

National Junior College 2016 – 2017 H2 Mathematics Complex Numbers Tutorial

Basic Mastery Questions

- 1. Simplify the following complex numbers in the Cartesian form, x + iy:
 - (a) (3-8i)(5+7i) (b) $\frac{7+5i}{4-3i}$
- 2. Find the modulus and argument of the following complex numbers, leaving the arguments in exact radians. Hence express the complex numbers in polar form and exponential form.

(a)
$$-2i$$
 (b) $-1+\sqrt{3}i$
(c) $(-1-i)(-1+\sqrt{3}i)$ (d) $\frac{-1+\sqrt{3}i}{-1-i}$
(e) $1+e^{i\frac{\pi}{3}}$ (f) $3e^{i\frac{\pi}{3}}$
(g) -100 (h)* $-3e^{i\frac{5\pi}{6}}$

3. Convert the following complex numbers into Cartesian form.

(a)
$$2\left(\cos\left(-\frac{5\pi}{6}\right)+i\sin\left(-\frac{5\pi}{6}\right)\right)$$
 (b) $2e^{i\left(-\frac{\pi}{3}\right)}$

4. See the following proof:

$$-1 = i^2 = (i)(i) = \sqrt{-1}\sqrt{-1} = \sqrt{1} = 1$$

-1 = 1??? What went wrong?

Practice Questions

1. Find the exact values of the modulus and argument of $z = -\sqrt{3} + i$ and w = 4 + 4i.

Hence evaluate (i) $-\frac{1}{z}$, (ii) $\frac{1}{z^*}$, (iii) $(w^*)^3$, (iv) $\frac{z^*}{w}$, (v) z^2w^3 , leaving your answers in exact polar form.

2. The complex numbers *p* and *w* are such that

$$|p|=3$$
, $\arg(p)=\frac{7\pi}{8}$, and $|w|=2$, $\arg(w)=-\frac{5\pi}{8}$.

(i) Find the exact values of the modulus and argument of
$$\frac{2p}{w^2}$$
.
(ii) Hence find the smallest positive value of *n* such that $\left(\frac{2p}{w^2}\right)^n$ is purely imaginary.
(2011/MJC/P1/Q11a modified)

- 3. (i) The complex number w has modulus r and argument θ , where $0 < \theta < \frac{1}{2}\pi$, and w^* denotes the conjugate of w. State the modulus and argument of p, where $p = \frac{w}{w^*}$.
 - (ii) Given p^5 is real and positive, find the possible values of θ . (GCE 2008/P2/O3 modified)
- 4. The complex number *a* has modulus *r* and argument θ , where 0 < r < 1 and $0 < \theta < \frac{\pi}{2}$. The complex number *b* is such that $\left|\frac{b}{a}\right| = 1$ and $\arg(a) + \arg(b) = \pi$.

Let the points A, B, C, D and E represent the complex numbers a, b, a + b, $\frac{b}{a^*}$ and *ia* respectively, where a^* denotes the conjugate of a.

On a single clearly labelled Argand diagram, illustrate these five points.

- 5. Show that $e^{2\alpha i} + e^{-2\alpha i}$ is a real number for all α . The complex number w is given by $w = \frac{2}{1 + e^{4\alpha i}}$, where $0 < \alpha < \pi$. Show that $\operatorname{Re}(w) = 1$.
- 6. The complex number w is such that $ww^*+2w=3+4i$, where w^* is the complex conjugate of w. Find w in the form a+ib, where a and b are real. (GCE 2007/P1/Q3b)
- 7. Solve the simultaneous equations iz + 2w = 1 and $4z + (3-i)w^* = -6$, giving z and w in the form a + bi, where a and b are real.
- 8. Given that $(x + iy)^2 = 12i 5$, where x and y are real numbers, find the set of possible values of x + iy. Hence solve the equation $z^2 + 4z = 12i 9$.
- 9. (i) Given that 1+i is a root of the equation $2w^3 + aw^2 + bw 2 = 0$, find the values of the real numbers *a* and *b*.
 - (ii) For these values of a and b, solve the equation in part (ii) without the use of a calculator.
- 10. One of the roots of the equation $z^3 2z^2 + az + 1 + 3i = 0$ is z = i. Find the complex number *a* and the other roots. (2014/HCI/P1/Q3)
- 11. The complex number z is defined by $z = \cos \theta + i \sin \theta$, where $-\pi < \theta \le \pi$. Find, in Cartesian form, x + iy, the complex number z such that $3 + i(3z + 1) = e^{i(\pi + \theta)}$.

Challenging Questions

- 1. The complex numbers $2e^{\frac{1}{12}\pi i}$ and $2e^{\frac{5}{12}\pi i}$ are represented by points *A* and *B* respectively in an Argand diagram with origin *O*. Show that triangle *OAB* is equilateral.
- 2. If z = i is a root of the equation $z^3 + (1-3i)z^2 (2+3i)z 2 = 0$, determine the other roots. Hence find the roots of the equation $w^3 + (1+3i)w^2 + (3i-2)w - 2 = 0$.
- 3. A complex number w is such that $ww^* 16\sqrt{3}i + 8iw = 0$ and Im(w) < 5, where w^* is the conjugate of w.
 - (i) Find *w* in the form x + yi, where $x, y \in \mathbb{R}$.
 - (ii) Find the integer values of n such that w^n is real.
 - (iii) Evaluate $1 + \left(\frac{w}{4}\right)^3 + \left(\frac{w}{4}\right)^6 + \left(\frac{w}{4}\right)^9 + \dots + \left(\frac{w}{4}\right)^{21}$.

Another complex number z has modulus 4 and satisfies $\arg\left(\frac{zi}{1+i}\right) = \frac{3}{4}\pi$.

- (iv) Express z in the form of a + bi, where $a, b \in \mathbb{R}$.
- (v) Find the area of the triangle ZWO where Z and W are points on the Argand diagram that represent the complex numbers z and w respectively, and O is the origin.

(2009/HCI/P2/Q3)

Numerical Answers to Basic Mastery Questions

1(a) 71–19i (b)
$$\frac{13}{25} + \frac{41}{25}i$$

2(a) $2, -\frac{\pi}{2}, 2e^{i\left(-\frac{\pi}{2}\right)}, 2\left[\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right]$ (b) $2, \frac{2\pi}{3}, 2e^{i\left(\frac{2\pi}{3}\right)}, 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
(c) $2\sqrt{2}, -\frac{\pi}{12}, 2\sqrt{2}e^{i\left(-\frac{\pi}{12}\right)}, 2\sqrt{2}\left[\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right]$
(d) $\sqrt{2}, -\frac{7}{12}\pi, \sqrt{2}e^{i\left(-\frac{7\pi}{12}\right)}, \sqrt{2}\left[\cos\left(-\frac{7\pi}{12}\right) + i\sin\left(-\frac{7\pi}{12}\right)\right]$
(e) $\sqrt{3}, \frac{\pi}{6}, \sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right), \sqrt{3}e^{i\left(\frac{\pi}{6}\right)}$ (f) $3, \frac{\pi}{3}, 3e^{i\left(\frac{\pi}{3}\right)}, 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$
(g) $3, \pi, 3e^{i(\pi)}, 3\left(\cos\pi + i\sin\pi\right)$ (h) $3, -\frac{\pi}{6}, 3e^{i\left(-\frac{\pi}{6}\right)}, 3\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$
3(a) $-\sqrt{3} - i$ (b) $1 - i\sqrt{3}$

Numerical Answers to Practice Questions

1.(i)
$$\frac{1}{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$
 (ii) $\frac{1}{2} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$
(iii) $128\sqrt{2} \left[\cos \left(-\frac{3\pi}{4} \right) + i \sin \left(-\frac{3\pi}{4} \right) \right]$ (iv) $\frac{\sqrt{2}}{4} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right)$

(v) $512\sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$ 2. (i) $3/2, \frac{\pi}{8}$ (ii) 4 3. (i) $1, 2\theta$ (ii) $\frac{\pi}{5}, \frac{2\pi}{5}$ 6. -1+2i7. w=1+i, z=-2+i8. 2+3i or -2-3i, z=3i, z=-4-3i9. (i) a = -5, b = 6 (ii) $w=1+i, 1-i, \frac{1}{2}$ 10. a = -2+3i; z=-1 or 3-i

11.
$$z = -0.6 + 0.8i$$

Numerical Answers to Challenging Questions

2(i)
$$-1, 2i; -i, -2i, -1$$

3(i) $w = 2\sqrt{3} + 2i = 2(\sqrt{3} + i)$ (ii) $n = 6k$ where $k \in \mathbb{Z}$ (iii) 0 (iv) 4i (v) $4\sqrt{3}$ unit²