diagonalizable, and find an invertible matrix P and a
013

diagonal matrix D such that P"'AP = D if so.

Solution:

The characteristic equation of A is

A-1 -1 -2
det(AI-A)=| 0 A-1 0 =(ﬂ,—1)2(ﬂ,—3)=0,the eigenvalues of A are 1 and 3.
0 -1 1-3
0 -1 -2 01 2
When A=1,I-A={0 0 O |—>|0 O O]|.To find the nontrivial solutions of
0 -1 -2 0 0
0 1 2 0
0 0 O0f|y|=]0|,ie. y+2z=0,
0 0 O){z 0
0 -1
0 I 0 |.To find the nontrivial solutions of
0 -1 0 0 O

2 -1 2
When A=3,31-A=|0 2 -
X
y
z

0
= ,l1e. x—z=0and y=0,
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o In this example, what can you say about the sum of the dimensions of all the eigenspaces of A?

Here is another necessary and sufficient condition for a square matrix to be diagonalizable. (not in
H2 FM Syllabus)

Theorem 9.2.4

Let Abean , « , matrix. Then A is diagonalizable if and only if the sum of the dimensions of all

the eigenspaces of A is n. That is, if /11, ZQ, ooy Z,( (k <n) are the distinct eigenvalues of A, then A
is diagonalizable if and only if
dim(E, )+dim(E, )+...+dim(E, )=n.

In Example 9.2.4, when A =1, rank(I—A) =1so dim(El) :nullity(I—A) =3-1=2;when 1=3,
rank (31— A) =2, so dim(E, ) =nullity(3I-A)=3-2=1.

Since dim(E1 ) + dim(E3) =3=n, A is diagonalizable.

9.3 Application to Linear Recurrence Relations

We illustrate with an example the application of diagonalization to solving some linear recurrence
relations.

Example 9.3.1

A sequence of numbers 4, 4, 4,, ... is defined by the linear recurrence relation

a =a,  +6a

n—2»

n=2.

Let the column vector U, denote [a””] .
a

n

(i) Find a 2x2 matrix A such that U, =Au,_, .
(i) Hence, express W, in the form Bu, , where B is a 2x2 matrix to be determined.

(iii) Deduce the expression of &, in terms of 4,, d, and n.

Solution:
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(i)

(iii)

(—a1 +3ao)(—2)n +(a1 +2a0)(3") .
5

Therefore a, =

This approach can be extended to solve a higher-order linear homogeneous recurrence relation, and
even differential equations. Refer to Appendix III for more details.
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SUMMARY PAGE 2
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Appendix I: Calculators

1.1 Commands of Graphic Calculator (TI-84c)

Menu Details
1: det( ‘det(JA])’ returns the determinant of square matrix [A].
2: 7 [A]" returns the transpose of matrix [A].
3: dim ( ‘dim(JA])’ returns the size of matrix [A]
4: Fill ( ‘Fill(a,[ A])’ fills / replaces all the elements of [A] with a.
5: identity( ‘identity(n)’ returns a , x , identity matrix.
6: randM( ‘randM(m,n)’ returns a random ,, x , matrix (integer elements from -9 to 9).
7: augment( ‘augment([A],[B])’ appends matrices [A] and [B] together.
8: Matr>list( ‘Matr>list([A],Li,L,,...)" fills each of the list with the columns of [A], neglecting excess.
9: List>matr( ‘List>matr(Li,Lo,...,[|A])’ fills each column of [A] with the lists, neglecting excess.
0: cumSum( ‘cumSum([A])’ returns the cumulative sums of a matrix.
A ref( ‘ref([A])’ returns a row-echelon form of matrix [A].
B: rref( ‘rref(JA])’ returns the reduced row-echelon form of matrix [A].
C: rowSwap( ‘rowSwap(|Al,i,j)’ returns the matrix obtained by swapping rows i and j in [A].
D: row+( ‘row+([Al,i,j)’ returns the matrix obtained by adding row i to row j in [A].
E: *row( *row(k,[A],i)’ returns the matrix obtained by multiplying row i in [A] by £.
F: *row+( “*row+(k,| Al,i,j)’ returns the matrix obtained by adding & times row i to row j in [A].

The highlighted commands are not required in H2 FM Syllabus.

1.2 Online Calculators

(a) An online calculator for matrices
URL: http://matrix.reshish.com/

(b) An online calculator for eigenvalues and eigenvectors:
URL: http://www.mathportal.org/calculators/matrices-calculators/matrix-calculator.php

(¢) Explore and record other online calculators yourself:
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Appendix II: Some Mathematical Terminologies

Definition - a precise and unambiguous description of the meaning of a mathematical term. It
characterizes the meaning of a word by giving all the properties and only those properties that must
be true.

e.g. definition of elementary row operations.

Theorem - a mathematical statement that is proved using rigorous mathematical reasoning. In a
mathematical paper, the term theorem is often reserved for the most important results.
e.g. Pythagoras Theorem.

Lemma - a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on
the path to proving a theorem. Very occasionally lemmas can take on a life of their own.
e.g. Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s lemma.

Corollary - aresult in which the (usually short) proof relies heavily on a given theorem. We often say
that “this is a corollary of Theorem A”.
e.g. the corollaries in Section 4.

Proposition - a proven and often interesting result, but generally less important than a theorem.
e.g. some statements that you have shown by mathematical induction.

Conjecture - a statement that is unproved, but is believed to be true.
e.g. Collatz conjecture, Goldbach conjecture, twin prime conjecture.

Axiom/Postulate - a statement that is assumed to be true without proof. These are the basic building
blocks from which all theorems are proven.
e.g. Euclid’s five postulates, Zermelo-Fraenkel axioms, Peano axioms.

Identity - a mathematical expression giving the equality of two (often variable) quantities.
e.g. trigonometric identities, Euler’s identity.

Paradox - a statement that can be shown, using a given set of axioms and definitions, to be both true
and false. Paradoxes are often used to show the inconsistencies in a flawed theory (Russell’s paradox).
The term paradox is often used informally to describe a surprising or counterintuitive result that
follows from a given set of rules.

e.g. Banach-Tarski paradox, Alabama paradox, Gabriel’s horn.
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Appendix I1I: Some Applications

The following online resources are selected from Linear Algebra Larson 7th Edition.

3.1 System of Linear Equations (url: http://tinyurl.com/MandLapp1):
(a) Setup and solve a system of equations to fit a polynomial function to a set of data points.
(b) Setup and solve a system of equations to represent a network.
3.2 Applications of Matrix Operations (url: http://tinyurl.com/MandLapp2):
(a) Write and use a stochastic matrix.
(b) Use matrix multiplication to encode and decode messages.
(¢) Use matrix algebra to analyse an economic system (Leontief input-output model).
(d) Find the least squares regression line for a set of data.
3.3 Applications of Determinants (url: http://tinyurl.com/MandLapp3):
(a) Find the adjoint of a matrix and use it to find the inverse of the matrix.
(b) Use Cramer’s Rule to solve a system of # linear equations in n variables.
(¢) Use determinants to find area, volume, and the equations of lines and planes.
3.4 Applications of Vector Spaces (url: http://tinyurl.com/MandLapp4):
(a) Use the Wronskian to test a set of solutions of a linear homogeneous differential equation
for linear independence.
(b) Identify and sketch the graph of a conic section and perform a rotation of axes.
3.5 Applications of Inner Product Spaces (url: http:/tinyurl.com/MandLapp5):
(a) Find the cross product of two vectors in R’.
(b) Find the linear or quadratic least square approximation of a function.
(¢) Find the nth-order Fourier approximation of a function.
3.6 Applications of Linear Transformations (url: http://tinyurl.com/MandLapp6):
(a) Identify linear transformations defined by reflections, expansions, contracts, or shears in
R*.
(b) Use a linear transformation to rotate a figure in R’.
3.7 Applications of Eigenvalues and Eigenvectors (url: http://tinyurl.com/MandLapp7):
(a) Model population growth using an age transition matrix and an age distribution vector,
and find a stable age distribution vector.
(b) Use a matrix equation to solve a system of first-order linear differential equations.
(¢) Find the matrix of a quadratic form and use the Principal Axes Theorem to perform a
rotation of axes for a conic and a quadric surface.
3.8 Record any resources that you have found out:
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