

HWA CHONG INSTITUTION 2017 C1 H2 CHEMISTRY PROMOTIONAL EXAM SUGGESTED SOLUTIONS

Paper 2

1 (a) (i)
$$H_2S + NaOH \rightarrow NaSH + H_2O$$

Alternative answer:

Role of
$$H_2S$$
: Lewis base
Explanation: H_2S donates an electron pair

Alternative answer:

(b) Role of H2S: Reducing agent [1]

Equation:
$$3H_2S + 2H^+ + 2NO_3^- \rightarrow 3S + 2NO + 4H_2O$$
 [1] ALLOW $3H_2S + 2HNO_3 \rightarrow 3S + 2NO + 4H_2O$

All three structures correct = [1]

Correct ratio (provided all three structures are correct) = [1]

(d) (l)
$$K_p = \frac{(P_{H_2})^2 (P_{S_2})}{(P_{H_2S})^2}$$
 [1]

(ii)		2H₂S (g)	=	2H₂ (g)	+	S ₂ (g)	
	Initial amt / mol	1.0		0		0	
	Change / mol	-0.10		+ 0.10		+ 0.05	
	Eqm amt / mol	0.90		0.10		0.05	

Eqm
$$P_{H2S} = (0.90/1.05) \times 2$$
 atm = 1.71 atm
Eqm $P_{H2} = (0.10/1.05) \times 2$ atm = 0.191 atm

Eqm
$$P_{s2} = (0.05/1.05) \times 2$$
 atm = 0.0952 atm

$$K_{\rho} = (0.1905)^2(0.09524)/(1.714)^2 = 0.00118 \text{ atm}$$

- [1] Correct eqm partial pressures of all the gases
- [1] Correct Kp calculated

(iii)		2H₂S (g)	⇒ 2H₂ (g)	+ S ₂ (g)
	Initial partial pressure / atm	1.714	0.1905	0.09524 + x
	Change / atm	+0.086	-0.086	-0.043
	Eqm partial pressure / atm	1.80	0.1045	0.05224 + x

$$K_p = (0.1045)^2(0.05224+x)/(1.8)^2 = 0.001176$$
 atm

x= 0.297 atm

- [1] Correct table or equilibrium partial pressures calculated
- [1] correct x value calculated

(e) (i) Temperature was increased. [1]

An increase in temperature will cause position of equilibrium to shift to the right to favour the forward endothermic reaction to absorb additional heat. [1]

(ii) partial pressure

- [1] Show instant increase in partial pressures of all gases at t2
- [1] Show correct changes in partial pressures after t2
- 2 (a) [1] Ibuprofen is made up of <u>simple</u> (covalent) <u>molecules</u> / has <u>simple molecular</u> structure.

Ibuprofen is able to form strong [1/2] hydrogen bonding [1/2]. Ibuprofen has a large number of electrons [1/2], leading to a large polarisable electron cloud, hence there is significant dispersion force [1/2] as well. Hence relatively high energy is needed to overcome these intermolecular forces.

(b) [1] Ibuprofen has a low solubility of $\underline{1.02 \times 10^{-4} \text{ mol dm}^{-3}}$, making it a <u>fast acting drug</u>.

The isomers have a chiral centre and are [1] <u>non-superimposable mirror</u> images of each other.

- (d) (i) [1] Specific optical rotation of sample of <u>52°</u> compared to specific optical rotation of pure sample of <u>57°</u> shows that the sample contains some of the other enantiomer of (+)-ibuprofen.
 - [1] Enantiomer could potentially have <u>undesirable negative health effects</u>, and therefore the pills should not be sold.

(II) Let x = percentage of (+)-ibuprofen
Therefore percentage of (-)-ibuprofen = 100 - x

Hence, combining the 2 given equations given in the question

e.e.
$$= x - (100 - x) = (52 + 57) \times 100 = 91.2\%$$

 $x = 95.6\%$
[2]

OR

- (iii) Amount of (+)-ibuprofen dissolved = $\{(95.6 + 100) \times 400 \times 10^{-3}\} + 206 = 0.00186 \text{ mol } [1/2]$ [(+)-ibuprofen] = $(0.00186 + 100) \times 1000 = 0.0186 \text{ mol dm}^3 [1/2]$
- (e) (I) [1] each I: KMnO4(aq)/H₂SO4(aq)/heat II: C*l*₂ / A/C*l*₃
 - (ii) 1 [1]
 - (iii) 5 [1]
- 3 (a) (i) Maximum number of moles of H₂O would be produced with both HCI and NaOH reacting completely. [1] So maximum heat change = max no. of moles of H₂O produced × ΔH_{neut} and max heat change gives highest ΔT.

(ii)
$$\Delta H_{\text{neut}} = \frac{-60 \times 4.2 \times 8.1}{\frac{24}{1000} \times 1.50} = \frac{-2041.2}{0.036} = -56.7 \text{ kJ mol}^{-1}$$

[1/2] for ΔT value, accept 8.0-8.2 (± half small square reading allowance)

[$\frac{1}{2}$] for the working $60\times4.2\times8.1$

[1] for division by $(\frac{24}{1000} \times 1.50)$ or division by 0.036 mol

[1] for calculated ΔH_{neut} value with - sign

- (b) Draw intersection at the <u>same</u> volume of acid but (slightly) <u>lower</u> ΔT [1]
- (c) No. of moles of NaOH reacted

$$=\frac{60-18.50}{1000}\times 1.00$$

= 0.0415

= No. of moles of HX reacted

[HX] =
$$\frac{0.0415}{18.50 + 1000}$$
 = 2.24 mol dm⁻³ [1]

(d) [1/2] each :

- separate measuring cylinders for the two solutions (or separate burettes but must measure into another container first e.g. polystyrene cup).
- ✓ thermometer to measure temperatures
- ✓ polystyrene cup as the reaction container
- suggest the volume of FA 1 and of NaOH to obtain at least three data points for each line

e.g.

Volume of NaOH /cm ³	Volume of FA 1 /cm ³
50	10
45	15
40	20
30	30
20	40
10	50

- ✓ stir after mixing
- ✓ for each mixing, measure initial temperature (for at least one solution) AND highest temperature after mixing

Suggested experimental procedure:

- Use a burette to measure 50.00 cm³ of NaOH into a polystyrene cup. Use a thermometer to measure and record its initial temperature.
- 2. Use a second burette to measure 10.00 cm³ of FA 1 into a second polystyrene
- Pour the contents of the second cup into the first cup. Use the thermometer to (gently) stir the mixture and record the highest temperature reached.
- 4. Repeat Steps 1 to 3 using the volume combinations listed below.

Mixture	Volume of NaOH /cm ³	Volume of FA 1 /cm ³	Initial temperature	Highest temperature after	ΔT/°C
			of NaOH /°C	mixing /°C	
1	50.00	10.00			
2 .	45.00	15.00			
3	40.00	20.00			1
4	30.00	30.00			
5	20.00	40.00		- 4	
6	10.00	50.00		1	faller Level